Skip to main content

Abstract

Plant cell, tissue, and organ culture techniques along with molecular biology techniques have contributed to providing more knowledge about the flowering process in plants. Until now, besides Arabidopsis thaliana, a model plant that has been widely used for flowering research, Torenia fournieri has also been used as a source material for in vitro flowering studies. In the study of flowering in plants, in vitro culture conditions are ideal for carrying out further studies of this process. In in vitro conditions, factors such as light intensity, photoperiod, temperature, sugar, minerals, plant growth regulators, adjusted according to the purpose of the study. Changes in media composition, Plant growth regulators (PGRs) or changes in culture conditions can accelerate the growth rate, shorten the vegetative period, and lead to early flowering for further investigation of these phenomena in the physiology of flowering. The objective of this study is to determine the role of several factors such as sugar, PGRs, culture medium, and amino acids on the in vitro flowering of T. fournieri.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131(14):3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Al-Khayri JM, Huang FH, Morelock TE, Busharar TA (1992) In vitro seed production from sex-modified male spinach plants regenerated from callus cultures. Sci Hort 52(4):277–282

    Article  Google Scholar 

  • Bernier G (1988) The control of floral evocation and morphogenesis. Annu Rev Plant Physiol Plant Mol Biol 39(1):175–219

    Article  Google Scholar 

  • Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. Plant Cell 5(10):1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazquez MA, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404(6780):889–892

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty D, Mandal AKA, Datta SK (2000) Retrieval of new coloured chrysanthemum through organogenesis from sectorial chimera. Curr Sci 78(9):1060–1061

    Google Scholar 

  • Choun-Sea L, Liang C, Hsaio H, Lin M, Chang W (2007) In vitro flowering of green and albino Dendrocalamus latiflorus. New For 34(2):177–186

    Article  Google Scholar 

  • Conti L, Galbiati M, Tonell C (2014) ABA and the floral transition. In: Zhang DP (ed) Abscisic acid: metabolism, transport and signaling. Springer, Berlin, Germany, pp 365–384

    Google Scholar 

  • Cvetić T, Budimir SM, Grubišić DV (2004) In vitro flowering of dark-grown Centaurium pulchellum. Arch Biol Sci 56(3–4):21–22

    Article  Google Scholar 

  • Deb CR, Sungkumlong T (2009) Rapid multiplication and induction of early in vitro flowering in Dendrobium primulinum Lindl. J Plant Biochem Biotech 18(2):241–244

    Article  CAS  Google Scholar 

  • Devi P, Zhong H, Sticklen MB (2000) In vitro morphogenesis of pearl millet Pennisetum glaucum (L.) R. Br. Efficient production of multiple shoots and inflorescences from shoot apices. Plant Cell Rep 19(6):546–550

    Article  CAS  PubMed  Google Scholar 

  • Dielen V, Lecouvet V, Dupont S, Kinet JM (2001) In vitro control of floral transition in tomato (Lycopersicon esculentum mill.), the model for autonomously flowering plants, using the late flowering unfloral mutant. J Exp Bot 52(357):715–723

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Sarnowska E, Nagy F, Davis SJ (2010) Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS One 5(11):1–8

    Article  Google Scholar 

  • Dougall DK, Shimbayashi K (1960) Factors affecting growth of tobacco callus tissue and its incorporation of tyrosine. Plant Physiol 35(3):396–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan JX, Yazawa S (1994) Induction of floral development Doriella tiny (Doritis pulcherrima x Kingiella philippinensis). Sci Hortic 59(3–4):253–264

    Article  Google Scholar 

  • Elena RAB, Benítez M, Corvera-Poiré A, Cador ALC, Folter SD, Buen AGD, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corralesa YE (2010) Flower development. Arabidopsis Book 2010(8):1–57

    Google Scholar 

  • Ericksson ME, Israelsson M, Olssono O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic tree promotes growth, biomass production and xylem fiber length. Nat Biotech 18(7):784–788

    Article  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45

    Article  Google Scholar 

  • Franklin G, Pius PK, Ignacimuthu S (2000) Factors affecting in vitro flowering and fruting of green pea (Pisum sativum L.). Euphytica 115(1):65–73

    Article  CAS  Google Scholar 

  • Galoch E, Czaplewska J, Burkacka-Laukajtys E, Kopcewicz J (2002) Induction and stimulation of in vitro flowering of Pharbitis nil by cytokinin and gibberellin. Plant Growth Regul 37(3):199–205

    Article  CAS  Google Scholar 

  • Glover BJ (2007) Understanding flowers and flowering: an integrated approach. Oxford University Press, UK, p 277p

    Book  Google Scholar 

  • Han Y, Zhang X, Wang Y, Ming F (2013) The suppression of wrky44 by gigantea-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS One 8(11):1–16

    Article  Google Scholar 

  • Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21(9):346–355

    Article  Google Scholar 

  • Hee KH, Loh C, Yeoh HH (2007) Early in vitro flowering and seed production in culture in dendrobium Chao Praya smile (Orchidaceae). Plant Cell Rep 26(12):2055–2062

    Article  CAS  PubMed  Google Scholar 

  • Jabeen FTZ, Venugopal RB, Kiran G, Kaviraj CP, Rao S (2005) Plant regeneration and in vitro flowering from leaf and nodal explants of Solanum nigrum (L.): an important medicinal plant. Plant Cell Biotech Mol Biol 6(1–2):17–22

    Google Scholar 

  • Jacqmard A, Gadisseur I, Bernier G (2003) Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition. Ann Bot 91(5):571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jana S, Shekhawat GS (2011) Plant growth regulators, adenine sulfate and carbohydrates regulate organogenesis and in vitro flowering of Anethum graveolens. Acta Physiol Plant 33(2):305–311

    Article  CAS  Google Scholar 

  • John CK, Nadgauda RS (1997) Flowering in Bambusa vulgaris var. vittata. Curr Sci 73(8):641–643

    Google Scholar 

  • Jumin HB, Nito N (1996) In vitro flowering of orange jessamine (Murraya paniculata L. Jack). Experientia 52(3):268–272

    Article  CAS  Google Scholar 

  • Kachanapoom K, Posayapisit N, Kachanapoom K (2009) In vitro flowering from cultured nodal explants of rose (Rosa hybrida L.). Not Bot Hort Agr Cluj-Nap 37(2):261–263

    Google Scholar 

  • Kielkowska A, Havey MJ (2011) In vitro flowering and production of viable pollen of cucumber. Plant Cell Tissue Organ Cult 109(1):73–82

    Article  Google Scholar 

  • Kijwijan B, Nokmai J, Muangsan N (2008) Effects of tyrosine and plant growth regulators on growth and development of Gloriosa superba Linn. In Vitro Khon Kaen Agr J 36:144–152

    Google Scholar 

  • Kintzios S, Michailakis A (1999) Induction of somatic embryogenesis and in vitro flowering from inflorescences of camomile (Chamomilla recutita L.). Plant Cell Rep 18(7–8):684–690

    Article  CAS  Google Scholar 

  • Koh KL, Loh CS (2000) Direct somatic embryogenesis, plant regeneration and in vitro flowering in rapid-cycling Brassica napus. Plant Cell Rep 19(12):1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Kostenyuk I, Oh BJ, So IS (1999) Induction of early flowering in cymbidium niveo-marginatum Mak in vitro. Plant Cell Rep 19(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Kozłowska M, Rybus-Zajac M, Stachowiak J, Janowska B (2006) Changes in carbohydrate contents of Zantedeschia leaves under gibberellin-stimulated flowering. Acta Physiol Plant 29(1):27–32

    Article  Google Scholar 

  • Li Y, Zhang H, Bi H (1996) Changes of endogenous hormone contents during floral bud and vegetative bud differentiation in thin cell layer culture of Cichorium intybus L. explant. Acta Bot Sin 38(2):131–135

    Google Scholar 

  • Li M, An F, Li W, Ma M, Feng Y, Zhang X, Guo H (2016) Della proteins interact with flc to repress flowering transition. J Int Plant Biol 58(7):642–655

    Article  CAS  Google Scholar 

  • Li-Ming Z, Ji-Liang P (2006) In vitro flowering of cultures from a hybrid of cymbidium goeringii and C. hybridium. J Plant Physiol Mol Biol 32(3):320–324

    Google Scholar 

  • Lin CS, Lin CC, Chang WC (2004) Effect of thidiazuron on vegetative tissue-derived somatic embryogenesis and flowering of bamboo Bambusa edulis. Plant Cell Tissue Organ Cult 76(1):75–82

    Article  CAS  Google Scholar 

  • Lindsay DL, Sawhney VK, Bonham-Smith PC (2006) Cytokinin-induced changes in clavata1 and wuschel expression temporally coincide with altered floral development in Arabidopsis. Plant Sci 170(6):1111–1117

    Article  CAS  Google Scholar 

  • Luo P, Ye Q, Lan Z (2000) A study on floral biology of seedlings in vitro in Orychophragmus violaceus: induction of flowers in seedling of O. violaceus cultured in vitro. Plant Cell Tissue Organ Cult 63(1):73–75

    Article  CAS  Google Scholar 

  • Matsuda N, Ikeda K, Kurosaka M, Takashina T, Isuzugawa K, Endo T, Omura M (2009) Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. J Jap Soc Hort Sci 78(4):410–416

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nhut DT (2013) Affects of some factors on in vitro flowering of Torenia (Torenia fournieri L.). Vietnam. J Sci Technol 51(6):689

    Google Scholar 

  • Nitsch C, Nitsch JP (1967) The induction of flowering in vitro in stem segments of Plumbago indica L. I. The production of vegetative buds. Planta 72(4):355–370

    Article  CAS  PubMed  Google Scholar 

  • Pharis RP, King RW (1985) Gibberellins and reproductive development in seed plants. Annual Rev Plant Physiol 36(1):517–568

    Article  CAS  Google Scholar 

  • Pierik RLM, Dieleman JA, Heuvelink E (1994) Flowering of tomato in vivo and in vitro in relation to the original position of the axillary bud on the main axis. Sci Hort 59(1):55–60

    Article  Google Scholar 

  • Ramanayake SMSD (2006) Flowering in bamboo: an enigma. Ceylon J Bio-Sci 35(2):95–105

    Google Scholar 

  • Rani S, Rana J (2010) In vitro propagation of Tylophora indica influence of explanting season, growth regulator synergy, culture passage and planting substrate. J Am Sci 6(12):386–392

    Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two myb factors during Arabidopsis seed germination. Plant J 49(4):592–606

    Article  CAS  PubMed  Google Scholar 

  • Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and suppressor of overexpression of constans1. Plant Physiol 162(3):1706–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez PL, Leube MP, Grill E (1998) Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to abi1 and abi2. Plant Mol Biol 38(5):879–883

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Das P (1995) Isozyme in vitro flowering of Bambusa vulgaris. J Plant Biochem Biotech 4(1):43–49

    Article  CAS  Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL (2004) Gain of function and loss of function phenotypes of the protein phosphatase 2C hab1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37(3):354–369

    Article  CAS  PubMed  Google Scholar 

  • Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez PL (2008) Hab1–swi3b interaction reveals a link between abscisic acid signaling and putative swi/snf chromatin-remodeling complexes in Arabidopsis. Plant Cell 20(11): 2972–2988

    Google Scholar 

  • Saxena SN, Kaushik N, Sharma R (2008) Effect of abscicis acid and proline on in vitro flowering in Vigna aconitifolia. Biol Plant 52(1):1831–1833

    Article  Google Scholar 

  • Scorza R, Janick J (1980) In vitro flowering of Passiflora suberosa L. J Am Soc Hortic Sci 105(6):892–897

    Article  Google Scholar 

  • Seidlova F, Kohli KK, Pavlova L (1981) Effect of abscisic acid on the growth pattern of the shoot apical meristem and on flowering in Chenopodium rubrum L. Ann Bot 48(6):777–785

    Article  CAS  Google Scholar 

  • Sim GE, Goh CJ, Loh CS (2008) Induction of in vitro flowering in dendrobium madame thong-in (Orchidaceae) seedlings is associated with increase in endogenous N6-(Δ2-isopentynyle)-adenine (iP) and N6-(Δ2-isopentynyle)-adenosine (iPa) levels. Plant Cell Rep 27(8):1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Sharma S, Rani G, Virk GS, Zaidi AA, Nagpa A (2006) In vitro flowering in embryogenic cultures of kinnow mandarin (Citrus nobilis Lour x C. deliciosa Tenora). Afr J Biotech 5(16):1470–1474

    CAS  Google Scholar 

  • Tang W (2000) High frequency plant regeneration via somatic embryogenesis and organogenesis and in vitro flowering of regenerated plantlets in Panax ginseng. Plant Cell Rep 19(7):727–732

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto S, Harada H (1981) Effects of IAA, zeatin, ammonium nitrate and sucrose on the initiation and development of floral buds in Torenia stem segments cultured in vitro. Plant Cell Physiol 22(8):1553–1560

    Article  CAS  Google Scholar 

  • Taylor NJ, Light ME, van Staden J (2007) Monosaccharides promote flowering in Kniphofia leucocephala in vitro. Plant Growth Regul 52(1):73–79

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Yam T, Fukai S, Nayak N, Tanaka M (2005) Establishment of optimum nutrient media for in vitro propagation of cymbidium Sw. (Orchidaceae) using protocorm-like body segments. Prop Ornam Plants 5(3):129–136

    Google Scholar 

  • Than MMM, Pal A, Jha S (2009) In vitro flowering and propagation of Bulbophyllum auricomum Lindl, the royal flower of Myanmar. Acta Hortic 829(14):105–111

    Article  CAS  Google Scholar 

  • Vadawale AV, Barve DM, Dave AM (2006) In vitro flowering and rapid propagation of Vitex negundo L.: a medicinal plant. Indian J Biotech 5(1):112–116

    CAS  Google Scholar 

  • Vandana AK, Atul K, Jitendra K (1995) In vitro flowering and pod formation in cauliflower (brassica oleracia var. botrytis). Curr Sci 69(6):543–545

    Google Scholar 

  • Vaz APA, Kerbauy GB (2000) Effects of mineral nutrients on in vitro growth and flower formation of Psygmorchis pusilla (Orchidaceae). Acta Hortic 520(15):149–156

    Article  Google Scholar 

  • Vaz APA, Kerbauy GB (2008) In vitro flowering studies in Psygmorchis pusilla. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: Advances and topical issue. Global Science Books Ltd., UK, pp 421–426

    Google Scholar 

  • Virupakshi S, Manjunatha BR, Naik GR (2002) In vitro flower induction in callus from a juvenile explant of sugarcane, Saccharum officinarum L. var. CoC 671. Curr Sci 83(10):1195–1197

    CAS  Google Scholar 

  • Vu NH, Anh PH, Nhut DT (2006) The role of sucrose and different cytokinins in the in vitro floral morphogenesis of rose (hybrid tea) cv. “First Prize”. Plant Cell Tiss Org Cult 87(3):315–320

    Article  CAS  Google Scholar 

  • Wahyuni S, Krisantini S, Johnston ME (2011) Plant growth regulators and flowering of Brunonia and Calandrinia sp. Sci Hortic 128(2):141–145

    Article  CAS  Google Scholar 

  • Wang TY (1996) Cytokinins and light intensity regulate flowering of Easter Lily. Hortic Sci 31(6):976–977

    CAS  Google Scholar 

  • Wang G, Xu Z, Chia TF, Chua NH (1997) In vitro flowering of Dendrobium candidum. Sci China Life Sci 40(1):35–42

    Article  CAS  Google Scholar 

  • Wang GY, Yuan MF, Hong Y (2002) In vitro flower induction in roses. In Vitro Cell Devel Biol – Plant 38(5):513–518

    Article  CAS  Google Scholar 

  • Wang ZH, Wang L, Ye QS (2009) High frequency early flowering from in vitro seedlings of Dendrobium nobile. Sci Hortic 122(2):328–331

    Article  CAS  Google Scholar 

  • Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y (2013) The inhibitory effect of ABA on floral transition is mediated by abi5 in Arabidopsis. J Exp Bot 64(2):675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62(11):3727–3735

    Article  CAS  PubMed  Google Scholar 

  • Zeng SJ, Liang S, Zhang YY, Wu KL, Teixeira da Silva JA, Duan J (2013) In vitro flowering red miniature rose. Biol Plant 57(3):401–409

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nhut, D.T., Tuan, T.T., Le Van Thuc, Van Binh, N., Tung, H.T. (2022). In Vitro Flowering of Torenia fournieri. In: Nhut, D.T., Tung, H.T., YEUNG, E.CT. (eds) Plant Tissue Culture: New Techniques and Application in Horticultural Species of Tropical Region. Springer, Singapore. https://doi.org/10.1007/978-981-16-6498-4_13

Download citation

Publish with us

Policies and ethics