Skip to main content

Ecology and Diversity of Microaerophilic Fungi Including Endophytes

  • Chapter
  • First Online:
Extremophilic Fungi

Abstract

This chapter explores the extremophilic microaerophilic fungi along with endophytes. The relation between microaerophilic fungi and endophytes with the environment which decide the diversity is discussed here. From the overall population of one to five million fungal species, 1.5–1.6 million species are predominating. These are widely spread in extreme conditions like deep sea sediments, ionizing radiations along with areas where high salt concentrations prevail. Another perspective is of endophytic fungi. They are classified majorly as The Clavicipitaceae Fungal Endophyte (1) and the Non-Clavicipitaceae Fungal Endophyte (2). The microaerophilic fungi in extreme conditions are not explored much. There is a huge scope for the study of these microaerophilic fungi and endophytes that can thrive in adverse conditions. These extreme environments pose several stresses on fungi. The fungi use various mechanisms to adapt to these adverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abogadallah G (2011) Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Sci 180:540–547

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah E, Alqarawi A, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:1–15

    Article  CAS  Google Scholar 

  • Ainsworth G (1976) Introduction to the history of mycology. Cambridge University Press, Cambridge. ISBN 978-0-521-11295-6

    Google Scholar 

  • Akello J, Sikora R (2012) Systemic acropedal influence of endophyte seed treatment on Acyrthosiphonpisum and Aphis fabae offspring development and reproductive fitness. Biol Control 61:215–221

    Article  Google Scholar 

  • Akutse K, Maniania N, Fiaboe K, Berg V, Ekesi S (2013) Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyzahuidobrensis (Diptera: Agromyzidae). Fungal Ecol 6:293–301

    Article  Google Scholar 

  • Ali A, Radwan U, El-Zayat S, El-Sayed M (2019) The role of the endophytic fungus, Thermomyces lanuginosus, on mitigation of heat stress to its host desert plant Cullen plicata. Biol Fut 70:1–7

    CAS  Google Scholar 

  • Ananda K, Sridhar K (2002) Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Canadian J Microbiol 48:871–878

    Article  CAS  Google Scholar 

  • Ansari M, Bains G, Shukla A, Pant R, Tuteja N (2013) Low temperature stress ethylene and not fusarium might be responsible for mango malformation. Plant Physiol Biochem 69:34–38

    Article  CAS  PubMed  Google Scholar 

  • Ariffin S, Davis P, Ramasamy K (2011) Cytotoxic and antimicrobial activities of Malaysian marine endophytic fungi. Bot Mar 54:95–100

    Article  Google Scholar 

  • Arnold A, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Asaf L, Hamayun M, Khan A, Waqas M, Khan M, Jan R, Lee I, Hussain A (2018) Salt tolerance of Glycine max. L induced by endophytic fungus aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem 128:13–23

    Article  PubMed  CAS  Google Scholar 

  • Backman P, Sikora R (2008) Endophytes: an emerging tool for biological control. Biol Control 46:1–3

    Article  Google Scholar 

  • Bacon C, White J (2000) Physiological adaptations in the evolution of endophytism in the Clavicipitaceae. In: Bacon CW, White JFJ (eds) Microbial endophytes. Marcel Dekker Inc., New York, pp 237–263

    Chapter  Google Scholar 

  • Bagyalakshmi G, Muthukumar T, Sathiyadash K, Muniappan V (2010) Mycorrhizal and dark septate fungal associations in shola species of Western Ghats, southern India. Mycosci 51:44–52

    Article  Google Scholar 

  • Bailey J, Deckert R, Schweitzer J, Rehill B, Lindroth R, Gehring C, Whitham T (2005) Host plant genetics affect hidden ecological players: links among Populus, condensed tannins, and fungal endophyte infection. Canadian J Bot 83:356–361

    Article  Google Scholar 

  • Baldauf S, Palmer J (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A 90:11558–11562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bärlocher F (1992) Research on aquatic hyphomycetes: historical background and overview. In: The ecology of aquatic hyphomycetes. Springer, Berlin, pp 1–15

    Chapter  Google Scholar 

  • Beena K, Ananda K, Sridhar K (2000) Fungal endophytes of three sand dune plant species of west coast of India. Sydowia-Horn 52:1–9

    Google Scholar 

  • Bing L, Lewis L (1991) Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environ Entomol 20:1207–1211

    Article  Google Scholar 

  • Biswas C, Dey P, Satpathy S, Satya P, Mahapatra B (2012) Endophytic colonization of white jute (Corchorus capsularis) plants by different Beauveria bassiana strains for managing stem weevil (Apion corchori). Phytoparasitica 41:17–21

    Article  Google Scholar 

  • Breen J (1994) Acremonium endophyte interactions with enhanced plant resistance to insects. Annu Rev of Entomol 39:401–423

    Article  Google Scholar 

  • Bruns T (2006) A kingdom revised. Nature 443:758–761

    Article  CAS  PubMed  Google Scholar 

  • Butler M, Day A (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    Article  CAS  Google Scholar 

  • Camehl I, Oelmüller R (2010) Do ethylene response factors-9 and- 14 repress PR gene expression in the interaction between Piriformospora indica and Arabidopsis? Plant Signal Behav 5:932–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll G (1995) Forest endophytes: pattern and process. Can J Bot 73:1316–1324

    Article  Google Scholar 

  • Carter J, Spink J, Cannon P, Daniels M, Osbourn A (1999) Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Appl Environ Microbiol 65:3364–3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Hu K, Hou X, Guo S (2011) Endophytic fungi assemblages from 10 dendrobium medicinal plants (Orchidaceae). World J Microbiol Biotechnol 27:1009–1016

    Article  Google Scholar 

  • Cheng Z, Tang W, Xu S, Sun S, Huang B, Yan X, Lin Y (2008) First report of an endophyte (Diaporthepha seolorum var. sojae) from Kandeliacandel. J Forestry Res 19:277–282

    Article  Google Scholar 

  • Cheplick G, Clay K (1988) Acquired chemical defences in grasses: the role of fungal endophytes. Oikos 52:309

    Article  Google Scholar 

  • Cherry A, Lomer C, Djegui D, Schulthess F (1999) Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. BioControl 44:301–327

    Article  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Clay K (1989) Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol Res 92:1–12

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127

    Article  Google Scholar 

  • Coker J (2019) Recent advances in understanding extremophiles. Food Res 1917:1–8

    Google Scholar 

  • Cooney J, Lauren D, di Menna M (2001) Impact of competitive fungi on trichothecene production by fusarium graminearum. J Agric Food Chem 49:522–526

    Article  CAS  PubMed  Google Scholar 

  • Dadachova E, Huang X, Schweitzer A, Aisen P, Nosanchuk J, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS One 2:457

    Article  CAS  Google Scholar 

  • Devarajan P, Suryanarayanan T (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Ind J Mar Sci 31:73–74

    Google Scholar 

  • Dixon R (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Durrant L (1996) Biodegradation of lignocellulosic materials by soil fungi isolated under anaerobic conditions. Int Biodeterior Biodegradation 37:189–195

    Article  CAS  Google Scholar 

  • Durrant L, Canale-Parola E, Leschine S (1995) Facultatively anaerobic cellulolytic fungi from soil. Signific Regul Soil Biod 63:161–167

    Google Scholar 

  • Elmi A, West C, Robbins R, Kirkpatrick T (2000) Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci 55:166–172

    Article  Google Scholar 

  • Flewelling A, Johnson J, Gray C (2013) Isolation and bioassay screening of fungal endophytes from North Atlantic marine macroalgae. Bot Mar 56:287–297

    Article  Google Scholar 

  • Foyer C, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Fürnkranz M, Lukesch B, Muller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63:418–428

    Article  PubMed  CAS  Google Scholar 

  • Gehlot P, Bohra N, Purohit D (2008) Endophytic mycoflora of inner bark of Prosopis cineraria-a key stone tree species of Indian desert. Am Eur J Bot 1:01–04

    Google Scholar 

  • Gezgin Y, Eltem R (2009) Diversity of endophytic fungi from various Aegean and Mediterranean orchids (saleps). Turkish J Bot 33:439–445

    Google Scholar 

  • Ghate S, Sridhar K (2017) Endophytic aquatic hyphomycetes in roots of riparian tree species of two Western Ghat streams. Symbiosis 71:233–240

    Article  Google Scholar 

  • Gill S, Gill R, Trivedi D, Anjum N, Sharma K, Ansari M, Ansari A, Johri A, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Grahl N, Shepardson K, Chung D, Cramer R (2012) Hypoxia and fungal pathogenesis: to air or not to air? Eukaryot Cell 11:560–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield M, Gomez-Jimenez M, Ortiz V, Vega F, Kramer M, Parsa S (2016) Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol Control 95:40–48

    Google Scholar 

  • Gupta V, Sreenivasaprasad S, Mach R (2015) Fungal bio-molecules: sources, applications and recent developments, 1st edn. Wiley-Blackwell, Delhi, pp 117–136

    Book  Google Scholar 

  • Gurulingappa P, Sword G, Murdoch G, McGee P (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55:34–41

    Article  Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen. Georg Andreas Reimer Verlag, Berlin

    Book  Google Scholar 

  • Hamilton C, Gundel P, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Hardoim P, Overbeek L, Berg G, Pirttilä A, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartley S, Gange A (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd Allah E, Alqarawi A, Al Huqail A, Egamberdieva D (2014) Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (bonord.) bainier. J Plant Interact 9:857–868

    Article  CAS  Google Scholar 

  • Hawksworth D (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Hawksworth D (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Hawksworth D, Lucking R (2016) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5:0052

    Google Scholar 

  • Herrera P, Suárez J, Kottke I (2010) Orchids keep the ascomycetes outside: a highly diverse group of ascomycetes colonizing the velamen of epiphytic orchids from a tropical mountain rainforest in southern Ecuador. Mycology 1:262–268

    Article  Google Scholar 

  • Husaini A, Abdin M, Khan S, Xu Y, Aquil S, Anis M (2012) Modifying strawberry for better adaptability to adverse impact of climate change. Curr Sci 102:1660–1673

    CAS  Google Scholar 

  • Jaber L, Araj S (2017) Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzuspersicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (hymenoptera: Braconidae). Biol Control 116:53–61

    Article  Google Scholar 

  • Jaber L, Enkerli J (2016) Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol Control 103:187–195

    Article  CAS  Google Scholar 

  • James T, Kauff F, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  • Johnson J, Sherameti I, Nongbri P, Oelmüller R (2013) Standardized conditions to study beneficial and non beneficial traits in the Piriformospora indica/Arabidopsis thaliana interaction. In: Varma A, Kost G, Oelmuller R (eds) Sebacinales-forms, functions and biotechnological applications, soil biology series no.33. Springer-Verlag, Berlin, pp 325–343

    Google Scholar 

  • Jones G (1947) An enumeration of Illinois Pteridophyta. Am Midland Nat 38:76–126

    Article  Google Scholar 

  • Khan A, Hamayun M, Kim Y, Kang S, Lee I (2011) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861

    Article  CAS  PubMed  Google Scholar 

  • Kharwar R, Mishra A, Gond S, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Goettel M, Gillespie D (2008) Evaluation of Lecanicilliumlongisporum, Vertalec® for simultaneous suppression of cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, on potted cucumbers. Biol Control 45:404–409

    Article  Google Scholar 

  • Krings M, Taylor T, Hass H, Kerp H, Dotzler N, Hermsen E (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  PubMed  Google Scholar 

  • Kumaran R, Kim H, Hur B (2010) Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J Biosci Bioeng 110:541–546

    Article  CAS  PubMed  Google Scholar 

  • Kumaresan V, Suryanarayanan T (2001) Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res 105:1388–1391

    Article  Google Scholar 

  • Kumaresan V, Veeramohan R, Bhat M, Sruthi K, Ravindran C (2013) Fungal endophyte assemblages of some Pteridophytes from Mahe, India. World J Sci Technol 3:7–10

    Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303

    Article  CAS  PubMed  Google Scholar 

  • Lata R, Chowdhury S, Gond S, White J Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276

    Article  CAS  PubMed  Google Scholar 

  • Leuchtmann A, Schmidt D, Bush L (2000) Different levels of protective alkaloids in grasses with stroma-forming and seed-transmitted epichloë/neotyphodium endophytes. J Chem Ecol 26:1025–1036

    Article  CAS  Google Scholar 

  • Li H, Zhao C, Liu C, Xu X (2010) Endophytic fungi diversity of aquatic/riparian plants and their antifungal activity in vitro. J Microbiol 48:1–6

    Article  PubMed  Google Scholar 

  • Lugtenberg B, Caradus J, Johnson L (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92:194

    Article  CAS  Google Scholar 

  • Macelroy R (1974) Some comments on the evolution of extremophiles. BioSyst 6:74–75

    Article  Google Scholar 

  • Massimo N, Nandi Devan M, Arendt K, Wilch M, Riddle J, Furr S, Steen C, U’Ren J, Sandberg D, Arnold A (2015) Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts. Microb Ecol 70:61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mchunu N, Permaul K, Abdul Rahman A, Saito J, Singh S, Alam M (2013) Xylanase super producer: genome sequence of a compost-loving thermophilic fungus, Thermomyces lanuginosus strain SSBP. Gen Announ 1:e00388–e00313

    Google Scholar 

  • Molitor A, Zajic D, Voll L, Pons-Kuehnemann J, Samans B, Kogel K et al (2011) Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew. Mol Plant-Microbe Interact 24:1427–1439

    Article  CAS  PubMed  Google Scholar 

  • Moon C, Tapper B, Scott B (1999) Identification of epichloë endophytes in planta by a microsatellite-based pcr fingerprinting assay with automated analysis. Appl Environ Microbiol 65:1268–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orole O, Adejumo T (2009) Activity of fungal endophytes against four maize wilt pathogens. Afr J Microbiol Res 3:969–973

    Google Scholar 

  • Ownley B, Griffin M, Klingeman W, Gwinn K, Moulton J, Pereira R (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270

    Google Scholar 

  • Pavarina E, Durrant L (2002) Growth of lignocellulosic-fermenting fungi on different substrates under low oxygenation conditions. Appl Biochem Biotechnol 98-100:663–678

    Article  CAS  PubMed  Google Scholar 

  • Petrini O (1991) Fungalendophytes of tree leaves. In: Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Posada F, Aime M, Peterson S, Rehner S, Vega F (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol Res 111:748–757

    Article  CAS  PubMed  Google Scholar 

  • Puri A, Padda K, Chanway P (2016) Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacilluspolymyxa P2b-2R. Biol Fertil Soils 52:119–125

    Article  CAS  Google Scholar 

  • Quesada-Moraga E, Muñoz-Ledesma F, Santiago-Alvarez C (2009) Systemic protection of Papaver somniferum L. against Iraella luteipes (hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ Entomol 38:723–730

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Diver 31:19–35

    Google Scholar 

  • Raghukumar C, Raghukumar S (1998) Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microb Ecol 15:153–163

    Article  Google Scholar 

  • Rajagopal K, Meenashree B, Binika D, Joshila D, Tulsi P, Arulmathi R, Tuwar A (2018) Mycodiversity and biotechnological potential of endophytic fungi isolated from hydrophytes. Cur Res Environ Appl Mycol 8:172–182

    Article  Google Scholar 

  • Rao D, Chaitanya K (2016) Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol Plant 60:201–218

    Article  CAS  Google Scholar 

  • Ratnaweera P, Williams D, de Silva E, Wijesundera R, Dalisay D, Andersen R (2014) Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka. Mycology 5:23–28

    Article  PubMed  CAS  Google Scholar 

  • Raviraja N (2005) Fungal endophytes in five medicinal plant species from Kudremukh range, Western Ghats of India. J Basic Microbiol 45:230–235

    Article  CAS  PubMed  Google Scholar 

  • Raviraja N, Sridhar K, Barlocher F (1996) Endophytic aquatic hyphomycetes of roots of plantation crops and ferns from India. Sydowia-Horn 48:152–160

    Google Scholar 

  • Raviraja N, Sridhar K, Bärlocher F (1998) Fungal species richness in Western Ghat streams (southern India): is it related to pH, temperature or altitude. Fungal Divers 1:179–191

    Google Scholar 

  • Rayner M (1915) Obligate symbiosis in Calluna vulgaris. Ann Bot 29:97–133

    Article  Google Scholar 

  • Reddy A, Chaitanya K, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Reddy N, Khan A, Devi U, Sharma H, Reineke A (2009) Treatment of millet crop plant (Sorghum bicolor) with the entomopathogenic fungus (Beauveria bassiana) to combat infestation by the stem borer, Chilopartellus Swinhoe (Lepidoptera: Pyralidae). J Asia Pac Entomol 12:221–226

    Article  Google Scholar 

  • Redman R, Dunigan D, Rodriguez R (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716

    Article  PubMed  Google Scholar 

  • Redman R, Sheehan K, Stout R, Rodriguez R, Henson J (2002) Thermotolerance generated by plant/fungal Symbiosis. Science 298:1581–1581

    Article  CAS  PubMed  Google Scholar 

  • Rehner S, Samuels G (1995) Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Can J Bot 73:816–823

    Article  Google Scholar 

  • Richards T, Jones M, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  CAS  PubMed  Google Scholar 

  • Robinson C (2001) Cold adaptation in arctic and antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Rodriguez R, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman R (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez R, JrJ W, Arnold A, Redman R (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Russo M, Pelizza S, Marta C, Stenglein S, Scorsetti A (2015) Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Sci Tech 25:475–480

    Article  Google Scholar 

  • Saikkonen K, Faeth S, Helander M, Sullivan T (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Ion D, Gyllenberg M (2002) The persistence of vertically transmitted fungi in grass metapopulations. Proc R Soc Bio Sci 269:1397–1403

    Article  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth S (2006) Model systems in ecology: dissecting the endophyte–grass literature. Trends Plant Sci 11:428–433

    Article  CAS  PubMed  Google Scholar 

  • Sandberg D, Battista L, Arnold A (2014) Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure. Microb Ecol 67:735–747

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangamesh M, Jambagi S, Vasanthakumari M, Shetty N, Kolte H, Ravikanth G, Nataraja K, Shaanker R (2018) Thermotolerance of fungal endophytes isolated from plants adapted to the Thar Desert, India. Symbiosis 75:135–147

    Article  Google Scholar 

  • Saunders M, Kohn L (2009) Evidence for alteration of fungal endophyte community assembly by host defense compounds. New Phytol 182:229–238

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Rommert A, Krohn K (2002) Endophytic fungi: a source of biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schulz B, Draeger S, dela Cruz T, Rheinheimer J, Siems K, Loesgen S, Krohn K (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51:219–234

    Article  CAS  Google Scholar 

  • Selosse M, Vohnik M, Chauvet E (2008) Out of the rivers: are some aquatic hyphomycetes plant endophytes? New Phytol 178:3–7

    Article  PubMed  Google Scholar 

  • Serfling A, Wirsel S, Lind V, Deising H (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under green house and field conditions. Phytopathology 97:523–531

    Article  CAS  PubMed  Google Scholar 

  • Shreelalitha S, Sridhar K (2015) Endophytic fungi of wild legume Sesbania bispinosa in coastal sand dunes and mangroves of the southwest coast of India. J Forestry Res 26:1003–1011

    Article  Google Scholar 

  • Shrestha N, Chilkoor G, Vemuri B, Rathinam N, Sani R, Gadhamshetty (2018) Extremophiles for microbial-electrochemistry applications: a critical review. Bioresour Technol 255:318–330

    Article  CAS  PubMed  Google Scholar 

  • Sikora R, Schafer K, Dababat A (2007) Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australas Plant Pathol 36:124–134

    Article  Google Scholar 

  • Simpson D (1979) Cassell’s Latin dictionary, 5th edn. Cassell Ltd., London, p 883. ISBN 978-0-304-52257-6

    Google Scholar 

  • Singaravelan N, Grishkan I, Beharav A, Wakamatsu K, Shosuke I (2008) Adaptive melanin response of the soil fungus aspergillus Niger to UV radiation stress at Bevolution canyon, Mount Carmel Israel. PLoS One 3:1–5

    Article  CAS  Google Scholar 

  • Singh D, Sharma V, Kumar J, Mishra A, Verma S, Sieber T, Kharwar R (2017) Diversity of endophytic mycobiota of tropical tree Tectonagrandis Linn.F.: spatiotemporal and tissue type effects. Sci Rep 7. https://doi.org/10.1038/s41598-017-03933-0

  • Singh V, Dwivedy A, Singh A, Asawa S, Dwivedi A, Dubey N (2018) Fungal endophytes from seaweeds: an overview. In: Microbial biotechnology. Springer, Singapore, pp 483–498

    Chapter  Google Scholar 

  • Spatafora J, Blackwell M (1993) Molecular systematics of unitunicate Perithecial ascomycetes: the Clavicipitales-Hypocreales connection. Mycologia 85:912–922

    Article  CAS  Google Scholar 

  • Spatafora J, Sung G, Sung J, Hywel-Jones N, White J Jr (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16:1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Sridhar K (2019) Diversity, ecology, and significance of fungal endophytes. In: Jha S (ed) Endophytes and secondary metabolites. Reference series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-90484-9_5

    Chapter  Google Scholar 

  • Sun C, Johnson J, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Guo L (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 3:65–76

    Google Scholar 

  • Sunitha V, Devi D, Srinivas C (2013) Extracellular enzymatic activity of endophytic strains isolated from medicinal plants. World J Agric Sci 9:1–9

    CAS  Google Scholar 

  • Suryanarayanan T (2011) Diversity of fungal endophytes in tropical trees. In: Endophytes of forest trees. Springer, Dordrecht, pp 67–80

    Chapter  Google Scholar 

  • Suryanarayanan T, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467

    Article  Google Scholar 

  • Suryanarayanan T, Kumaresan V, Johnson J (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Canadian J Microbiol 44:1003–1006

    Article  CAS  Google Scholar 

  • Suryanarayanan T, Wittlinger S, Faeth S (2005) Endophytic fungi associated with cacti in Arizona. Mycol Res 109:635–639

    Article  PubMed  Google Scholar 

  • Tabak H, Cooke W (1968) Growth and metabolism of fungi in an atmosphere of nitrogen. Mycologia 60:115

    Article  CAS  PubMed  Google Scholar 

  • Taylor W (1936) What is ecology and what good is it? Ecology 17:333–346

    Article  Google Scholar 

  • Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54:663–669

    Article  Google Scholar 

  • Teunissen M, den Camp H, Orpin C, Veld J, Vogels G (1991) Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium. J Gen Microbiol 137:1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B, Sharon A (2002) Biosynthesis, biological role and application of fungal phyto-hormones. In: Osiewacz HD (ed) The mycota X. industrial applications. Springer-Verlag, Berlin, pp 183–212

    Chapter  Google Scholar 

  • Udayaprakash N, Ashwinkarthick N, Poomagal D, Susithra M, Chandran M, Bhuvaneswari S (2018) Fungal endophytes of an aquatic weed Marsileaminuta Linn. Curr Res Environ Appl Mycol 8:86–95

    Article  Google Scholar 

  • VanEtten H, Temporini E, Wasmann C (2001) Phytoalexin (and phytoanticipin) tolerance as a virulence trait: why is it not required by all pathogens? Physiol Molecul Plant Pathol 59:83–93

    Article  CAS  Google Scholar 

  • Vasiliauskas R, Menkis A, Finlay R, Stenlid J (2007) Wood-decay fungi in fine living roots of conifer seedlings. New Phytol 174:441–446

    Article  CAS  PubMed  Google Scholar 

  • Vaupotic T, Jenoe P, Plemenitas A (2008) Mitochondrial mediation of environmental osmolytes discrimination during osmoadaptation in the extremely halotolerant black yeast Hortaeawerneckii. Fungal Genet Biol 45:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Vega F, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner S (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Venkatachalam A, Thirunavukkarasu N, Suryanarayanan T (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65

    Article  Google Scholar 

  • Waid J (1962) Influence of oxygen upon growth and respiratory behaviour of fungi from decomposing rye-grass roots. Trans Br Mycol Soc 45:479–487

    Article  CAS  Google Scholar 

  • Wainwright M (1981) Mineral transformations by fungi in culture and in soils. Zeitschriftfür Pflanzenernährung und Bodenkunde 144:41–63

    Article  CAS  Google Scholar 

  • Wainwright M (1988) Metabolic diversity of fungi in relation to growth and mineral cycling in soil - a review. Trans Br Mycol Soc 90:159–170

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White J (1988) Endophyte-host associations in forage grasses. xi. A proposal concerning origin and evolution. Mycologia 80:442–446

    Article  Google Scholar 

  • White J, Bultman T (1987) Endophyte-host associations in forage grasses. Viii. Heterothallism in epichloëtyphina. Am J Bot 74:1716–1721

    Article  Google Scholar 

  • White J, Torres M (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392

    Article  CAS  PubMed  Google Scholar 

  • Yasmeen R, Siddiqui Z (2017) Physiological responses of crop plants against Trichoderma Harzianum in saline environment. Acta Bot Croat 76:154–162

    Article  CAS  Google Scholar 

  • Yu Y, Cui Y, Hsiang T, Zeng Z, Yu Z (2015) Isolation and identification of endophytes from roots of cymbidium goeringii and Cymbidium faberi (Orchidaceae). Nova Hedwigia 101:57–64

    Article  Google Scholar 

  • Zarea M, Hajinia S, Karimi N, Goltapeh E, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146

    Article  CAS  Google Scholar 

  • Zeng P, Wu J, Liao L, Chen T, Wu J, Wong K (2011) In vitro antioxidant activities of endophytic fungi isolated from the liverwort Scapania verrucosa. Genet Mol Res 10:3169–3179

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zhang Y, Liu H, Wei Y, Li H, Su J, Zhao L, Yu L (2013) Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes region, King George Island, maritime Antarctica. FEMS Microbiol Lett 341:52–61

    Article  CAS  PubMed  Google Scholar 

  • Zhdanova N, Vasil’evskaya A (1988) Melanin-containing fungi in extreme conditions. Naukova Dumka, Kiev, p 286

    Google Scholar 

  • Zubek S, Blaszkowski J, Mleczko P (2011) Arbuscular mycorrhizal and dark septate endophyte associations of medicinal plants. Acta Soc Bot Pol 80:285–292

    Article  Google Scholar 

Download references

Acknowledgments

Ms. Deeksha Patil acknowledges Department of Biotechnology, India for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Jadhav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, D., Dawkar, V., Jadhav, U. (2022). Ecology and Diversity of Microaerophilic Fungi Including Endophytes. In: Sahay, S. (eds) Extremophilic Fungi. Springer, Singapore. https://doi.org/10.1007/978-981-16-4907-3_10

Download citation

Publish with us

Policies and ethics