Skip to main content

Bioactive Profile of the Wild Mushroom Trogia cantharelloides

  • Chapter
  • First Online:
Fungal diversity, ecology and control management

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Wild mushrooms have become an integral part of the human diet, health, and industrial applications worldwide. However, many of them will not serve as food due to their unpalatable taste or poisonous or gastrointestinal problems. Trogia cantharelloides is one such mushroom not preferred as food by the tribals in the Western Ghats of India. This study provides baseline data on the T. cantharelloides obtained from the foothills of the southwest region of the Western Ghats of India. Biochemical components like organic acids, sugars, polyphenols, flavonoids, phytic acid, vitamins, trypsin inhibition activity, hemagglutinin activity, and antimicrobial potential of T. cantharelloides are addressed. The therapeutic potential of the bioactive compounds of T. cantharelloides was documented using Duke’s phytochemical and ethnobotanical database (www.ars-grin.gov/cgi-bin/duke). Accordingly, a total of 15 compounds compiled along with their characteristics, biological activity, and applications. This study provides scope to explore the bioactive potential of non-edible mushrooms for their use in future health, therapeutic and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Attarat J, Phermthai T (2015) Bioactive compounds in three edible Lentinus mushrooms. Walailak J Sci Technol 12:491–504

    Google Scholar 

  • Bal C, Akgul H, Sevindik M, Akata I, Yumrutas O (2017) Determination of the anti-oxidative activities of six mushrooms. Fresenius Environ Bull 26:6246–6252

    CAS  Google Scholar 

  • Bal C, Sevindik M, Akgul H, Selamoglu Z (2019) Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/Turkey. Sigma 37:1–5

    Google Scholar 

  • Barros L, Ferreira MJ, Queirós B, Ferreira ICFR, Baptista P (2007) Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103:413–419

    Article  CAS  Google Scholar 

  • Barros L, Dueñas M, Ferreira ICFR (2009) Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem Toxicol 47:1076–1079

    Article  CAS  PubMed  Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    Article  CAS  PubMed  Google Scholar 

  • Bélanger C (1846) Voyage aux Indes-orientales, par le nord de l’Europe, les provinces du Caucase, la Géorgie, l’Arménie et la Perse pendant les années 1825–1829 (in French), p 149

    Google Scholar 

  • Burns R (1971) Methods for estimation of tannins in grain sorghum. Agron J 63:511–512

    Article  CAS  Google Scholar 

  • Cámara M, Díez C, Torija ME, Cano MP (1994) HPLC determination of organic acids in pineapple juices and nectars. Z Lebensm-Unters-Forsch 198:52–56

    Article  Google Scholar 

  • Champ MM (2002) Non-nutrient bioactive substances of pulses. Br J Nutr 88:307–319

    Article  CAS  Google Scholar 

  • Corner EJH (1966) A monograph of cantharelloid fungi. Oxford University Press, Oxford, p 255

    Google Scholar 

  • Dasgupta A, Dutta AK, Halder A, Acharya K (2015) Mycochemicals, phenolic profile and antioxidative activity of a wild edible mushroom from Eastern Himalaya. J Biol Active Prod Nat 5:373–382

    CAS  Google Scholar 

  • Deshpande SS, Sathe SK, Salunkhe DK, Cornforth DP (1982) Effects of dehulling on phytic acid, polyphenols, and enzyme inhibitors of dry beans (Phaseolus vulgaris L.). J Food Sci 47:1846–1850

    Article  CAS  Google Scholar 

  • Dutta AK, Nandi S, Tarafder E, Sikder R, Roy A, Acharya K (2017) Trogia benghalensis (Marasmiaceae, Basidiomycota), a new species from India. Phytotaxa 331:273–280

    Article  Google Scholar 

  • Fries EM (1835) Corpus Florarum provincialium suecicae I. Floram Scanicam (in Latin), p 336

    Google Scholar 

  • Ghate SD, Sridhar KR (2017) Bioactive potential of Lentinus squarrosulus and Termitomyces clypeatus from the southwestern region of India. Ind J Nat Prod Res 8:120–131

    CAS  Google Scholar 

  • Graham RJD (1915) Report of the economic botanist. In: Report of agricultural college of nagpur of botanical and chemical research. Department of Agriculture, Central Provinces and Bihar (for the year 1914-15). Government Press, Nagpur, pp 11–17

    Google Scholar 

  • Gregory JF III (1996) Vitamins. In: Fennema OR (ed) Food chemistry, 3rd edn. Dekker, New York, pp 531–616

    Google Scholar 

  • Halling RE, Mueller GM (2002) Agarics and boletes of neotropical oakwoods. In: Watling R, Frankland JC, Ainsworth AM, Isaac S, Robinson CH (eds) Tropical mycology, vol 2. CAB International, Wallingford, pp 1–10

    Google Scholar 

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum 5:FUNK-0052-2016. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

  • Ivanova TS, Krupodorova TA, Barshteyn VY, Artamonova AB, Shlyakhovenko VA (2014) Anticancer substances of mushroom origin. Exp Oncol 36:58–66

    CAS  PubMed  Google Scholar 

  • Jia Z, Tang M, Wu J (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 6:555–559

    Google Scholar 

  • Jo WS, Hossain MA, Park SC (2014) Toxicological profiles of poisonous, edible, and medicinal mushrooms. Mycobiology 42:215–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Kakade ML, Rackis JJ, McGhee JE, Puski G (1974) Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. Cereal Chem 51:376–382

    CAS  Google Scholar 

  • Knekt P, Ritz J, Pereira MA, O'Reilly E, Augustsson K et al (2004) Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am J Clin Nutr 80:1508–1520

    Article  CAS  PubMed  Google Scholar 

  • Krupodorova TA, Barshteyn VY, Bisko NA, Ivanova TS (2012) Some macronutrient content in mycelia and culture broth of medicinal mushrooms cultivated on amaranth flour. Int J Med Mushrooms 14:285–293

    Article  CAS  PubMed  Google Scholar 

  • Kumar TK, Manimohan P (2009) Rediscovery of Trogia cyanea and a record of T. infundibuliformis (Marasmiaceae, Agaricales) from Kerala State, India. Mycotaxon 109:429–436

    Article  Google Scholar 

  • Lima AD, Costa Fortes R, Garbi Novaes MRC, Percario S (2012) Poisonous mushrooms; a review of the most common intoxications. Nutr Hosp 27:402–408

    CAS  PubMed  Google Scholar 

  • Lin S, Ching LT, Chen J, Cheung PCK (2015) Antioxidant and anti-angiogenic effects of mushroom phenolics-rich fractions. J Func Foods 17:802–815

    Article  CAS  Google Scholar 

  • Lindequist U, Niedermeyer THJ, Julich W-D (2005) The pharmacological potential of mushrooms - review. Evid Complement Alternat Med 2:285–299

    Article  Google Scholar 

  • Manjula B (1983) A revised list of the agaricoid and boletoid basidiomycetes from India and Nepal. Proc Ind Acad Sci (Plant Sci) 92:81–213

    Article  Google Scholar 

  • Martins-Franchetti SM, Egerton TA, White JR (2010) Morphological changes in poly (caprolactone)/poly (vinyl chloride) blends caused by biodegradation. J Polym Environ 18:79–83

    Article  CAS  Google Scholar 

  • Meng CQ, Somers PK, Rachita CL, Holt LA, Hoong LK et al (2002) Novel phenolics antioxidants as multifunctional inhibitors of inducible VCAM-1 expression for use in atherosclerosis. Bioorg Med Chem Lett 12:2545–2548

    Article  CAS  PubMed  Google Scholar 

  • Mortimer PE, Xu J, Karunarathna SC, Hyde KD (2014) Mushrooms for trees and people—a field guide to useful mushrooms of the Mekong Region. World Agroforestry Centre, Kunming, p 124

    Google Scholar 

  • Natarajan K, Kumaresan V, Narayanan K (2005) A checklist of Indian agarics and boletes (1984–2002). Kavaka 33:61–128

    Google Scholar 

  • NRC-NAS (1989) Recommended dietary allowances. National Academy Press, Washington, DC

    Google Scholar 

  • Occenã IV, Mojica E-R, Merca F (2007) Isolation and partial characterization of a lectin from the seeds of Artocarpus camansi blanco. Asian J Pl Sci 6:757–764

    Article  Google Scholar 

  • Okoro IO (2012) Antioxidant activities and phenolic contents of three mushroom species, Lentinus squarrosulus Mont., Volvariella esculenta (Massee) Singer and Pleurocybella porrigens (Pers.) Singer. Int J Nutr Met 4:72–76

    CAS  Google Scholar 

  • Özaltun B, Sevindik M (2020) Evaluation of the effects on atherosclerosis and antioxidant and antimicrobial activities of Agaricus xanthodermus poisonous mushroom. Eur Res J 6:539–544

    Google Scholar 

  • Pegler DN (1983) The genus Lentinus: a world monograph. Kew bulletin additional series X, Royal Botanic Gardens, Kew, p 281

    Google Scholar 

  • Pereira C, Barros L, Carvalho AM, Ferreira IC (2013) Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal Meth 6:1337–1344

    Article  Google Scholar 

  • Podmore ID, Griffiths HR, Herbert KE, Mistry N, Lunec J (1998) Vitamin C exhibits pro-oxidant properties. Nature 392(6676):559. https://doi.org/10.1038/33308

    Article  CAS  PubMed  Google Scholar 

  • Ravikrishnan V (2019) Nutritional and bioactive properties of wild mushrooms from the foot-hills of Agumbe Ghat, Karnataka. PhD dissertation, Department of Biosciences, Mangalore University, Mangalore, India

    Google Scholar 

  • Ravikrishnan V, Ganesh S, Rajashekhar R (2017) Compositional and nutritional studies on two wild mushrooms from Western Ghat forests of Karnataka, India. Int Food Res J 24:679–684

    CAS  Google Scholar 

  • Reis FS, Barros L, Martins A, Ferreira IC (2012) Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study. Food Chem Toxicol 50:191–197

    Article  CAS  PubMed  Google Scholar 

  • Ren L, Hemar Y, Perera CO, Lewis G, Krissansen GW, Buchnan PK (2014) Antibacterial and antioxidant activities of aqueous extracts of eight mushrooms. Bioact Carbohyd Diet Fibre 3:41–51

    Article  CAS  Google Scholar 

  • Roe JH (1954) Chemical determination of ascorbic, dehydroascorbic and diketogluconic acids. In: Glick D (ed) Methods of biochemical analysis, vol 1. InterScience, New York, pp 115–139

    Google Scholar 

  • Rosset J, Bärlocher F, Oertli JJ (1982) Decomposition of conifer needles and deciduous leaves in two Black Forest and two Swiss Jura streams. Int Rev Hydrobiol 67:695–711

    CAS  Google Scholar 

  • Sathe SK, Deshpande SS, Reddy NR, Goll DE, Salunkhe DK (1983) Effects of germination on proteins, raffinose oligosaccharides and antinutritional factors in Great Northern beans (Phaseolus vulgaris L). J Food Sci 48:1796–1800

    Article  CAS  Google Scholar 

  • Senthilarasu G (2014) Diversity of agarics (gilled mushrooms) of Maharashtra, India. Curr Res Environ Appl Mycol 4:58–78

    Article  Google Scholar 

  • Sevindik M (2020) Poisonous mushroom (non-edible) as an antioxidant source. In: Ekiert HM, Ramawat KG (eds) Plant antioxidants and health, reference series in phytochemistry. Springer, Cham, pp 1–24

    Google Scholar 

  • Shi G-Q, Huang W-L, Zhang J, Zhao H, Shen T et al (2012) Clusters of sudden unexplained death associated with the mushroom, Trogia venenata, in rural Yunnan Province, China. PLoS One 7:e35894. https://doi.org/10.1371/journal.pone.0035894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva BM, Andrade PB, Valentão P, Ferreres F, Seabra RM, Ferreira MA (2004) Quince (Cydonia oblonga Miller) fruit (pulp, peel, and seed) and jam: antioxidant activity. J Agric Food Chem 52:4705–4712

    Article  CAS  PubMed  Google Scholar 

  • Smolskaité L, Venskutonis PR, Talou T (2015) Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT Food Sci Technol 60:462–471

    Article  CAS  Google Scholar 

  • Srinivasan K, Kumaravel S (2016) Unraveling the potential phytochemical compounds of Gymnema sylvestre through GC-MS study. Int J Pharm Sci 8:1–4

    Google Scholar 

  • Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharma Res 7:1089–1099

    Google Scholar 

  • Turfan N, Pekşen A, Kibar B, Ünal S (2018) Determination of nutritional and bioactive properties in some selected wild growing and cultivated mushrooms from Turkey. Acta Sci Pol Hor Cul 17:27–72

    Article  Google Scholar 

  • Uppal BN, Patel MK, Kamat MN (1935) The fungi of Bombay. Department of Agriculture, Bombay, Bulletin # 176 of 1934. Government Central Press, Bombay, p 56

    Google Scholar 

  • USDA (1999) Nutrient database for standard reference release # 13, Food group 20: cereal grains and pasta. Agriculture handbook # 8–20. Agricultural Research Service, US Department of Agriculture, USA

    Google Scholar 

  • Vaughan JG, Geissler CA (1997) The new oxford book of food plants. Oxford University Press, New York

    Google Scholar 

  • Visioli F, Borsani L, Galli C (2000) Diet and prevention of coronary heart disease: the potential role of phytochemicals. Cardiovasc Res 47:419–425

    Article  CAS  PubMed  Google Scholar 

  • Xu Y-C, Xie X-X, Zhou Z-Y, Feng T, Liu J-K (2018) A new monoterpene from the poisonous mushroom Trogia venenata, which has caused sudden unexpected death in Yunnan province, China. Nat Prod Res 32:2547–2552

    Article  CAS  PubMed  Google Scholar 

  • Ye Z, Song H (2008) Antioxidant vitamins intake and the risk of coronary heart disease: meta-analysis of cohort studies. Eur J Card Prev Rehab 15:26–34

    Article  Google Scholar 

  • Yin X, Yang A-A, Gao J-M (2019) Mushroom toxins: chemistry and toxicology. Agric Food Chem 67:5053–5071

    Article  CAS  Google Scholar 

  • Yusuf AA, Mofio BM, Ahmed AB (2007) Proximate and mineral composition of Tamarindus indica Linn 1753 seeds. Sci World J 2:1–4

    Google Scholar 

  • Zhou Z-Y, Shi G-Q, Fontaine R, Wei K, Feng T et al (2012) Evidence for the natural toxins from the mushroom Trogia venenata as a cause of sudden unexpected death in Yunnan Province, China. Andew Comm 51:2368–2370

    CAS  Google Scholar 

Download references

Acknowledgments

The first author (VR) is grateful for the facilities provided by the Department of Biosciences, Mangalore University. He is indebted to the Board of Research in Nuclear Sciences (BRNS), Bhabha Atomic Research Centre, Mumbai, India, for funding this research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravikrishnan, V., Sridhar, K.R., Rajashekhar, M. (2022). Bioactive Profile of the Wild Mushroom Trogia cantharelloides. In: Rajpal, V.R., Singh, I., Navi, S.S. (eds) Fungal diversity, ecology and control management. Fungal Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8877-5_5

Download citation

Publish with us

Policies and ethics