Skip to main content

Sialic Acid-Binding Ig-Like Lectins (Siglecs)

  • Chapter
  • First Online:
Glycobiology of Innate Immunology
  • 973 Accesses

Abstract

During the mid-1980s, in vitro rosette formation between macrophages and sheep erythrocytes was reported; however, sialidase treatment on erythrocytes abolished the rosettes [1]. Rosette formation is based on sialic acid-binding receptors expressed by macrophages. Later, these receptors were identified to be sialoadhesin that binds to sialic acids as ligands [2]. The SA-recognizing property of the innate immune system of vertebrates led to the discovery of SA-bearing glycans as the ligands for lectins. The binding of SA ligands to Siglecs with immune inhibitory properties leads to suppressed immune functions. The SA-to-Siglec recognition implicates immune activation to limit self-recognition and to destroy the defense mechanism in hosts. Siglecs attenuate ‘self’-inflammatory triggers called DAMPs. During the early 1990s, the first sialyl carbohydrate-binding receptor protein called Siglecs was discovered, for example, Siglec-2 (or CD22) present on B cells. Siglec-1, known as sialoadhesin present on macrophage surfaces, was found. The Ig-like domains of such lectins are different from those of other known C-type lectins or Ca2+-dependent lectins. Among them, I-type lectins are named I-type because they belong to the varied immunoglobulin superfamily of proteins. As I-type lectins share similar characteristics with the immunoglobulin superfamily of proteins, they contain Ig folds, which consist of antiparallel β-sheets. I-type lectins can be broken down into many different regions: V-set, C1 and C2 sets, and ITIM and ITIM-like domains. The V-set domain is the primary site of ligand binding and recognition. The C1 and C2 sets act as spacers and are believed to control the entire length of lectins. ITIM and ITIM-like domains (in some cases, ITAM domain) are essentially tyrosine-based signaling motifs that inhibit (or, in the case of the ITAM domain, activate) downstream signaling and thereby modulate cell activities. More than 16 I-type lectins, such as Siglecs, recognize diverse sialoglycans by immune cells. Even among I-type lectins, there are many different subtypes and the best characterized subtype is called Siglecs. Siglecs are SA-binding lectins and they are the most well-studied I-type lectins. Like any other lectins, Siglecs are composed of many different domains, namely, the V-set, C1 and C2 sets, and mostly the ITIM domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crocker PR, Gordon S. Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages. J Exp Med. 1986;164:1862–75.

    CAS  PubMed  Google Scholar 

  2. Crocker PR, Kelm S, Dubois C, Martin B, McWilliam AS, Shotton DM, Paulson JC, Gordon S. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J. 1991;10:1661–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Powell LD, Sgroi D, Sjoberg ER, Stamenkovic I, Varki A. Natural ligands of the B cell adhesion molecule CD22beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J Biol Chem. 1993;268:7019–27.

    CAS  PubMed  Google Scholar 

  4. Lopez PH, Schnaar RL. Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol. 2009;19(5):549–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Varki A, Angata T. Siglecs—the major subfamily of I-type lectins. Glycobiology. 2009;16:1R–27R.

    Google Scholar 

  6. Rutishauser U. Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci. 2008;9:26–35.

    CAS  PubMed  Google Scholar 

  7. Weinhold B, Seidenfaden R, Rockle I, Muhlenhoff M, Schertzinger F, Conzelmann S, Marth JD, Gerardy-Schahn R, Hildebrandt H. Genetic ablation of Polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule. J Biol Chem. 2005;280:42971–7.

    CAS  PubMed  Google Scholar 

  8. Bax M, van Vliet SJ, Litjens M, Garcia-Vallejo JJ, van Kooyk Y. Interaction of polysialic acid with CCL21 regulates the migratory capacity of human dendritic cells. PLoS One. 2009;4:e6987.

    PubMed  PubMed Central  Google Scholar 

  9. Rey-Gallardo A, Delgado-Martin C, Gerardy-Schahn R, Rodriguez-Fernandez JL, Vega MA. Polysialic acid is required for neuropilin-2a/b-mediated control of CCL21-driven chemotaxis of mature dendritic cells and for their migration in vivo. Glycobiology. 2011;21:655–62.

    CAS  PubMed  Google Scholar 

  10. Drake PM, Nathan JK, Stock CM, Chang PV, Muench MO, Nakata D, Reader JR, Gip P, Golden KP, Weinhold B, Gerardy-Schahn R, Troy FAn, Bertozzi CR. Polysialic acid, a glycan with highly restricted expression, is found on human and murine leukocytes and modulates immune responses. J Immunol. 2008;181:6850–8.

    CAS  PubMed  Google Scholar 

  11. Drake PM, Stock CM, Nathan JK, Gip P, Golden KP, Weinhold B, Gerardy-Schahn R, Bertozzi CR. Polysialic acid governs T-cell development by regulating progenitor access to the thymus. Proc Natl Acad Sci U S A. 2009;106:11995–2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bishop JR, Gagneux P. Evolution of carbohydrate antigens—microbial forces shaping host glycomes? Glycobiology. 2007;17:23R–34R.

    CAS  PubMed  Google Scholar 

  13. An G, Wei B, Xia B, McDaniel JM, Ju T, Cummings RD, Braun J, Xia L. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med. 2007;204:1417–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Persson KE, McCallum FJ, Reiling L, Lister NA, Stubbs J, Cowman AF, Marsh K, Beeson JG. Variation in use of erythrocyte invasion pathways by plasmodium falciparum mediates evasion of human inhibitory antibodies. J Clin Invest. 2008;118:342–51.

    CAS  PubMed  Google Scholar 

  15. Meesmann HM, Fehr E-M, Kierschke S, Herrmann M, Bilyy R, Heyder P, Blank N, Krienke S, Lorenz H-M, Schiller M. Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J Cell Sci. 2010;123:3347–56.

    CAS  PubMed  Google Scholar 

  16. Stamenkovic I, Seed B. The B-cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature. 1990;345:74–7.

    CAS  PubMed  Google Scholar 

  17. Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, de Bellard ME, Schnaar RL, Mahoney JA, Hartnell A, Bradfield P, Crocker PR. Sialoadhesin, myelinassociated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol. 1994;4:965–72.

    CAS  PubMed  Google Scholar 

  18. Freeman SD, Kelm S, Barber EK, Crocker PR. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood. 1995;85:2005–12.

    CAS  PubMed  Google Scholar 

  19. Scholler N, Hayden-Ledbetter M, Hellström KE, Hellström I, Ledbetter JA. CD83 is a sialic acid-binding Ig-like lectin (Siglec) adhesion receptor that binds monocytes and a subset of activated CD8+ T cells. J Immunol. 2001;166:3865–72.

    CAS  PubMed  Google Scholar 

  20. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    CAS  PubMed  Google Scholar 

  21. Parham P. The genetic and evolutionary balances in human NK cell receptor diversity. Semin Immunol. 2008;20(6):311–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Varki A. Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology. 2011;21(9):1121–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7(4):255–66.

    CAS  PubMed  Google Scholar 

  24. Crocker PR, McMillan SJ, Richards HE. CD33-related siglecs as potential modulators of inflammatory responses. Ann N Y Acad Sci. 2012;1253:102–11.

    CAS  PubMed  Google Scholar 

  25. Crocker PR, Redelinghuys P. Siglecs as positive and negative regulators of the immune system. Biochem Soc Trans. 2008;36(Pt 6):1467–71.

    CAS  PubMed  Google Scholar 

  26. Angata T, Margulies EH, Green ED, Varki A. Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci U S A. 2004;101:13251–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown GD, Crocker PR. Lectin receptors expressed on myeloid cells. Microbiol Spectr. 2016;4(5) https://doi.org/10.1128/microbiolspec.MCHD-0036-2016.

  28. Yu ZB, Maoui M, Wu LT, Banville D, Shen SH. mSiglec-E, a novel mouse CD33-related Siglec (sialic acid-binding immunoglobulin-like lectin) that recruits Src homology 2 (SH2)-domain-containing protein tyrosine phosphatases SHP-1 and SHP-2. Biochem J. 2001;353:483–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Angata T, Kerr SC, Greaves DR, Varki NM, Crocker PR, Varki A. Cloning and aracterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem. 2002;277:24466–74.

    CAS  PubMed  Google Scholar 

  30. Avril T, Floyd H, Lopez F, Vivier E, Crocker PR. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J Immunol. 2004;173:6841–9.

    CAS  PubMed  Google Scholar 

  31. Liu Y, Chen GY, Zheng P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol. 2009;30:557–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Avril T, Freeman SD, Attrill H, Clarke RG, Crocker PR. Siglec-5 (CD170) can mediate inhibitory signalling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation. J Biol Chem. 2005;280:19843–51.

    CAS  PubMed  Google Scholar 

  33. Mitsuki M, Nara K, Yamaji T, Enomoto A, Kanno M, Yamaguchi Y, Yamada A, Waguri S, Hashimoto Y. Siglec-7 mediates nonapoptotic cell death independently of its immunoreceptor tyrosine-based inhibitory motifs in monocytic cell line U937. Glycobiology. 2010;20:395–402.

    CAS  PubMed  Google Scholar 

  34. Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J. 2006;20:1964–73.

    CAS  PubMed  Google Scholar 

  35. Angata T, Tabuchi Y, Nakamura K, Nakamura M. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology. 2007;17:838–46.

    CAS  PubMed  Google Scholar 

  36. Cao H, Lakner U, de Bono B, Traherne JA, Trowsdale J, Barrow AD. SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol. 2008;38:2303–15.

    CAS  PubMed  Google Scholar 

  37. Razi N, Varki A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc Natl Acad Sci U S A. 1998;95:7469–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Reilly MK, Paulson JC. Multivalent ligands for Siglecs. Methods Enzymol. 2010;2010(478):343–63.

    Google Scholar 

  39. Cui L, Kitov PI, Completo GC, Paulson JC, Bundle DR. Supramolecular complexing of membane Siglec CD22 mediated by a polyvalent heterobifunctional ligand that templates on IgM. Bioconjug Chem. 2011;22:546–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Crocker PR, Vinson M, Kelm S, Drickamer K. Molecular analysis of sialoside binding to sialoadhesin by NMR and site-directed mutagenesis. Biochem J. 1999;341:355–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Angata T, Varki NM, Varki A. A second uniquely human mutation affecting sialic acid biology. J Biol Chem. 2001;276:40282–7.

    CAS  PubMed  Google Scholar 

  42. Traving C, Schauer R. Structure, function and metabolism of sialic acids. Cell Mol Life Sci. 1998;54:1330–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Herrler G, Rott R, Klenk HD, Muller HP, Shukla AK, Schauer R. The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J. 1958;4:1503–6.

    Google Scholar 

  44. Vlasak R, Luytjes W, Leider J, Spaan W, Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J Virol. 1988;62:4686–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cornelissen LAHM, Wierda CMH, van der Meer FJ, Horzinek MC, Egberink HF, de Groot RJ. Hemagglutinin-esterase: a novel structural protein of torovirus. J Virol. 1997;71:5277–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. de Groot RJ. Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses. Glycoconj J. 2006;23:59–72.

    PubMed  PubMed Central  Google Scholar 

  47. Orlandi PA, Klotz FW, Haynes JD. A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of plasmodium falciparum recognizes the terminal Neu5Ac(alpha 2–3)gal- sequences of glycophorin a. J Cell Biol. 1992;116:901–9.

    CAS  PubMed  Google Scholar 

  48. DeLuca GM, Donnell ME, Carrigan DJ, Blackall DP. Plasmodium falciparum merozoite adhesion is mediated by sialic acid. Biochem Biophys Res Commun. 1996;225:726–32.

    CAS  PubMed  Google Scholar 

  49. Baum J, Ward RH, Conway DJ. Natural selection on the erythrocyte surface. Mol Biol Evol. 2002;19:223–9.

    CAS  PubMed  Google Scholar 

  50. Byres E, Paton AW, Paton JC, Lofling JC, Smith DF, Wilce MC, Talbot UM, Chong DC, Yu H, Huang S, Chen X, Varki NM, Varki A, Rossjohn J, Beddoe T. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature. 2008;456:648–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnston JW, Zaleski A, Allen S, Mootz JM, Armbruster D, Gibson BW, Apicella MA, Munson RSJ. Regulation of sialic acid transport and catabolism in Haemophilus influenzae. Mol Microbiol. 2007;66:26–39.

    CAS  PubMed  Google Scholar 

  52. Trappetti C, Kadioglu A, Carter M, Hayre J, Iannelli F, Pozzi G, Andrew PW, Oggioni MR. Sialic acid: a preventable signal for pneumococcal biofilm formation, colonization, and invasion of the host. J Infect Dis. 2009;199:1497–505.

    CAS  PubMed  Google Scholar 

  53. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301–5.

    CAS  PubMed  Google Scholar 

  54. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Weiman S, Uchiyama S, Lin FY, Chaffin D, Varki A, Nizet V, Lewis AL. O-acetylation of sialic acid on group B streptococcus inhibits neutrophil suppression and virulence. Biochem J. 2010;428:163–8.

    CAS  PubMed  Google Scholar 

  56. Kelm S, Schauer R, Manuguerra J-C, Gross H-J, Crocker PR. Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconj J. 1994;11:576–85.

    CAS  PubMed  Google Scholar 

  57. Shi WX, Chammas R, Varki NM, Powell L, Varki A. Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to I-type lectins, and tissue homing. J Biol Chem. 1996;271:31526–32.

    CAS  PubMed  Google Scholar 

  58. Sjoberg ER, Powell LD, Klein A, Varki A. Natural ligands of the B cell adhesion molecule CD22beta can be masked by 9-O-acetylation of sialic acids. J Cell Biol. 1994;126:549–62.

    CAS  PubMed  Google Scholar 

  59. Cheresh DA, Reisfeld RA, Varki A. O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant. Science. 1984;225:844–6.

    CAS  PubMed  Google Scholar 

  60. Malisan F, Franchi L, Tomassini B, Ventura N, Condo I, Rippo MR, Rufini A, Liberati L, Nachtigall C, Kniep B, Testi R. Acetylation suppresses the proapoptotic activity of GD3 ganglioside. J Exp Med. 2002;196:1535–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vimr E, Lichtensteiger C. To sialylate, or not to sialylate: that is the question. Trends Microbiol. 2002;10:254–7.

    CAS  PubMed  Google Scholar 

  62. Lewis AL, Desa N, Hansen EE, Knirel YA, Gordon JI, Gagneux P, Nizet V, Varki A. Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure. Proc Natl Acad Sci U S A. 2009;106:13552–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schoenhofen IC, McNally DJ, Brisson JR, Logan SM. Elucidation of the CMP-pseudaminic acid pathway in helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology. 2006;16:8C–14C.

    CAS  PubMed  Google Scholar 

  64. Schoenhofen IC, Vinogradov E, Whitfield DM, Brisson JR, Logan SM. The CMP-legionaminic acid pathway in campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology. 2009;19:715–25.

    CAS  PubMed  Google Scholar 

  65. Jones C, Virji M, Crocker PR. Recognition of sialylated meningococcal lipopolysaccharide by Siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol. 2003;49:1213–25.

    CAS  PubMed  Google Scholar 

  66. Avril T, Wagner ER, Willison HJ, Crocker PR. Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on campylobacter jejuni lipooligosaccharides. Infect Immun. 2006;74:4133–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Khatua B, Ghoshal A, Bhattacharya K, Mandal C, Saha B, Crocker PR, Mandal C. Sialic acids acquired by Pseudomonas aeruginosa are involved in reduced complement deposition and Siglec mediated host-cell recognition. FEBS Lett. 2010;584:555–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A. Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood. 2009;113:3333–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hallenbeck PC, Vimr ER, Yu F, Bassler B, Troy FA. Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase specific for poly-alpha-2,8-sialosyl carbohydrate units. J Biol Chem. 1987;262:3553–61.

    CAS  PubMed  Google Scholar 

  70. Gerardy-Schahn R, Bethe A, Brennecke T, Mühlenhoff M, Eckhardt M, Ziesing S, Lottspeich F, Frosch M. Molecular cloning and functional expression of bacteriophage PK1E-encoded endoneuraminidase Endo NE. Mol Microbiol. 1995;16:441–50.

    CAS  PubMed  Google Scholar 

  71. Taylor CM, Roberts IS. Capsular polysaccharides and their role in virulence. Contrib Microbiol. 2005;12:55–66.

    CAS  PubMed  Google Scholar 

  72. Muhlenhoff M, Rollenhagen M, Werneburg S, Gerardy-Schahn R, Hildebrandt H. Polysialic acid: versatile modification of NCAM, SynCAM 1 and neuropilin-2. Neurochem Res. 2013;38:1134–43.

    PubMed  Google Scholar 

  73. Schwarzer D, Browning C, Stummeyer K, Oberbeck A, Mühlenhoff M, Gerardy-Schahn R, Leiman PG. Structure and biochemical characterization of bacteriophage phi92 endosialidase. Virology. 2015;477:133–43.

    CAS  PubMed  Google Scholar 

  74. Pelkonen S, Aalto J, Finne J. Differential activities of bacteriophage depolymerase on bacterial polysaccharide: binding is essential but degradation is inhibitory in phage infection of K1-defective Escherichia coli. J Bacteriol. 1992;174(23):7757–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Cieslewicz MJ, Chaffin D, Glusman G, Kasper D, Madan A, Rodrigues S, Fahey J, Wessels MR, Rubens CE. Structural and genetic diversity of group B streptococcus capsular polysaccharides. Infect Immun. 2005;73:3096–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol. 2005;8:459–65.

    CAS  PubMed  Google Scholar 

  77. Mitchell J, Siboo IR, Takamatsu D, Chambers HF, Sullam PM. Mechanism of cell surface expression of the Streptococcus mitis platelet binding proteins PblA and PblB. Mol Microbiol. 2007;64:844–57.

    CAS  PubMed  Google Scholar 

  78. Mitchell J, Sullam PM. Streptococcus mitis phage-encoded adhesins mediate attachment to {alpha}2-8-linked sialic acid residues on platelet membrane gangliosides. Infect Immun. 2009;77(8):3485–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Takahashi Y, Konishi K, Cisar JO, Yoshikawa M. Identification and characterization of hsa, the gene encoding the sialic acid-binding adhesin of Streptococcus gordonii DL1. Infect Immun. 2002;70:1209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ferroni P, Lenti L, Martini F, Ciatti F, Pontieri GM, Gazzaniga PP. Ganglioside content of human platelets: differences in resting and activated platelets. Thromb Haemost. 1997;77:548–54.

    CAS  PubMed  Google Scholar 

  81. Martini F, Riondino S, Pignatelli P, Gazzaniga PP, Ferroni P, Lenti L. Involvement of GD3 in platelet activation. A novel association with Fcγ receptor. Biochim Biophys Acta. 2002;158:3297–304.

    Google Scholar 

  82. Brown JS, Hussell T, Gilliland SM, Holden DW, Paton JC, Ehrenstein MR, Walport MJ, Botto M. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci U S A. 2002;99:16969–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Abeyta M, Hardy GG, Yother J. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect Immun. 2003;71:218–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell. 2002;111:927–30.

    CAS  PubMed  Google Scholar 

  85. Lewis LA, Gulati S, Burrowes E, Zheng B, Ram S, Rice PA. α-2,3-sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonorrhoeae to colonize the murine genital tract. MBio. 2015;6(1):pii: e02465-14.

    Google Scholar 

  86. Elkins C, Carbonetti NH, Varela VA, Stirewalt D, Klapper DG, Sparling F. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol Microbiol. 1992;6:2617–28.

    CAS  PubMed  Google Scholar 

  87. Ram S, Sharma AK, Simpson SD, Gulati S, McQuillen DP, Pangburn MK, Rice PA. A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J Exp Med. 1998;187:743–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ram S, Lewis LA, Agarwal S. Meningococcal group W-135 and Y capsular polysaccharides paradoxically enhance activation of the alternative pathway of complement. J Biol Chem. 2011;286:8297–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lewis LA, Ngampasutadol J, Wallace R, Reid JE, Vogel U, Ram S. The meningococcal vaccine candidate neisserial surface protein a (NspA) binds to factor H and enhances meningococcal resistance to complement. PLoS Pathog. 2010;6:e1001027.

    PubMed  PubMed Central  Google Scholar 

  90. Madico G, Welsch JA, Lewis LA, McNaughton A, Perlman DH, Costello CE, Ngampasutadol J, Vogel U, Granoff DM, Ram S. The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. J Immunol. 2006;177:501–10.

    CAS  PubMed  Google Scholar 

  91. Lewis LA, Vu DM, Vasudhev S, Shaughnessy J, Granoff DM, Ram S. Factor H-dependent alternative pathway inhibition mediated by porin B contributes to virulence of Neisseria meningitidis. mBio. 2013;4:e00339–13.

    PubMed  PubMed Central  Google Scholar 

  92. Lewis LA, Carter M, Ram S. The relative roles of factor H binding protein, neisserial surface protein a, and lipooligosaccharide sialylation in regulation of the alternative pathway of complement on meningococci. J Immunol. 2012;188:5063–72.

    CAS  PubMed  Google Scholar 

  93. Gagneux P, Aebi M, Varki A. 2015. Evolution of glycan diversity. A. Varki, R.D. Cummings, J.D. Esko, P. Stanley, G.W. Hart, M. Aebi, A.G. Darvill, T. Kinoshita, N.H. Packer, J.H. Prestegard, R.L. Schnaar, P.H. Seeberger (Eds.), Essentials of glycobiology, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 253–264.

    Google Scholar 

  94. Varki A. Biological roles of glycans. Glycobiology. 2017;27:3–49.

    CAS  PubMed  Google Scholar 

  95. Capuco AV, Akers RM. The origin and evolution of lactation. J Biol. 2009;8:37.

    PubMed  PubMed Central  Google Scholar 

  96. Bornhöfft KF, Goldammer T, Rebl A, Galuska SP. Siglecs: a journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Dev Comp Immunol. 2018;86:219–31.

    PubMed  Google Scholar 

  97. Varki A, Angata T. Siglecs–the major subfamily of I-type lectins. Glycobiology. 2006;16:1R–27R.

    CAS  PubMed  Google Scholar 

  98. Poe JC, Tedder TF. CD22 and Siglec-G in B cell function and tolerance. Trends Immunol. 2012;33:413–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sun J, Shaper NL, Itonori S, Heffer-Lauc M, Sheikh KA, Schnaar RL. Myelin-associated glycoprotein (Siglec-4) expression is progressively and selectively decreased in the brains of mice lacking complex gangliosides. Glycobiology. 2004;14:851–7.

    CAS  PubMed  Google Scholar 

  100. Macauley MS, Crocker PR, Paulson JC. Siglec regulation of immune cell function in disease. Nat Rev Immunol. 2014;14:653–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem. 2007;100:1431–48.

    CAS  PubMed  Google Scholar 

  102. Paul SP, Taylor LS, Stansbury EK, McVicar DW. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood. 2000;96:483–90.

    CAS  PubMed  Google Scholar 

  103. Blasius AL, Colonna M. Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H. Trends Immunol. 2006;27:255–60.

    CAS  PubMed  Google Scholar 

  104. Cao H, Crocker PR. Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology. 2011;132:18–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cao H, de Bono B, Belov K, Wong ES, Trowsdale J, Barrow AD. Comparative genomics indicates the mammalian CD33rSiglec locus evolved by an ancient large-scale inverse duplication and suggests all Siglecs share a common ancestral region. Immunogenetics. 2009;61:401–17.

    CAS  PubMed  Google Scholar 

  106. Lehmann F, Gathje H, Kelm S, Dietz F. Evolution of sialic acid-binding proteins: molecular cloning and expression of fish siglec-4. Glycobiology. 2004;14:959–68.

    CAS  PubMed  Google Scholar 

  107. Betancur RR, Orti G, Pyron RA. Fossil-based comparative analyses reveal ancient marine ancestry erased by extinction in ray-finned fishes. Ecol Lett. 2015;18:441–50.

    Google Scholar 

  108. Ali SR, Fong JJ, Carlin AF, Busch TD, Linden R, Angata T, Areschoug T, Parast M, Varki N, Murray J, Nizet V, Varki A. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B streptococcus. J Exp Med. 2014;211:1231–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Vanderhoeven JP, Bierle CJ, Kapur RP, McAdams RM, Beyer RP, Bammler TK, Farin FM, Bansal A, Spencer M, Deng M, Gravett MG, Rubens CE, Rajagopal L, Waldorf KMA. Group B streptococcal infection of the choriodecidua induces dysfunction of the cytokeratin network in amniotic epithelium: a pathway to membrane weakening. PLoS Pathog. 2014;10(3:e1003920.

    Google Scholar 

  110. Jandus C, Simon HC, on Gunten S. Targeting siglecs–a novel pharwmacological strategy for immuno- and glycotherapy. Biochem Pharmacol. 2011;82(4):323–32.

    CAS  PubMed  Google Scholar 

  111. O’Reilly MK, Paulson JC. Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci. 2009;30:240–8.

    PubMed  PubMed Central  Google Scholar 

  112. Hartnell A, Steel J, Turley H, Jones M, Jackson DG, Crocker PR. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood. 2001;97:288–96.

    CAS  PubMed  Google Scholar 

  113. Zhuravleva MA, Trandem K, Sun PD. Structural implications of Siglec-5-mediated sialoglycan recognition. J Mol Biol. 2008;375:437–47.

    CAS  PubMed  Google Scholar 

  114. Arase H, Lanier LL. Specific recognition of virus-infected cells by paired NK receptors. Rev Med Virol. 2004;14:83–93.

    CAS  PubMed  Google Scholar 

  115. Ishida-Kitagawa N, Tanaka K, Bao X, Kimura T, Miura T, Kitaoka Y, Hayashi K, Sato M, Maruoka M, Ogawa T, Miyoshi J, Takeya T. Siglec-15 protein regulates formation of functional osteoclasts in concert with DNAX-activating protein of 12 kDa (DAP12). J Biol Chem. 2012;287:17493–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lanier LL, Bakker AB. The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol Today. 2000;21:611–4.

    CAS  PubMed  Google Scholar 

  117. Pillai S, Netravali IA, Cariappa A, Mattoo H. Siglecs and immune regulation. Annu Rev Immunol. 2012;30:357–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hiruma Y, Hirai T, Tsuda E. Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation. Biochem Biophys Res Commun. 2011;409(3):424–9.

    CAS  PubMed  Google Scholar 

  119. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–8.

    CAS  PubMed  Google Scholar 

  120. Stuible M, Moraitis A, Fortin A, Saragosa S, Kalbakji A, Filion M, Tremblay GB. Mechanism and function of monoclonal antibodies targeting siglec-15 for therapeutic inhibition of osteoclastic bone resorption. J Biol Chem. 2014;289:6498–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Nitschke L. The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr Opin Immunol. 2005;17:290–7.

    CAS  PubMed  Google Scholar 

  122. Tedder TF, Poe JC, Haas KM. CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol. 2005;88:1–50.

    CAS  PubMed  Google Scholar 

  123. Lizcano A, Secundino I, Dohrmann S, Corriden R, Rohena C, Diaz S, Ghosh P, Deng L, Nizet V, Varki A. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood. 2017;129:3100–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hudak JE, Canham SM, Bertozzi CR. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol. 2014;10:69–75.

    CAS  PubMed  Google Scholar 

  125. Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Démoulins T, Schneider C, Wehrli M, Hunger RE, Baerlocher GM, Simon HU, Romero P, Münz C, von Gunten S. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest. 2014;124:1810–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S, Lee M, Von Korff A, Morris MC, Evans DA, Johnson K, Sperling RA, Schneider JA, Bennett DA, De Jager PL, Alzheimer Disease Neuroimaging Initiative. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013;16:848–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 2013;78:631–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Linnartz-Gerlach B, Kopatz J, Neumann H. Siglec functions of microglia. Glycobiology. 2014;24:794–9.

    CAS  PubMed  Google Scholar 

  129. Malik M, Simpson JF, Parikh I, Wilfred BR, Fardo DW, Nelson PT, Estus S. CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing. J Neurosci. 2013;33:13320–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hollingworth P, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43:429–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Naj AC, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43:436–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Gao PS, et al. Polymorphisms in the sialic acid-binding immunoglobulin-like lectin-8 (Siglec-8) gene are associated with susceptibility to asthma. Eur J Hum Genet. 2010;18:713–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kiwamoto T, Katoh T, Tiemeyer M, Bochner BS. The role of lung epithelial ligands for Siglec-8 and Siglec-F in eosinophilic inflammation. Curr Opin Allergy Clin Immunol. 2013;13:106–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chang YC, Nizet V. The interplay between Siglecs and sialylated pathogens. Glycobiology. 2014;24:818–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Avril T, Freeman SD, Attrill H, Clarke RG, Crocker PR. Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation. J Biol Chem. 2005;280:19843–51.

    CAS  PubMed  Google Scholar 

  136. Pearce OM, Läubli H. Sialic acids in cancer biology and immunity. Glycobiology. 2016;26(2):111–28.

    CAS  PubMed  Google Scholar 

  137. Cabral MG, Silva Z, Ligeiro D, Seixas E, Crespo H, Carrascal MA, Silva M, Piteira AR, Paixão P, Lau JT, Videira PA. The phagocytic capacity and immunological potency of human dendritic cells is improved by α2,6-sialic acid deficiency. Immunology. 2013;138(3):235–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Videira PA, Amado IF, Crespo HJ, Algueró MC, Dall’Olio F, Cabral MG, Trindade H. Surface alpha 2–3- and alpha 2–6-sialylation of human monocytes and derived dendritic cells and its influence on endocytosis. Glycoconj J. 2008;25(3):259–68.

    CAS  PubMed  Google Scholar 

  139. Stamenkovic I, Sgroi D, Aruffo A, Sy MS, Anderson T. The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and alpha 2–6 sialyltransferase, CD75, on B cells. Cell. 1991;66:1133–44.

    CAS  PubMed  Google Scholar 

  140. Crocker PR, Mucklow S, Bouckson V, McWilliam A, Willis AC, Gordon S, Milon G, Kelm S, Bradfield P. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J. 1994;13:4490–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, de Bellard ME, Schnaar RL, Mahoney JA, Hartnell A, Bradfield P, et al. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol. 1994;4:965–72.

    CAS  PubMed  Google Scholar 

  142. Powell LD, Varki A. I-type lectins. J Biol Chem. 1995;270(14):243–6.

    Google Scholar 

  143. Crocker PR, Clark EA, Filbin M, Gordon S, Jones Y, Kehrl JH, Kelm S, Le Douarin N, Powell L, Roder J, Schnaar RL, Sgroi DC, Stamenkovic K, Schauer R, Schachner M, van den Berg TK, van der Merwe PA, Watt SM, Varki A. Siglecs: a family of sialic-acid binding lectins. Glycobiology. 1998;8:v.

    CAS  PubMed  Google Scholar 

  144. Crespo HJ, Cabral MG, Teixeira AV, Lau JT, Trindade H, Videira PA. Effect of sialic acid loss on dendritic cell maturation. Immunology. 2009;128:621–31.

    Google Scholar 

  145. Cabral MG, Silva Z, Ligeiro D, Seixas E, Crespo H, Carrascal MA, et al. The phagocytic capacity and immunological potency of human dendritic cells is improved by alpha2,6-sialic acid deficiency. Immunology. 2013;138:235–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Feng C, Stamatos NM, Dragan AI, Medvedev A, Whitford M, Zhang L, et al. Sialyl residues modulate LPS-mediated signaling through the Toll-like receptor 4 complex. PLoS One. 2012;7:e32359.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Silva M, Silva Z, Marques G, Ferro T, Goncalves M, Monteiro M, et al. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses. Oncotarget. 2016;7:41053–66.

    PubMed  PubMed Central  Google Scholar 

  148. Stamatos NM, Carubelli I, van de Vlekkert D, Bonten EJ, Papini N, Feng CG, et al. LPS-induced cytokine production in human dendritic cells is regulated by sialidase activity. J Leukoc Biol. 2010;88:1227–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Büll C, Collado-Camps E, Kers-Rebel ED, Heise T, Søndergaard JN, den Brok MH, Schulte BM, Boltje TJ, Adema GJ. Metabolic sialic acid blockade lowers the activation threshold of moDCs for TLR stimulation. Immunol Cell Biol. 2017;95(4):408–15.

    PubMed  Google Scholar 

  150. Zhang JQ, Biedermann B, Nitschke L, Crocker PR. The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur J Immunol. 2004;34:1175–84.

    CAS  PubMed  Google Scholar 

  151. McMillan SJ, Sharma RS, Mckenzie EJ, Richards HE, Zhang J, Prescott A, et al. Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b beta2-integrin-dependent signaling. Blood. 2013;121:2084–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Boyd CR, Orr SJ, Spence S, Burrows JF, Elliott J, Carroll HP, et al. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production. J Immunol. 2009;183:7703–9.

    CAS  PubMed  Google Scholar 

  153. Ando M, Tu W, Nishijima K, Iijima S. Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs. Biochem Biophys Res Commun. 2008;369:878–83.

    CAS  PubMed  Google Scholar 

  154. Chang YC, Olson J, Beasley FC, Tung C, Zhang J, Crocker PR, et al. Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog. 2014;10:e1003846.

    PubMed  PubMed Central  Google Scholar 

  155. Chen GY, Brown NK, Wu W, Khedri Z, Yu H, Chen X, et al. Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. Elife. 2014;3:e04066.

    PubMed  PubMed Central  Google Scholar 

  156. Wu Y, Ren D, Chen GY. Siglec-E negatively regulates the activation of TLR4 by controlling its endocytosis. J Immunol. 2016;197:3336–47.

    CAS  PubMed  Google Scholar 

  157. Nagala M, McKenzie E, Richards H, Sharma R, Thomson S, Mastroeni P, Crocker PR. Expression of Siglec-E alters the proteome of lipopolysaccharide (LPS)-activated macrophages but does not affect LPS-driven cytokine production or Toll-Like Receptor 4 endocytosis. Front Immunol. 2018;8:1926.

    PubMed  PubMed Central  Google Scholar 

  158. Kraal G, Janse M. Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody. Immunology. 1986;58:665–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Crocker PR, Gordon S. Isolation and characterization of resident stromal macrophages and hematopoietic cell clusters from mouse bone marrow. J Exp Med. 1985;162:993–1014.

    CAS  PubMed  Google Scholar 

  160. Pucci F, Garris C, Lai CP, Newton A, Pfirschke C, Engblom C, Alvarez D, Sprachman M, Evavold C, Magnuson A, von Andrian UH, Glatz K, Breakefield XO, Mempel TR, Weissleder R, Pittet MJ. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science. 2016;352:242–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Saunderson SC, Dunn AC, Crocker PR, McLellan AD. CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 2014;123:208–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gummuluru S, Pina Ramirez NG, Akiyama H. CD169-dependent cell-associated HIV-1 transmission: a driver of virus dissemination. J Infect Dis. 2014;210:S641–7.

    PubMed  PubMed Central  Google Scholar 

  163. Martinez-Picado J, McLaren PJ, Erkizia I, Martin MP, Benet S, Rotger M, Dalmau J, Ouchi D, Wolinsky SM, Penugonda S, Günthard HF, Fellay J, Carrington M, Izquierdo-Useros N, Telenti A. Identification of Siglec-1 null individuals infected with HIV-1. Nat Commun. 2016;7(12):412.

    Google Scholar 

  164. Sewald X, Ladinsky MS, Uchil PD, Beloor J, Pi R, Herrmann C, Motamedi N, Murooka TT, Brehm MA, Greiner DL, Shultz LD, Mempel TR, Bjorkman PJ, Kumar P, Mothes W. Retroviruses use CD169-mediated transinfection of permissive lymphocytes to establish infection. Science. 2015;350:563–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Klaas M, Crocker PR. Sialoadhesin in recognition of self and non-self. Semin Immunopathol. 2012;34:353–64.

    CAS  PubMed  Google Scholar 

  166. Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014;14:653–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Asano K, Kikuchi K, Tanaka M. CD169 macrophages regulate immune responses toward particulate materials in the circulating fluid. J Biochem. 2018;64(2):77–85. Review. https://doi.org/10.1093/jb/mvy050.

    Article  CAS  Google Scholar 

  168. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14:571–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. A-Gonzalez N, Guillen JA, Gallardo G, Diaz M, de la Rosa JV, Hernandez IH, Casanova-Acebes M, Lopez F, Tabraue CS, Beceiro S, Hong C, Lara PC, Andujar M, Arai S, Miyazaki T, Li S, Corbi A, Tontonoz P, Hidalgo A, Castrillo A. The nuclear receptor LXRalpha controls the functional specialization of splenic macrophages. Nat Immunol. 2013;14:831–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Hiemstra IH, Beijer MR, Veninga H, Vrijland K, Borg EGF, Olivier BJ, Mebius RE, Kraal G, den Haan JMM. The identification and developmental requirements of colonic CD169(+) macrophages. Immunology. 2014;142:269–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang Y, Roth TL, Gray EE, Chen H, Rodda LB, Liang Y, Ventura P, Villeda S, Crocker PR, Cyster JG. Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node. Elife. 2016;5:e18156.

    PubMed  PubMed Central  Google Scholar 

  172. Oetke C, Vinson MC, Jones C, Crocker PR. Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels. Mol Cell Biol. 2006;26:1549–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Islam SA, Chang DS, Colvin RA, Byrne MH, ML MC, Moser B, Lira SA, Charo IF, Luster AD. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T(H)2 cells. Nat Immunol. 2011;12:167–77.

    CAS  PubMed  Google Scholar 

  174. Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, Kitashima D, Ueha S, Horiuchi K, Tanizaki H, Kabashima K, Kubo A, Cho YH, Clausen BE, Matsushima K, Suematsu M, Furtado GC, Lira SA, Farber JM, Udey MC, Amagai M. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol. 2012;13:744–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Asano T, Ohnishi K, Shiota T, Motoshima T, Sugiyama Y, Yatsuda J. CD169-positive sinus macrophages in the lymph nodes determine bladder cancer prognosis. Cancer Sci. 2018;109:1723–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Asano T, Ohnishi K, Shiota T, Motoshima T, Sugiyama Y, Yatsuda J, Kamba T, Ishizaka K, Komohara Y. CD169-positive sinus macrophages in the lymph nodes determine bladder cancer prognosis. Cancer Sci. 2018;109(5):1723–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Ohnishi K, Komohara Y, Saito Y, Miyamoto Y, Watanabe M, Baba H, Takeya M. CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci. 2013;104:1237–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Saito Y, Ohnishi K, Miyashita A, Nakahara S, Fujiwara Y, Horlad H, Motoshima T, Fukushima S, Jinnin M, Ihn H, Takeya M, Komohara Y. Prognostic significance of CD169+ lymph node sinus macrophages in patients with malignant melanoma. Cancer Immunol Res. 2015;3:1356–63.

    CAS  PubMed  Google Scholar 

  179. Ohnishi K, Yamaguchi M, Erdenebaatar C, Saito F, Tashiro H, Katabuchi H, Takeya M, Komohara Y. Prognostic significance of CD169-positive lymph node sinus macrophages in patients with endometrial carcinoma. Cancer Sci. 2016;107:846–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Stromvall K, Sundkvist K, Ljungberg B, Halin Bergstrom S, Bergh A. Reduced number of CD169(+) macrophages in pre-meastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients. Prostate. 2017;77:1468–77.

    PubMed  PubMed Central  Google Scholar 

  181. Asano K, Nabeyama A, Miyake Y, Qiu CH, Kurita A, Tomura M, Kanagawa O, Fujii S, Tanaka M. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity. 2011;34(1):85–95. https://doi.org/10.1016/j.immuni.2010.12.011. Epub 2010 Dec 30

    Article  CAS  PubMed  Google Scholar 

  182. Shiota T, Miyasato Y, Ohnishi K, Yamamoto-Ibusuki M, Yamamoto Y, Iwase H, Takeya M, Komohara Y. The clinical significance of CD169-positive lymph node macrophage in patients with breast cancer. PLoS One. 2016;11:e0166680.

    PubMed  PubMed Central  Google Scholar 

  183. Komohara Y, Ohnishi K, Takeya M. Possible functions of CD169-positive sinus macrophages in lymph nodes in anti-tumor immune responses. Cancer Sci. 2017;108:290–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Muraoka D, Harada N, Hayashi T, Tahara Y, Momose F, Sawada S, Mukai S, Akiyoshi K, Shiku H. Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity. ACS Nano. 2014;8:9209–18.

    CAS  PubMed  Google Scholar 

  185. Takeya H, Shiota T, Yagi T, Ohnishi K, Baba Y, Miyasato Y, Kiyozumi Y, Yoshida N, Takeya M, Baba H, Komohara Y. High CD169 expression in lymph node macrophages predicts a favorable clinical course in patients with esophageal cancer. Pathol Int. 2018;68(12):685–93.

    CAS  PubMed  Google Scholar 

  186. Puryear WB, Akiyama H, Geer SD, Ramirez NP, Yu X, Reinhard BM, Gummuluru S. Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLoS Pathog. 2013;9(4):e1003291.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Heikema AP, Bergman MP, Richards H, Crocker PR, Gilbert M, Samsom JN, van Wamel WJ, Endtz HP, van Belkum A. Characterization of the specific interaction between sialoadhesin and sialylated Campylobacter jejuni lipooligosaccharides. Infect Immun. 2010;78:3237–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Wu C, Rauch U, Korpos E, Song J, Loser K, Crocker PR, Sorokin LM. Sialoadhesin-positive macrophages bind regulatory T cells, negatively controlling their expansion and autoimmune disease progression. J Immunol. 2009;182(10):6508–16.

    CAS  PubMed  Google Scholar 

  189. Clancy RM, Halushka M, Rasmussen SE, Lhakhang T, Chang M, Buyon JP. Siglec-1 macrophages and the contribution of IFN to the development of autoimmune congenital heart block. J Immunol. 2019;202(1):48–55.

    CAS  PubMed  Google Scholar 

  190. Klaas M, Oetke C, Lewis LE, Erwig LP, Heikema AP, Easton A, Willison HJ, Crocker PR. bSialoadhesin promotes rapid proinflammatory and type I IFN responses to a sialylated pathogen, Campylobacter jejuni. J Immunol. 2012;189:2414–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Chang YC, Olson J, Louie A, Crocker PR, Varki A, Nizet V. Role of macrophage sialoadhesin in host defense against the sialylated pathogen group B Streptococcus. J Mol Med (Berl). 2014;92(9):951–9.

    CAS  Google Scholar 

  192. Monteiro VG, Lobato CS, Silva AR, Medina DV, de Oliveira MA, Seabra SH, de Souza W, DaMatta RA. Increased association of Trypanosoma cruzi with sialoadhesin positive mouse macrophages. Parasitol Res. 2005;97:380–5.

    PubMed  Google Scholar 

  193. Rempel H, Calosing C, Sun B, Pulliam L. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One. 2008;3:e1967.

    PubMed  PubMed Central  Google Scholar 

  194. Vanderheijden N, Delputte PL, Favoreel HW, Vandekerckhove J, Van Damme J, van Woensel PA, Nauwynck HJ. Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J Virol. 2003;77:8207–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Zou Z, Chastain A, Moir S, Ford J, Trandem K, Martinelli E, Cicala C, Crocker P, Arthos J, Sun PD. Siglecs facilitate HIV-1 infection of macrophages through adhesion with viral sialic acids. PLoS One. 2011;6:e24559.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. De Saint JA, Lucht F, Bourlet T, Delézay O. Transforming growth factor beta 1 up-regulates CD169 (sialoadhesin) expression on monocyte-derived dendritic cells: role in HIV sexual transmission. AIDS. 2014;28(16):2375–80.

    Google Scholar 

  197. Erikson E, Wratil PR, Frank M, Ambiel I, Pahnke K, Pino M, Azadi P, Izquierdo-Useros N, Martinez-Picado J, Meier C, Schnaar RL, Crocker PR, Reutter W, Keppler OT. Mouse Siglec-1 mediates trans-infection of surface-bound murine leukemia virus in a sialic acid N-acyl side chain-dependent manner. J Biol Chem. 2015;290(45):27345–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Iannacone M, Moseman EA, Tonti E, Bosurgi L, Junt T, Henrickson SE, Whelan SP, Guidotti LG, von Andrian UH. Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature. 2010;465:1079–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Prather RS, Rowland RR, Ewen C, Trible B, Kerrigan M, Bawa B, Teson JM, Mao J, Lee K, Samuel MS, Whitworth KM, Murphy CN, Egen T, Green JA. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol. 2013;87:9538–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Puryear WB, Akiyama H, Geer SD, Ramirez NP, Reinhard YX, BM, Gummuluru S. Interferon-inducible mechanism of dendritic cell-mediated HIV-1 dissemination is dependent on Siglec-1/CD169. PLoS Pathog. 2013;9:e1003291.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Klaas M, Oetke C, Lewis LE, Erwig LP, Heikema AP, Easton A, Willison HJ, Crocker PR. Sialoadhesin promotes rapid proinflammatory and type I IFN responses to a sialylated pathogen, Campylobacter jejuni. J Immunol. 2012;189(5):2414–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Karlyshev AV, Linton D, Gregson NA, Lastovica AJ, Wren BW. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol. 2000;35(3):529–41.

    CAS  PubMed  Google Scholar 

  203. Maue AC, Mohawk KL, Giles DK, Poly F, Ewing CP, Jiao Y, Lee G, Ma Z, Monteiro MA, Hill CL, Ferderber JS, Porter CK, Trent MS, Guerry P. The polysaccharide capsule of Campylobacter jejuni modulates the host immune response. Infect Immun. 2013;81(3):665–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Huizinga R, Easton AS, Donachie AM, Guthrie J, van Rijs W, Heikema A, Boon L, Samsom JN, Jacobs BC, Willison HJ, Goodyear CS. Sialylation of Campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice. PLoS One. 2012;7(3):e34416.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Heikema AP, Bergman MP, Richards H, et al. Characterization of the specific interaction between sialoadhesin and sialylated Campylobacter jejuni lipooligosaccharides. Infect Immun. 2010;78:3237–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Heikema AP, Jacobs BC, Horst-Kreft D, Huizinga R, Kuijf ML, Endtz HP, Samsom JN, van Wamel WJ. Siglec-7 specifically recognizes Campylobacter jejuni strains associated with oculomotor weakness in Guillain-Barré syndrome and Miller Fisher syndrome. Clin Microbiol Infect. 2013;19(2):E106–12.

    CAS  PubMed  Google Scholar 

  207. Izquierdo-Useros N, Lorizate M, McLaren PJ, Telenti A, Kräusslich HG, Martinez-Picado J. HIV-1 capture and transmission by dendritic cells: the role of viral glycolipids and the cellular receptor Siglec-1. PLoS Pathog. 2014;10:e1004146.

    PubMed  PubMed Central  Google Scholar 

  208. Izquierdo-Useros N, Lorizate M, Contreras FX, Rodriguez-Plata MT, Glass B, Erkizia I, Prado JG, Casas J, Fabriàs G, Kräusslich HG, Martinez-Picado J. Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol. 2012;10:e1001315.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Puryear WB, Yu X, Ramirez NP, Reinhard BM, Gummuluru S. HIV-1 incorporation of host-cell-derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc Natl Acad Sci U S A. 2012;109:7475–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Izquierdo-Useros N, Lorizate M, Puertas MC, Rodriguez-Plata MT, Zangger N, Erikson E, Pino M, Erkizia I, Glass B, Clotet B, Keppler OT, Telenti A, Kräusslich HG, Martinez-Picado J. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 2012;10(12):e1001448.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. van der Kuyl AC, van den Burg R, Zorgdrager F, Groot F, Berkhout B, Cornelissen M. Sialoadhesin (CD169) expression in CD14+ cells is upregulated early after HIV-1 infection and increases during disease progression. PLoS One. 2007;2(2):e257.

    PubMed  PubMed Central  Google Scholar 

  212. Sewald X, Ladinsky MS, Uchil PD, Beloor J, Pi R, Herrmann C, Motamedi N, Murooka TT, Brehm MA, Greiner DL, Shultz LD, Mempel TR, Bjorkman PJ, Kumar P, Mothes W. Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science. 2015;350(6260):563–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Akiyama H, Ramirez NP, Gibson G, Kline C, Watkins S, Ambrose Z, Gummuluru S. Interferon-inducible CD169/Siglec1 attenuates anti-HIV-1 effects of alpha interferon. J Virol. 2017;91(21):e00972–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Felts RL, Narayan K, Estes JD, Shi D, Trubey CM, Fu J, Hartnell LM, Ruthel GT, Schneider DK, Nagashima K, Bess JW Jr, Bavari S, Lowekamp BC, Bliss D, Lifson JD, Subramaniam S. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci U S A. 2010;107(30):13336–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Izquierdo-Useros N, Lorizate M, Puertas MC, Rodriguez-Plata MT, Zangger N, Erikson E, Pino M, Erkizia I, Glass B, Clotet B, Keppler OT, Telenti A, Krausslich HG, Martinez-Picado J. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 2012;10:e1001448.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Izquierdo-Useros N, Lorizate M, Contreras FX, Rodriguez-Plata MT, Glass B, Erkizia I, Prado JG, Casas J, Fabrias G, Krausslich HG, Martinez-Picado J. Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol. 2012;10:e1001315.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Kijewski SD, Gummuluru S. A mechanistic overview of dendritic cell-mediated HIV-1 trans infection: the story so far. Future Virol. 2015;10(3):257–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Pino M, Erkizia I, Benet S, Erikson E, Fernández-Figueras MT, Guerrero D, Dalmau J, Ouchi D, Rausell A, Ciuffi A, Keppler OT, Telenti A, Kräusslich HG, Martinez-Picado J, Izquierdo-Useros N. HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. PLoS Pathog. 2015;10(7):e1004146.

    Google Scholar 

  219. Mahajan VS, Pillai S. Sialic acids and autoimmune disease. Immunol Rev. 1916;269:145–61.

    Google Scholar 

  220. Ereño-Orbea J, Sicard T, Cui H, Mazhab-Jafari MT, Benlekbir S, Guarné A, Rubinstein JL, Julien JP. Molecular basis of human CD22 function and therapeutic targeting. Nat Commun. 2017;8(1):764.

    PubMed  PubMed Central  Google Scholar 

  221. Kreitman RJ, Squires DR, Stetler-Stevenson M, Noel P, FitzGerald DJ, Wilson WH, Pastan I. Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol. 2005;23:6719–29.

    CAS  PubMed  Google Scholar 

  222. Carnahan J, Wang P, Kendall R, Chen C, Hu S, Boone T, Cesano A. Epratuzumab, a humanized monoclonal antibody targeting CD22. Clin Cancer Res. 2003;9(10):3982 s–3990 s.

    Google Scholar 

  223. Dal Porto JM, Gauld SB, Merrell KT, Mills D, Pugh-Bernard AE, Cambier J. B cell antigen receptor signaling 101. Mol Immunol. 2004;41(6):599–613.

    CAS  PubMed  Google Scholar 

  224. Zaccai NR, May AP, Robinson RC, Burtnick LD, Crocker PR, Brossmer R, Kelm S, Jones EY. Crystallographic and in silico analysis of the sialoside-binding characteristics of the Siglec sialoadhesin. J Mol Biol. 2007;365:1469–79.

    CAS  PubMed  Google Scholar 

  225. Blixt O, Collins BE, van den Nieuwenhof IM, Crocker PR, Paulson JC. Sialoside Specificity of the Siglec Family Assessed Using Novel Multivalent Probes: identification of potent inhibitors of myelin-associated glycoprotein. J Biol Chem. 2003;278(33):31007–19.

    CAS  PubMed  Google Scholar 

  226. Boer JM, den Boer ML. BCR-ABL1-like acute lymphoblastic leukaemia: from bench to bedside. Eur J Cancer. 2017;82:203–18.

    CAS  PubMed  Google Scholar 

  227. Cariappa A, Takematsu H, Liu H, Diaz S, Haider K, Boboila C, Kalloo G, Connole M, Shi HN, Varki N, Varki A, Pillai S. B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. J Exp Med. 2009;206(1):125–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Smith KGC, Tarlinton DM, Doody GM, Hibbs ML, Fearon DT. Inhibition of the B-cell by CD22: a requirement for Lyn. J Exp Med. 1998;187:807–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Nitschke L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev. 2009;230:128–43.

    CAS  PubMed  Google Scholar 

  230. Micallef INM, Maurer MJ, Wiseman GA, Nikcevich DA, Kurtin PJ, Cannon MW, Witzig TE. Epratuzumab with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated diffuse large B-cell lymphoma. Blood. 2011;118(15):4053–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Nitschke L. CD22 and Siglec-G regulate inhibition of B-cell signaling by sialic acid ligand binding and control B-cell tolerance. Glycobiology. 2014;24:807–17.

    CAS  PubMed  Google Scholar 

  232. Collins BE, Smith BA, Bengtson P, Paulson JC. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat Immunol. 2006;7:199–206.

    CAS  PubMed  Google Scholar 

  233. Bakker TR, Piperi C, Davies EA, Merwe PA. Comparison of CD22 binding to native CD45 and snthetic oligosaccharide. Eur J Immunol. 2002;32:1924–32.

    CAS  PubMed  Google Scholar 

  234. Danzer CP, Collins BE, Blixt O, Paulson JC, Nitschke L. Transitional and marginal zone B cells have a high proportion of unmasked CD22: implications for BCR signaling. Int Immunol. 2003;5:1137–47.

    Google Scholar 

  235. Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, Orentas RJ. Anti-CD22–chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood. 2013;121(7):1165–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Müller J, Nitschke L. The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease. Nat Rev Rheumatol. 2014;10:422.

    PubMed  Google Scholar 

  237. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541–52.

    CAS  PubMed  Google Scholar 

  238. O’Keefe TL, Williams GT, Batista FD, Neuberge MS. Deficiency in CD22, a B cell–specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J Exp Med. 1999;189(8):1307–13.

    PubMed  PubMed Central  Google Scholar 

  239. Kantarjian H, Thomas D, Jorgensen J, Kebriaei P, Jabbour E, Rytting M, O’Brien S. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119(15):2728–36.

    CAS  PubMed  Google Scholar 

  240. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, Advani AS. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Lisnevskaia L, Murphy G, Isenberg D. Systemic lupus erythematosus. Lancet. 2014;384(9957):1878–88.

    PubMed  Google Scholar 

  242. O’Keefe TL, Williams GT, Davies SL, Neuberger MS. Hyperresponsive B cells in CD22-deficient mice. Science. 1996;274(5288):798–801.

    PubMed  Google Scholar 

  243. Otipoby KL, Draves KE, Clark EA. CD22 regulates B cell receptor-mediated signals via two domains that independently recruit Grb2 and SHP-1. J Biol Chem. 2001;276(47):44315–22.

    CAS  PubMed  Google Scholar 

  244. Powell LD, Sgroi D, Sjoberg ER, Stamenkovic I, Varki A. Natural ligands of the B cell adhesion molecule CD22 beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J Biol Chem. 1993;268(10):7019–27.

    CAS  PubMed  Google Scholar 

  245. Liu YC, Yu MM, Chai YF, Shou ST. Sialic acids in the immune response during sepsis. Front Immunol. 2017;8:1601.

    PubMed  PubMed Central  Google Scholar 

  246. Enterina JR, Jung J, Macauley MS. Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biom J. 2019;42(4):218–32.

    Google Scholar 

  247. Macauley MS, Pfrengle F, Rademacher C, Nycholat CM, Gale AJ, von Drygalski A, Paulson JC. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J Clin Invest. 2013;123(7):3074–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  248. O’Reilly MK, Tian H, Paulson JC. CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells. J Immunol. 2011;186(3):1554–63.

    PubMed  Google Scholar 

  249. Pfrengle F, Macauley MS, Kawasaki N, Paulson JC. Copresentation of antigen and ligands of Siglec-G induces B cell tolerance independent of CD22. J Immunol. 2013;191(4):1724–31.

    CAS  PubMed  Google Scholar 

  250. Kelm S, Gerlach J, Brossmer R, Danzer CP, Nitschke L. The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. J Exp Med. 2002;195:1207–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Jellusova J, Nitschke L. Regulation of B cell functions by the sialic acid-binding receptors Siglec-G and CD22. Front Immunol. 2012;2:96.

    PubMed  PubMed Central  Google Scholar 

  252. Abdu-Allah HH, Tamanaka T, Yu J, Zhuoyuan L, Sadagopan M, Adachi T, Tsubata T, Kelm S, Ishida H, Kiso M. Design, synthesis, and structure-affinity relationships of novel series of sialosides as CD22-specific inhibitors. J Med Chem. 2008;51(21):6665–81.

    CAS  PubMed  Google Scholar 

  253. Leonard JP, Goldenberg DM. Preclinical and clinical evaluation of epratuzumab (anti-CD22 IgG) in B-cell malignancies. Oncogene. 2007;26:3704–13.

    CAS  PubMed  Google Scholar 

  254. Krauss J, Arndt MA, Vu BK, Newton DL, Seeber S, Rybak SM. Efficient killing of CD22+ tumor cells by a humanized diabody-RNase fusion protein. Biochem Biophys Res Commun. 2005;331:595–602.

    CAS  PubMed  Google Scholar 

  255. Nasirikenari M, Veillon L, Collins CC, Azadi P, Lau JT. Remodeling of marrow hematopoietic stem and progenitor cells by non-self ST6Gal-1 sialyltransferase. J Biol Chem. 2014;289:7178–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Swindall AF, Londoño-Joshi A, Schultz MJ, Fineberg N, Buchsbaum DJ, Bellis SL. ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines. Cancer Res. 2013;73(7):2368–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Shah NN, Stetler-Stevenson M, Yuan CM, Shalabi H, Yates B, Delbrook C, Fry TJ. Minimal residual disease negative complete remissions following anti-CD22 chimeric antigen receptor (CAR) in children and young adults with relapsed/refractory acute lymphoblastic leukemia (ALL). Blood. 2016;128(22):650.

    Google Scholar 

  258. Tedder TF, Tuscano J, Sato S, Kehrl JH. CD22, A B lymphocyte–specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol. 1997;15(1):481–504.

    CAS  PubMed  Google Scholar 

  259. Wallace DJ. Epratuzumab: reveille or requiem? Teachable moments for Lupus and Sjögren’s syndrome clinical trials. Arthritis Rheumatol. 2018;70(5):633–6.

    PubMed  Google Scholar 

  260. Wallace DJ, Gordon C, Strand V, Hobbs K, Petri M, Kalunian K, Goldenberg DM. Efficacy and safety of epratuzumab in patients with moderate/severe flaring systemic lupus erythematosus: results from two randomized, double-blind, placebo-controlled, multicentre studies (ALLEVIATE) and follow-up. Rheumatology. 2013;52(7):1313–22.

    CAS  PubMed  Google Scholar 

  261. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–7.

    CAS  PubMed  Google Scholar 

  262. Wei G, Wang J, Huang H, Zhao Y. Novel immunotherapies for adult patients with B-lineage acute lymphoblastic leukemia. J Hematol Oncol. 2017;10(1):150.

    PubMed  PubMed Central  Google Scholar 

  263. Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomarker Res. 2017;5(1):22.

    Google Scholar 

  264. Saunders A, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal. 2010;22:339–48.

    CAS  PubMed  Google Scholar 

  265. Okumura M, Matthews RJ, Robb B, Litman GW, Bork P, Thomas ML. Comparison of CD45 extracellular domain sequences from divergent vertebrate species suggests the conservation of three fibronectin type III domains. J Immunol. 1996;157:1569–75.

    CAS  PubMed  Google Scholar 

  266. Clark MC, Baum LG. T cells modulate glycans on CD43 and CD45 during development and activation, signal regulation, and survival. Ann N Y Acad Sci. 2012;1253:58–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Nam HJ, Poy F, Saito H, Frederick CA. Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J Exp Med. 2005;201:441–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Furukawa K, Funakoshi Y, Autero M, Horejsi V, Kobata A, Gahmberg CG. Structural study of the O-linked sugar chains of human leukocyte tyrosine phosphatase CD45. Eur J Biochem. 1998;251:288–94.

    CAS  PubMed  Google Scholar 

  269. Baum LG, Derbin K, Perillo NL, Wu T, Pang M, Uittenbogaart C. Characterization of terminal sialic acid linkages on human thymocytes. Correlation between lectin-binding phenotype and sialyltransferase expression. J Biol Chem. 1996;271:10793–9.

    CAS  PubMed  Google Scholar 

  270. Amano M, Galvan M, He J, Baum LG. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J Biol Chem. 2003;278:7469–75.

    CAS  PubMed  Google Scholar 

  271. Sgroi D, Koretzky GA, Stamenkovic I. Regulation of CD45 engagement by the B-cell receptor CD22. Proc Natl Acad Sci U S A. 1995;92:4026–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Xu Z, Weiss A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol. 2002;3:764–71.

    CAS  PubMed  Google Scholar 

  273. Earl LA, Bi S, Baum LG. N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J Biol Chem. 2010;285:2232–44.

    CAS  PubMed  Google Scholar 

  274. van Vliet SJ, Gringhuis SI, Geijtenbeek TB, van Kooyk Y. Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat Immunol. 2006;7:1200–8.

    PubMed  Google Scholar 

  275. Bi S, Earl LA, Jacobs L, Baum LG. Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways. J Biol Chem. 2008;283:12248–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Cabrera PV, Amano M, Mitoma J, Chan J, Said J, Fukuda M, Baum LG. Haploinsufficiency of C2GnT-I glycosyltransferase renders T lymphoma cells resistant to cell death. Blood. 2006;108:2399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Yang Q, Jeremiah Bell J, Bhandoola A. T cell lineage determination. Immunol Rev. 2010;238:12–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Earl LA, Baum LG. CD45 glycosylation controls T cell life and death. Immunol Cell Biol. 2008;86:608–15.

    CAS  PubMed  Google Scholar 

  279. McCall MN, Shotton DM, Barclay AN. Expression of soluble isoforms of rat CD45: analysis by electron microscopy and use in epitope mapping of anti-CD45R monoclonal antibodies. Immunology. 1992;76:310–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Knowles L. The evolution of myelin: theories and application to human disease. J Evol Med. 2017;5:1–23.

    Google Scholar 

  281. Zalc B. The acquisition of myelin: a success story. Novartis Found Symp. 2006;276:15–21; discussion 21–15, 54–17, 275–281

    CAS  PubMed  Google Scholar 

  282. Patro N, Naik AA, Patro IK. Developmental changes in oligodendrocyte genesis, myelination, and associated behavioral dysfunction in a rat model of intra-generational protein malnutrition. Mol Neurobiol. 2018;56(1):595–610. https://doi.org/10.1007/s12035-018-1065-1.

    Article  CAS  PubMed  Google Scholar 

  283. Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 1994;13:757–67.

    CAS  PubMed  Google Scholar 

  284. Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, Michalovich D, Simmons DL, Walsh FS. Inhibitor of neurite outgrowth in humans. Nature (London). 2000;403:383–4.

    CAS  Google Scholar 

  285. McKerracher L. Ganglioside rafts as MAG receptors that mediate blockade of axon growth. Proc Natl Acad Sci U S A. 2002;99(12):7811–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Bandtlow CE. Regeneration in the central nervous system. Exp Gerontol. 2003;38(1–2):79–86.

    CAS  PubMed  Google Scholar 

  287. Tang S, Shen YJ, DeBellard ME, Mukhopadhyay G, Salzer JL, Crocker PR, Filbin MT. Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J Cell Biol. 1997;138:1355–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Vinson M, Strijbos PJ, Rowles A, Facci L, Moore SE, Simmons DL, Walsh FS. Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J Biol Chem. 2001;276:20280–5.

    CAS  PubMed  Google Scholar 

  289. Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A. 2002;99:8412–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Hakomori S. The glycosynapse. Proc Natl Acad Sci U S A. 2002;99:225–32.

    CAS  PubMed Central  Google Scholar 

  291. Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J. 1996;15:510–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Fujii S, Igarashi K, Sasaki H, Furuse H, Ito K, Kaneko K, Kato H, Inokuchi J, Waki H, Ando S. Effects of the mono- and tetrasialogangliosides GM1 and GQ1b on ATP-induced long-term potentiation in hippocampal CA1 neurons. Glycobiology. 2002;12(5):339–44.

    CAS  PubMed  Google Scholar 

  293. Schnaar RL. Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett. 2010;584(9):1741–7.

    CAS  PubMed  Google Scholar 

  294. Kopitz J, Von Reitzenstein C, Burchert M, Cantz M, Gabius HJ. Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem. 1998;273(18):11205–11.

    CAS  PubMed  Google Scholar 

  295. Kojima N, Hakomori S. Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide G(M3) as a basis for specific cellular recognition between lymphoma and melanoma cells. J Biol Chem. 1989;264(34):20159–62.

    CAS  PubMed  Google Scholar 

  296. Wieraszko A, Seifert W. Evidence for a functional role of gangliosides in synaptic transmission: studies on rat brain striatal slices. Neurosci Lett. 1984;52(1–2):123–8.

    CAS  PubMed  Google Scholar 

  297. Hwang HM, Wang JT, Chiu TH. Effects of exogenous GM1 ganglioside on LTP in rat hippocampal slices perfused with different concentrations of calcium. Neurosci Lett. 1992;141(2):227–30.

    CAS  PubMed  Google Scholar 

  298. Takamiya R, Ohtsubo K, Takamatsu S, Taniguchi N, Angata T. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12–Syk pathway. Glycobiology. 2013;23:178–87.

    CAS  PubMed  Google Scholar 

  299. Hirumaa Y, Hirai T, Tsuda E. Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation. Biochem Biophys Res. 2011;409:424–9.

    Google Scholar 

  300. Kameda Y, Takahata M, Komatsu M, Mikuni S, Hatakeyama S, Shimizu T, Angata T, Kinjo M, Minami A, Iwasaki N. Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling adaptor DAP12. J Bone Miner Res. 2013;28:2463–75.

    CAS  PubMed  Google Scholar 

  301. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009;323:1722–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.

    CAS  PubMed  Google Scholar 

  303. Kumar S, Ingle H, Prasad DV, Kumar H. Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol. 2003;39:229–46.

    Google Scholar 

  304. Zhang M, Angata T, Cho JY, Miller M, Broide DH, Varki A. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood. 2007;109:4280–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Gao PS, Shimizu K, Grant AV, Rafaels N, Zhou LF, Hudson SA, Konno S, Zimmermann N, Araujo MI, Ponte EV, et al. Polymorphisms in the sialic acid-binding immunoglobulin-like lectin-8 (Siglec-8) gene are associated with susceptibility to asthma. Eur J Hum Genet. 2010;18:713–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Cheong KA, Chang YS, Roh JY, Kim BJ, Kim MN, Park YM, Park HJ, Kim ND, Lee CH, Lee AY. A novel function of Siglec-9 A391C polymorphism on T cell receptor signaling. Int Arch Allergy Immunol. 2011;154:111–8.

    CAS  PubMed  Google Scholar 

  307. Claude J, Linnartz-Gerlach B, Kudin AP, Kunz WS, Neumann H. Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst. J Neurosci. 2013;33:18270–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Pearce OM, Laubli H. Sialic acids in cancer biology and immunity. Glycobiology. 2015;26(2):111–28.

    PubMed  Google Scholar 

  309. Laszlo GS, Estey EH, Walter RB. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 2014;28:143–53.

    CAS  PubMed  Google Scholar 

  310. Márquez C, Trigueros C, Franco JM, Ramiro AR, Carrasco YR, López-Botet M, Toribio ML. Identification of a common developmental pathway for thymic natural killer cells and dendritic cells. Blood. 1998;91:2760–71.

    PubMed  Google Scholar 

  311. Hernandez-Caselles T, Martinez-Esparza M, Perez-Oliva AB, Quintanilla-Cecconi AM, Garcia-Alonso A, Alvarez-Lopez DMR, et al. A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. J Leukoc Biol. 2006;79:46–58.

    CAS  PubMed  Google Scholar 

  312. Krupka C, Kufer P, Kischel R, Zugmaier G, Bögeholz J, Köhnke T, Lichtenegger FS, Schneider S, Metzeler KH, Fiegl M, Spiekermann K, Baeuerle PA, Hiddemann W, Riethmüller G, Subklewe M. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123:356–65.

    CAS  PubMed  Google Scholar 

  313. Schwonzen M, Diehl V, Dellanna M, Staib P. Immunophenotyping of surface antigens in acute myeloid leukemia by flow cytometry after red blood cell lysis. Leuk Res. 2007;31:113–6.

    CAS  PubMed  Google Scholar 

  314. Sarhan D, Brandt L, Felices M, Guldevall K, Lenvik T, Hinderlie P, Curtsinger J, Warlick E, Spellman SR, Blazar BR, Weisdorf DJ, Cooley S, Vallera DA, Önfelt B, Miller JS. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv. 2018;2(12):1459–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Son M, Diamond B, Volpe BT, Aranow CB, Mackay MC, Santiago-Schwarz F. Evidence for C1q-mediated crosslinking of CD33/LAIR-1 inhibitory immunoreceptors and biological control of CD33/LAIR-1 expression. Sci Rep. 2017;7(1):270.

    PubMed  PubMed Central  Google Scholar 

  316. Hernández-Caselles T, Martínez-Esparza M, Pérez-Oliva AB, Quintanilla-Cecconi AM, García-Alonso A, Alvarez-López DM, García-Peñarrubia P. A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. J Leukoc Biol. 2006;79(1):46–58.

    PubMed  Google Scholar 

  317. Rodríguez E, Noya V, Cervi L, Chiribao ML, Brossard N, Chiale C, Carmona C, Giacomini C, Freire T. Glycans from Fasciola hepatica modulate the host immune response and TLR-induced maturation of dendritic cells. PLoS Negl Trop Dis. 2015;9(12):e0004234.

    PubMed  PubMed Central  Google Scholar 

  318. Crespo HJ, Lau JTY, Videira PA. Dendritic cells: a spot on sialic acid. Front Immunol. 2013;4:491.

    PubMed  PubMed Central  Google Scholar 

  319. Stephenson HN, Mills DC, Jones H, Milioris E, Copland A, Dorrell N, Wren BW, Crocker PR, Escors D, Bajaj-Elliott M. Pseudaminic acid on Campylobacter jejuni flagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin-host interaction. J Infect Dis. 2014;210(9):1487–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  320. Carlin AF, Lewis AL, Varki A, Nizet V. Group B Streptococcal sialic acids interact with Siglecs (immunoglobulin-like lectins) on human leukocytes. J Bacteriol. 2007;189:1231–7.

    CAS  PubMed  Google Scholar 

  321. Monteiro VG, Lobato CS, Silva AR, Medina DV, de Oliveira MA, Seabra SH, de Souza W, DaMatta RA. Increased association of Trypanosoma cruzi with sialoadhesin positive mice macrophages. Parasitol Res. 2005;97:380–5.

    PubMed  Google Scholar 

  322. Bax M, Kuijf ML, Heikema AP, van Rijs W, Bruijns SC, García-Vallejo JJ, Crocker PR, Jacobs BC, van Vliet SJ, van Kooyk Y. Campylobacter jejuni lipooligosaccharides modulate dendritic cell-mediated T cell polarization in a sialic acid linkage-dependent manner. Infect Immun. 2011;79(7):2681–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  323. Ram S, Gulati S, Lewis LA, Chakraborti S, Zheng B, DeOliveira RB, Reed GW, Cox AD, Li J, St Michael F, Stupak J, Su XH, Saha S, Landig CS, Varki A, Rice PA. A Novel Sialylation Site on Neisseria gonorrhoeae Lipooligosaccharide Links Heptose II Lactose Expression with Pathogenicity. Infect Immun. 2018;86(8):e00285–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Mandrell RE, Griffiss JM, Macher BA. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J Exp Med. 1988;168:107–26.

    CAS  PubMed  Google Scholar 

  325. Mandrell RE. Further antigenic similarities of Neisseria gonorrhoeae lipooligosaccharides and human glycosphingolipids. Infect Immun. 1992;60:3017–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Gulati S, Cox A, Lewis LA, Michael FS, Li J, Boden R, Ram S, Rice PA. Enhanced factor H binding to sialylated gonococci is restricted to the sialylated lacto-N-neotetraose lipooligosaccharide species: implications for serum resistance and evidence for a bifunctional lipooligosaccharide sialyltransferase in gonococci. Infect Immun. 2005;73:7390–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Landig CS, Fong J, Hazel A, Agarwal S, Schwarz F, Massari P, Nizet V, Varki SRA. The human-specific pathogen Neisseria gonorrhoeae engages innate immunoregulatory siglec receptors in a species-specific manner, abstr 82, p 172. Abstr 20th Int Pathog Neisseria Conf, Manchester, United Kingdom, 4 to 9 September 2016; 2016.

    Google Scholar 

  328. Luque A, Serrano I, Aran JM. Complement components as promoters of immunological tolerance in dendritic cells. Sem Cell Devel Biol. 2017;85:143–52.

    Google Scholar 

  329. Lajaunias F, Dayer JM, Chizzolini C. Constitutive repressor activity of CD33 on humanmonocytes requires sialic acid recognition andphosphoinositide 3-kinase-mediated intracellularsignaling. Eur J Immunol. 2005;35:243–51.

    CAS  PubMed  Google Scholar 

  330. Dos Santos LR, Pimassoni LHS, Sena GGS, Camporez D, Belcavello L, Trancozo M, Morelato RL, Errera FIV, Bueno MRP, de Paula F. Validating GWAS variants from microglial genes implicated in Alzheimer’s disease. J Mol Neurosci. 2017;62(2):215–21.

    PubMed  Google Scholar 

  331. Siddiqui SS, Springer SA, Verhagen A, Sundaramurthy V, Alisson-Silva F, Jiang W, Ghosh P, Varki A. The Alzheimer’s disease-protective CD33 splice variant mediates adaptive loss of function via diversion to an intracellular pool. J Biol Chem. 2017;292(37):15312–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  332. Schwarz F, Springer SA, Altheide TK, Varki NM, Gagneux P, Varki A. Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline. Proc Natl Acad Sci U S A. 2016;113:74–9.

    CAS  PubMed  Google Scholar 

  333. Walter RB, Gooley TA, van der Velden VH, Loken MR, van Dongen JJ, Flowers DA, Bernstein ID, Appelbaum FR. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood. 2007;109:4168–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Walter RB. Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin Investig Drugs. 2018;27(4):339–48.

    CAS  PubMed  Google Scholar 

  335. Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39:49–60.

    CAS  PubMed  Google Scholar 

  336. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86:10024–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  337. Kenderian SS, Ruella M, Shestova O, Klichinsky M, Aikawa V, Morrissette JJ, Scholler J, Song D, Porter DL, Carroll M, June CH, Gill S. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia. 2015;29(8):1637–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  338. Baron J, Wang ES. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev Clin Pharmacol. 2018;11(6):549–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  339. Zhuravleva MA, Trandem K, Sun PD. Structural implications of Siglec-5-mediated sialoglycan recognition. J Mol Biol. 2008;375(2):437–47.

    CAS  PubMed  Google Scholar 

  340. Wielgat P, Trofimiuk E, Czarnomysy R, Holownia A, Braszko JJ. Sialylation pattern in lung epithelial cell line and Siglecs expression in monocytic THP-1 cells as cellular indicators of cigarette smoke-induced pathology in vitro. Exp Lung Res. 2018;44(3):167–77.

    PubMed  Google Scholar 

  341. Yamanaka M, Kato Y, Angata T, Narimatsu H. Deletion polymorphism of SIGLEC-14 and its functional implications. Glycobiology. 2009;19(8):841–6.

    CAS  PubMed  Google Scholar 

  342. Angata T, Ishii T, Motegi T, Oka R, Taylor RE, Soto PC, Chang YC, Secundino I, Gao CX, Ohtsubo K, Kitazume S, Nizet V, Varki A, Gemma A, Kida K, Taniguchi N. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci. 2013;70(17):3199–4010.

    CAS  PubMed  PubMed Central  Google Scholar 

  343. Wang Y, Neumann H. Alleviation of neurotoxicity by microglial human Siglec-11. J Neurosci. 2010;30(9):3482–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Lock K, Zhang J, Lu J, Lee SH, Crocker PR. Expression of CD33-related siglecs on human mononuclear phagocytes, monocyte-derived dendritic cells and plasmacytoid dendritic cells. Immunobiology. 2004;209(1–2):199–207.

    CAS  PubMed  Google Scholar 

  345. Fong JJ, Sreedhara K, Deng L, Varki NM, Angata T, Liu Q, Nizet V, Varki A. Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J. 2015;34(22):2775–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  346. Cornish AL, Freeman S, Forbes G, Ni J, Zhang M, Cepeda M, Gentz R, Augustus M, Carter KC, Crocker PR. Characterization of Siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood. 1998;92(6):2123–32.

    CAS  PubMed  Google Scholar 

  347. Hadeiba H, Lahl K, Edalati A, Oderup C, Habtezion A, Pachynski R, Nguyen L, Ghodsi A, Adler S, Butcher EC. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity. 2012;36(3):438–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  348. Martín-Gayo E, Sierra-Filardi E, Corbí AL, Toribio ML. Plasmacytoid dendritic cells resident in human thymus drive natural Treg cell development. Blood. 2010;115:5366–75.

    PubMed  Google Scholar 

  349. Tytgat HL, de Vos WM. Sugar coating the envelope: glycoconjugates for microbe–host crosstalk. Trends Microbiol. 2016;24(11):853–61.

    CAS  PubMed  Google Scholar 

  350. Carlin AF, Chang YC, Areschoug T, Lindahl G, Hurtado-Ziola N, King CC, Varki A, Nizet V. Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med. 2009;206(8):1691–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  351. Ho JY, Lin TL, Li CY, Lee A, Cheng AN, Chen MC, Tsai MD. Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044. PLoS One. 2011;6(7):e21664.

    CAS  PubMed  PubMed Central  Google Scholar 

  352. Lee CH, Chang CC, Liu JW, Chen RF, Yang KD. Sialic acid involved in hypermucoviscosity phenotype of Klebsiella pneumoniae and associated with resistance to neutrophil phagocytosis. Virulence. 2014;5(6):673–9.

    PubMed  PubMed Central  Google Scholar 

  353. Chen GY, Brown NK, Wu W, Khedri Z, Yu H, Chen X, van de Vlekkert D, D’Azzo A, Zheng P, Liu Y. Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. Elife. 2014;3:e04066.

    PubMed  PubMed Central  Google Scholar 

  354. Patel N, Brinkman-Van der Linden EC, Altmann SW, Gish K, Balasubramanian S, Timans JC, Peterson D, Bell MP, Bazan JF, Varki A, Kastelein RA. OB-BP1/Siglec-6. a leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem. 1999;274(32):22729–38.

    CAS  PubMed  Google Scholar 

  355. Brinkman-Van der Linden EC, Hurtado-Ziola N, Hayakawa T, Wiggleton L, Benirschke K, Varki A, Varki N. Human-specific expression of Siglec-6 in the placenta. Glycobiology. 2007;17(9):922–31.

    CAS  PubMed  Google Scholar 

  356. Takei Y, Sasaki S, Fujiwara T, Takahashi E, Muto T, Nakamura Y. Molecular cloning of a novel gene similar to myeloid antigen CD33 and its specific expression in placenta. Cytogenet Cell Genet. 1997;78(3–4):295–300.

    CAS  PubMed  Google Scholar 

  357. Laivuori H, Gallaher MJ, Collura L, Crombleholme WR, Markovic N, Rajakumar A, Hubel CA, Roberts JM, Powers RW. Relationships between maternal plasma leptin, placental leptin mRNA and protein in normal pregnancy, pre-eclampsia and intrauterine growth restriction without pre-eclampsia. Mol Hum Reprod. 2006;12(9):551–6.

    CAS  PubMed  Google Scholar 

  358. Rumer KK, Uyenishi J, Hoffman MC, Fisher BM, Winn VD. Siglec-6 expression is increased in placentas from pregnancies complicated by preterm preeclampsia. Reprod Sci. 2013;20(6):646–53.

    PubMed  PubMed Central  Google Scholar 

  359. Rumer KK, Post MD, Larivee RS, Zink M, Uyenishi J, Kramer A, Teoh D, Bogart K, Winn VD. Siglec-6 is expressed in gestational trophoblastic disease and affects proliferation, apoptosis and invasion. Endocr Relat Cancer. 2012;19(6):827–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  360. Skotheim RI, Autio R, Lind GE, Kraggerud SM, Andrews PW, Monni O, Kallioniemi O, Lothe RA. Novel genomic aberrations in testicular germ cell tumors by array-CGH, and associated gene expression changes. Cell Oncol. 2006;28(5–6):315–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  361. Winn VD, Gormley M, Paquet AC, Kjaer-Sorensen K, Kramer A, Rumer KK, Haimov-Kochman R, Yeh RF, Overgaard MT, Varki A, Oxvig C, Fisher SJ. Severe preeclampsia-related changes in gene expression at the maternal-fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2. Endocrinology. 2009;150(1):452–62.

    CAS  PubMed  Google Scholar 

  362. Lam KK, Chiu PC, Lee CL, Pang RT, Leung CO, Koistinen H, Seppala M, Ho PC, Yeung WS. Glycodelin-A protein interacts with Siglec-6 protein to suppress trophoblast invasiveness by down-regulating extracellular signal-regulated kinase (ERK)/c-Jun signaling pathway. J Biol Chem. 2011;286(43):37118–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  363. Lee CL, Lam KK, Koistinen H, Seppala M, Kurpisz M, Fernandez N, Pang RT, Yeung WS, Chiu PC. Glycodelin-A as a paracrine regulator in early pregnancy. J Reprod Immunol. 2011;90:29–34.

    CAS  PubMed  Google Scholar 

  364. Lam KK, Chiu PC, Chung MK, Lee CL, Lee KF, Koistinen R, Koistinen H, Seppala M, Ho PC, Yeung WS. Glycodelin-A as a modulator of trophoblast invasion. Hum Reprod. 2009;24:2093–103.

    CAS  PubMed  Google Scholar 

  365. Dell A, Morris HR, Easton RL, Panico M, Patankar M, Oehniger S, Koistinen R, Koistinen H, Seppala M, Clark GF. Structural analysis of the oligosaccharides derived from glycodelin, a human glycoprotein with potent immunosuppressive and contraceptive activities. J Biol Chem. 1995;270:24116–26.

    CAS  PubMed  Google Scholar 

  366. Lee CL, Pang PC, Yeung WS, Tissot B, Panico M, Lao TT, Chu IK, Lee KF, Chung MK, Lam KK, Koistinen R, Koistinen H, Seppälä M, Morris HR, Dell A, Chiu PC. Effects of differential glycosylation of glycodelins on lymphocyte survival. J Biol Chem. 2009;284:15084–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  367. Chiu PC, Koistinen R, Koistinen H, Seppala M, Lee KF, Yeung WS. Zona-binding inhibitory factor-1 from human follicular fluid is an isoform of glycodelin. Biol Reprod. 2003;69:365–72.

    CAS  PubMed  Google Scholar 

  368. Yeung WS, Lee KF, Koistinen R, Koistinen H, Seppala M, Ho PC, Chiu PC. Roles of glycodelin in modulating sperm function. Mol Cell Endocrinol. 2006;250:149–56.

    CAS  PubMed  Google Scholar 

  369. Milstone DS, Redline RW, O’Donnell PE, Davis VM, Stavrakis G. E-selectin expression and function in a unique placental trophoblast population at the fetal-maternal interface: regulation by a trophoblast-restricted transcriptional mechanism conserved between humans and mice. Dev Dyn. 2000;219:63–76.

    CAS  PubMed  Google Scholar 

  370. Irwin JC, Suen LF, Faessen GH, Popovici RM, Giudice LC. Insulin-like growth factor (IGF)-II inhibition of endometrial stromal cell tissue inhibitor of metalloproteinase-3 and IGF-binding protein-1 suggests paracrine interactions at the decidua:trophoblast interface during human implantation. J Clin Endocrinol Metab. 2001;86:2060–4.

    CAS  PubMed  Google Scholar 

  371. Chez RA. Nonhuman primate models of toxemia of pregnancy. Perspect Nephrol Hypertens. 1976;5:421–4.

    CAS  PubMed  Google Scholar 

  372. Avril T, North SJ, Haslam SM, Willison HJ, Crocker PR. Probing the cis interactions of the inhibitory receptor Siglec-7 with alpha2,8-disialylated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of alpha2,8-sialyltransferase gene expression. J Leukoc Biol. 2006;80:787–96.

    CAS  PubMed  Google Scholar 

  373. Nicoll G, Ni J, Liu D, Klenerman P, Munday J, Dubock S, Mattei MG, Crocker PR. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem. 1999;274(34):089–95.

    Google Scholar 

  374. Miyazaki K, Sakuma K, Kawamura YI, Izawa M, Ohmori K, Mitsuki M, Yamaji T, Hashimoto Y, Suzuki A, Saito Y, Dohi T, Kannagi R. Colonic epithelial cells express specific ligands for mucosal macrophage immunosuppressive receptors siglec-7 and -9. J Immunol. 2012;188:4690–700.

    CAS  PubMed  Google Scholar 

  375. Fong JJ, Tsai CM, Saha S, Nizet V, Varki A, Bui JD. Siglec-7 engagement by GBS β-protein suppresses pyroptotic cell death of natural killer cells. Proc Natl Acad Sci U S A. 2019;115(41):10410–5.

    Google Scholar 

  376. Kawasaki N, Rillahan CD, Cheng TY, Van Rhijn I, Macauley MS, Moody DB, Paulson JC. Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation. J Immunol. 2014;193:1560–6.

    CAS  PubMed  Google Scholar 

  377. Dimasi N, Moretta A, Moretta L, Biassoni R, Mariuzza RA. Structure of the saccharide-binding domain of the human natural killer cell inhibitory receptor p75/AIRM1. Acta Crystallogr D Biol Crystallogr. 2004;60:401–3.

    PubMed  Google Scholar 

  378. Angata T, Varki A. Siglec-7: a sialic acid-binding lectin of the immunoglobulin superfamily. Glycobiology. 2000;10:431–8.

    CAS  PubMed  Google Scholar 

  379. van Doorn PA, Ruts L, Jacobs BC. Clinical features, pathogenesis, and treatment of Guillain–Barré syndrome. Lancet Neurol. 2008;7:939–50.

    PubMed  Google Scholar 

  380. Willison HJ, Yuki N. Peripheral neuropathies and anti-glycolipid antibodies. Brain. 2002;125:2591–625.

    PubMed  Google Scholar 

  381. Hiraga A, Kuwabara S, Ogawara K, Misawa S, Kanesaka T, Koga M, Yuki N, Hattori T, Mori M. Patterns and serial changes in electrodiagnostic abnormalities of axonal Guillain–Barré syndrome. Neurology. 2005;64:856–60.

    CAS  PubMed  Google Scholar 

  382. Chiba A, Kusunoki S, Obata H, Machinami R, Kanazawa I. Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain–Barré syndrome: clinical and immunohistochemical studies. Neurology. 1993;43:1911–7.

    CAS  PubMed  Google Scholar 

  383. Ang CW, Laman JD, Willison HJ, Wagner ER, Endtz HP, De Klerk MA, Tio-Gillen AP, Van den Braak N, Jacobs BC, Van Doorn PA. Structure of Campylobacter jejuni lipopolysaccharides determines antiganglioside specificity and clinical features of Guillain–Barré and Miller Fisher patients. Infect Immun. 2002;70:1202–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  384. van Belkum A, van den Braak N, Godschalk P, Ang W, Jacobs B, Gilbert M, Wakarchuk W, Verbrugh H, Endtz H. A Campylobacter jejuni gene associated with immune-mediated neuropathy. Nat Med. 2001;7:752–3.

    PubMed  Google Scholar 

  385. Rapoport E, Mikhalyov I, Zhang J, Crocker P, Bovin N. Ganglioside binding pattern of CD33-related Siglecs. Bioorg Med Chem Lett. 2003;13:675–8.

    CAS  PubMed  Google Scholar 

  386. Yuki N. Campylobacter sialyltransferase gene polymorphism directs clinical features of Guillain–Barré syndrome. J Neurochem. 2007;103(suppl 1):150–8.

    CAS  PubMed  Google Scholar 

  387. Yuki N. Infectious origins of, and molecular mimicry in, Guillain–Barré and Fisher syndromes. Lancet Infect Dis. 2001;1:29–37.

    CAS  PubMed  Google Scholar 

  388. Rinaldi S, Brennan KM, Goodyear CS, O’Leary C, Schiavo G, Crocker PR, Willison HJ. Analysis of lectin binding to glycolipid complexes using combinatorial glycoarrays. Glycobiology. 2009;19:789–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  389. Walter RB, Raden BW, Zeng R, Häusermann P, Bernstein ID, Cooper JA. ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, SHP1 and SHP2. J Leukoc Biol. 2008;83:200–11.

    CAS  PubMed  Google Scholar 

  390. Paulson JC, Macauley MS, Kawasaki N. Siglecs as sensors of self in innate and adaptive immune responses. Ann N Y Acad Sci. 2012;1253:37–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  391. Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology. 2005;15:805–17.

    CAS  PubMed  Google Scholar 

  392. Varchetta S, Brunetta E, Roberto A, Mikulak J, Hudspeth KL, Mondelli MU, Mavilio D. Engagement of Siglec-7 receptor induces a pro-inflammatory response selectively in monocytes. PLoS One. 2012;7:e45821.

    CAS  PubMed  PubMed Central  Google Scholar 

  393. Falco M, Biassoni R, Bottino C, Vitale M, Sivori S, Augugliaro R, Moretta L, Moretta A. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J Exp Med. 1999;190:793–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  394. Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Demoulins T, Schneider C, Wehrli M, Hunger RE, Baerlocher GM, Simon HU, Romero P, Münz C, von Gunten S. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest. 2014;124:1810–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  395. Macauley MS, Paulson JC. Immunology: glyco-engineering ‘super-self’. Nat Chem Biol. 2014;10:7–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  396. Floyd H, Ni J, Cornish AL, Zeng Z, Liu D, Carter KC, Steel J, Crocker PR. Siglec-8 A novel eosinophil-specific member of the immunoglobulin superfamily. J Biol Chem. 2000;275(2):861–6.

    CAS  PubMed  Google Scholar 

  397. Kikly KK, Bochner BS, Freeman SD, Tan KB, Gallagher KT, D’alessio KJ, Holmes SD, Abrahamson JA, Erickson-Miller CL, Murdock PR, Tachimoto H, Schleimer RP, White JR. Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. J Allergy Clin Immunol. 2000;105(6 Pt 1):1093–100.

    CAS  PubMed  Google Scholar 

  398. Macauley MS. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014;14(10):653–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  399. Foussias G, Yousef GM, Diamandis EP. Molecular characterization of a Siglec8 variant containing cytoplasmic tyrosine-based motifs, and mapping of the Siglec8 gene. Biochem Biophys Res Commun. 2000;278(3):775–81.

    CAS  PubMed  Google Scholar 

  400. Laviolette M, Gossage DL, Gauvreau G, Leigh R, Olivenstein R, Katial R, Busse WW, Wenzel S, Wu Y, Datta V, Kolbeck R, Molfino NA. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol. 2013;132(1086–1096):e5.

    Google Scholar 

  401. Jia Y, Yu H, Fernandes SM, Wei Y, Gonzalez-Gil A, Motari MG, Vajn K, Stevens WW, Peters AT, Bochner BS, Kern RC, Schleimer RP, Schnaar RL. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells. J Allergy Clin Immunol. 2015;135:799–810.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  402. O’Sullivan JA, Wei Y, Carroll DJ, Moreno-Vinasco L, Cao Y, Zhang F, Lee JJ, Zhu Z, Bochner BS. Frontline science: characterization of a novel mouse strain expressing human Siglec-8 only on eosinophils. J Leukoc Biol. 2018;104(1):11–9.

    PubMed  Google Scholar 

  403. Fulkerson PC. Siglec-8 on murine eosinophils: a new model for an old target. J Leukoc Biol. 2018;104(1):7–9.

    CAS  PubMed  Google Scholar 

  404. Wei Y, Chhiba KD, Zhang F, Ye X, Wang L, Zhang L, Robida PA, Moreno-Vinasco L, Schnaar RL, Roers A, Hartmann K, Lee CM, Demers D, Zheng T, Bochner BS, Zhu Z. Mast cell-specific expression of human Siglec-8 in conditional knock-in mice. Int J Mol Sci. 2018;20(1):pii: E19.

    Google Scholar 

  405. Bochner BS, Alvarez RA, Mehta P, Bovin NV, Blixt O, White JR, Schnaar RL. Glycan array screening reveals a candidate ligand for Siglec-8. J Biol Chem. 2005;280(6):4307–12.

    CAS  PubMed  Google Scholar 

  406. Propster JM, Yang F, Rabbani S, Ernst B, Allain FH, Schubert M. Structural basis for sulfation-dependent self-glycan recognition by the human immuneinhibitory receptor Siglec-8. Proc Natl Acad Sci U S A. 2016;113(29):E4170–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  407. Yu H, Gonzalez-Gil A, Wei Y, Fernandes SM, Porell RN, Vajn K, et al. Siglec-8 and Siglec-9 binding specificities and endogenous airway ligand distributions and properties. Glycobiology. 2017;27(7):657–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  408. Yu H, Gonzalez-Gil A, Wei Y, Fernandes SM, Porell RN, Vajn K, Paulson JC, Nycholat CM, Schnaar RL. Siglec-8 and Siglec-9 binding specificities and endogenous airway ligand distributions and properties. Glycobiology. 2017;27:657–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  409. Propster JM, Yang F, Rabbani S, Ernst B, Allain FH, Schubert M. Structural basis for sulfation-dependent self-glycan recognition by the human immune-inhibitory receptor Siglec-8. Proc Natl Acad Sci U S A. 2016;113:E4170–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  410. Propster JM, Yang F, Rabbani S, Ernst B, Allain FH, Schubert M. Structural basis for sulfation-dependent self-glycan recognition by the human immune-inhibitory receptor Siglec-8. Proc Natl Acad Sci U S A. 2016;113(29):E4170–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  411. Hudson SA, Herrmann H, Du J, Cox P, Haddad EB, Butler B, Crocker PR, Ackerman SJ, Valent P, Bochner BS. Developmental, malignancy-related, and cross-species analysis of eosinophil, mast cell, and basophil siglec-8 expression. J Clin Immunol. 2011;31:1045–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  412. Mao H, Kano G, Hudson SA, Brummet M, Zimmermann N, Zhu Z, Bochner BS. Mechanisms of Siglec-F-induced eosinophil apoptosis: a role for caspases but not for SHP-1, Src kinases, NADPH oxidase or reactive oxygen. PLoS One. 2013;8:e68143.

    CAS  PubMed  PubMed Central  Google Scholar 

  413. Gonzalez-Gil A, Porell RN, Fernandes SM, Wei Y, Yu H, Carroll DJ, McBride R, Paulson JC, Tiemeyer M, Aoki K, Bochner BS, Schnaar RL. Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways. Glycobiology. 2018;28(10):786–801.

    CAS  PubMed  Google Scholar 

  414. Nutku E, Aizawa H, Hudson SA, Bochner BS. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood. 2003;101(12):5014–20.

    CAS  PubMed  Google Scholar 

  415. O’Sullivan JA, Carroll DJ, Bochner BS. Glycobiology of eosinophilic inflammation: contributions of siglecs, glycans, and other glycan-binding proteins. Front Med. 2018;4:116.

    Google Scholar 

  416. Na HJ, Hudson SA, Bochner BS. IL-33 enhances Siglec-8 mediated apoptosis of human eosinophils. Cytokine. 2012;57:169–74.

    CAS  PubMed  Google Scholar 

  417. Kano G, Bochner BS, Zimmermann N. Regulation of Siglec-8-induced intracellular reactive oxygen species production and eosinophil cell death by Src family kinases. Immunobiology. 2017;222:343–9.

    CAS  PubMed  Google Scholar 

  418. Carroll DJ, O’Sullivan JA, Nix DB, Cao Y, Tiemeyer M, Bochner BS. Sialic acid-binding immunoglobulin-like lectin 8 (Siglec-8) is an activating receptor mediating β2-integrin-dependent function in human eosinophils. J Allergy Clin Immunol. 2017;141(6):2196–207.

    PubMed  PubMed Central  Google Scholar 

  419. Nutku E, Hudson SA, Bochner BS. Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury. Biochem Biophys Res Commun. 2005;336(3):918–24.

    CAS  PubMed  Google Scholar 

  420. Nutku-Bilir E, Hudson SA, Bochner BS. Interleukin-5 priming of human eosinophils alters Siglec-8-mediated apoptosis pathways. Am J Respir Cell Mol Biol. 2008;38(1):121–4.

    CAS  PubMed  Google Scholar 

  421. Kano G, Almanan M, Bochner BS, Zimmermann N. Mechanism of Siglec-8-mediated cell death in IL-5–activated eosinophils: Role for reactive oxygen species–enhanced MEK/ERK activation. J Allergy Clin Immunol. 2013;132(2):437–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  422. Yokoi H, Choi OH, Hubbard W, Lee HS, Canning BJ, Lee HH, Ryu SD, von Gunten S, Bickel CA, Hudson SA, Macglashan DW Jr, Bochner BS. Inhibition of FceRI-dependent mediator release and calcium flux from human mast cells by sialic acid–binding immunoglobulin-like lectin 8 engagement. J Allergy Clin Immunol. 2008;121(2):499–505.

    CAS  PubMed  Google Scholar 

  423. McBrien CN, Menzies-Gow A. The biology of eosinophils and their role in asthma. Front Med. 2007;4:93.

    Google Scholar 

  424. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  425. Nhu QM, Aceves SS. Tissue remodeling in chronic eosinophilic esophageal inflammation: parallels in asthma and therapeutic perspectives. Front Med. 2017;4:128.

    Google Scholar 

  426. Larose M-C, Archambault A-S, Provost V, Laviolette M, Flamand N. Regulation of eosinophil and group 2 innate lymphoid cell trafficking in asthma. Front Med. 2017;4:136.

    Google Scholar 

  427. Johansson MW. Eosinophil activation status in separate compartments and association with asthma. Front Med. 2017;4:75.

    Google Scholar 

  428. O’Sullivan JA, Carroll DJ, Cao Y, Salicru AN, Bochner BS. Leveraging Siglec-8 endocytic mechanisms to kill human eosinophils and malignant mast cells. J Allergy Clin Immunol. 2018;141:1774–1785.e7.

    PubMed  Google Scholar 

  429. Rasmussen HS, Chang AT, Tomasevic N, Bebbington C. A randomized, double-blind, placebo-controlled, ascending dose phase 1 study of AK002, a novel Siglec-8 selective monoclonal antibody, in healthy subjects (abstract). J Allergy Clin Immunol. 2018;141:AB403.

    Google Scholar 

  430. Johansson MW, Kelly EA, Nguyen CL, Jarjour NN, Bochner BS. Characterization of Siglec-8 expression on lavage cells after segmental lung allergen challenge. Int Arch Allergy Immunol. 2018;177(1):16–28.

    CAS  PubMed  Google Scholar 

  431. Vaine CA, Soberman RJ. The CD200-CD200R1 inhibitory signaling pathway: immune regulation and host-pathogen interactions. Adv Immunol. 2014;121:191–211.

    CAS  PubMed  Google Scholar 

  432. Kane BA, Bryant KJ, McNeil HP, Tedla NT. Termination of immune activation: an essential component of healthy host immune responses. J Innate Immun. 2014;6:727–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  433. Kiwamoto T, Katoh T, Tiemeyer M, Bochner BS. The role of lung epithelial ligands for Siglec-8 and Siglec-F in eosinophilic inflammation. Curr Opin Allergy Clin Immunol. 2013;13:106–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  434. von Gunten S, Yousefi S, Seitz M, Jakob SM, Schaffner T, Seger R, Takala J, Villiger PM, Simon HU. Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood. 2005;106:1423–31.

    Google Scholar 

  435. McMillan SJ, Sharma RS, McKenzie EJ, Richards HE, Zhang J, Prescott A, Crocker PR. Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b beta2-integrin-dependent signaling. Blood. 2013;121:2084–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  436. Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Onco Targets Ther. 2019;8(7):1,596,004.

    Google Scholar 

  437. Liu B, Ezeogu L, Zellmer L, Yu B, Xu N, Joshua LD. Protecting the normal in order to better kill the cancer. Cancer Med. 2015;4(9):1394–403.

    PubMed  PubMed Central  Google Scholar 

  438. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  439. Yang M, McKay D, Pollard JW, Lewis CE. Diverse functions of macrophages in different tumor microenvironments. Cancer Res. 2018;78(19):5492–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  440. Krishnan V, Schaar B, Tallapragada S, Dorigo O. Tumor associated macrophages in gynecologic cancers. Gynecol Oncol. 2018;149(1):205–13.

    CAS  PubMed  Google Scholar 

  441. Raggi C, Mousa HS, Correnti M, Sica A, Invernizzi P. Cancer stem cells and tumor-associated macrophages: A roadmap for multitargeting strategies. Oncogene. 2016;35(6):671–82.

    CAS  PubMed  Google Scholar 

  442. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014;5:1–13.

    Google Scholar 

  443. Huang W, Chan M, Chen M, Tsai T. Modulation of macrophage polarization and lung cancer cell stemness by MUC1 and development of a related small-molecule inhibitor pterostilbene. Oncotarget. 2016;7(26):1–13.

    Google Scholar 

  444. Liu Z, Kuang W, Zhou Q, Zhang Y. TGF-β1 secreted by M2 phenotype macrophages enhances the stemness and migration of glioma cells via the SMAD2/3 signalling pathway. Int J Mol Med. 2018;42(6):3395–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  445. Buldakov M, Zavyalova M, Krakhmal N, Telegina N, Vtorushin S, Mitrofanova I, Riabov V, Yin S, Song B, Cherdyntseva N, et al. CD68+, but not stabilin-1+ tumor associated macrophages in gaps of ductal tumor structures negatively correlate with the lymphatic metastasis in human breast cancer. Immunobiology. 2017;222(1):31–8.

    CAS  PubMed  Google Scholar 

  446. Forssell J, Öberg Å, Henriksson ML, Stenling R, Jung A, Palmqvist R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res. 2007;13(5):1472–9.

    CAS  PubMed  Google Scholar 

  447. Xu L, Zhu Y, Chen L, An H, Zhang W, Wang G, Lin Z, Xu J. Prognostic value of diametrically polarized tumor-associated macrophages in renal cell carcinoma. Ann Surg Oncol. 2014;21(9):3142–50.

    PubMed  Google Scholar 

  448. Zhang H, Wang X, Shen Z, Xu J, Qin J, Sun Y. Infiltration of diametrically polarized macrophages predicts overall survival of patients with gastric cancer after surgical resection. Gastric Cancer. 2015;18(4):740–50.

    CAS  PubMed  Google Scholar 

  449. Shu QH, Ge YS, Ma HX, Gao XQ, Pan JJ, Liu D, Xu GL, Ma JL, Jia WD. Prognostic value of polarized macrophages in patients with hepatocellular carcinoma after curative resection. J Cell Mol Med. 2016;20(6):1024–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  450. Lan C, Huang X, Lin S, Huang H, Cai Q, Wan T, Lu J, Liu J. Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer. Technol Cancer Res Treat. 2013;12(3):259–67.

    CAS  PubMed  Google Scholar 

  451. Chen X, Chen J, Zhang W, Sun R, Liu T, Zheng Y, Wu Y. Prognostic value of diametrically polarized tumor-associated macrophages in multiple myeloma. Oncotarget. 2017;8(68):112685–96.

    PubMed  PubMed Central  Google Scholar 

  452. Silvestre-Roig C, Fridlender ZG, Glogauer M, Scapini P. Neutrophil diversity in health and disease. Trends Immunol. 2019;40:565–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  453. Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol. 2019;16(10):601–20.

    PubMed  Google Scholar 

  454. Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood. 2019;133:2159–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  455. Wang X, Qiu L, Li Z, Wang XY, Yi H. Understanding the multifaceted role of neutrophils in cancer and autoimmune diseases. Front Immunol. 2018;9:2456.

    PubMed  PubMed Central  Google Scholar 

  456. Ajona D, Castaño Z, Garayoa M, Zudaire E, Pajares MJ, Martinez A, Cuttitta F, Montuenga LM, Pio R. Expression of complement factor H by lung cancer cells: effects on the activation of the alternative pathway of complement. Cancer Res. 2004;64(17):6310–8.

    CAS  PubMed  Google Scholar 

  457. Hudak JE, Canham SM, Bertozzi CR. Glycocalyx engineering reveals a Siglecbased mechanism for NK cell immunoevasion. Nat Chem Biol. 2014;10(1):69–75.

    CAS  PubMed  Google Scholar 

  458. Zhao D, Jiang X, Xu Y, Yang H, Gao D, Li X, Gao L, Ma C, Liang X. Decreased Siglec-9 expression on natural killer cell subset associated with persistent HBV replication. Front Immunol. 2018;9:1124.

    PubMed  PubMed Central  Google Scholar 

  459. Lizcano A, Secundino I, Dohrmann S, Corriden R, Rohena C, Diaz S, et al. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood. 2017;129:3100–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  460. McMillan SJ, Sharma RS, Richards HE, Hegde V, Crocker PR. Siglec-E promotes beta2-integrin-dependent NADPH oxidase activation to suppress neutrophil recruitment to the lung. J Biol Chem. 2014;289(20):370–6.

    Google Scholar 

  461. Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  462. Belisle JA, Horibata S, Jennifer GA, Petrie S, Kapur A, Andre S, et al. Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol Cancer. 2010;9:118.

    PubMed  PubMed Central  Google Scholar 

  463. Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Demoulins T, et al. Interactions between siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest. 2014;124:1810–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  464. Mungul A, Cooper L, Brockhausen I, Ryder K, Mandel U, Clausen H, Rughetti A, Miles DW, Taylor-Papadimitriou J, Burchell JM. Sialylated core-1-based O-linked glycans enhance the growth rate of mammary carcinoma cells in MUC1 transgenic mice. Int J Oncol. 2004;25:937–43.

    CAS  PubMed  Google Scholar 

  465. Picco G, Julien S, Brockhausen I, Beatson R, Antonopoulos A, Haslam S, Mandel U, Dell A, Pinder S, Taylor-Papadimitriou J, Burchell J. Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology. 2010;20:1241–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  466. Tanida S, Akita K, Ishida A, Mori Y, Toda M, Inoue M, Ohta M, Yashiro M, Sawada T, Hirakawa K, Nakada H. Binding of the sialic acid-binding lectin, Siglec-9, to the membrane mucin, MUC1, induces recruitment of β-catenin and subsequent cell growth. J Biol Chem. 2013;288(44):31842–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  467. Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD, Klausing S, Hillier M, Maher J, Noll T, Crocker PR, Taylor-Papadimitriou J, Burchell JM. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17(11):1273–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  468. Hernangómez M, Carrillo-Salinas FJ, Mecha M, Correa F, Mestre L, Loría F, Feliú A, Docagne F, Guaza C. Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system. Curr Pharm Des. 2014;20(29):4707–22.

    PubMed  PubMed Central  Google Scholar 

  469. Griffiths M, Neal JW, Gasque P. Innate immunity and protective neuroinflammation new emphasis on the role of neuroimmune regulatory proteins. Int Rev Neurobiol. 2007;82:29–55.

    CAS  PubMed  Google Scholar 

  470. Medzhitov R, Janeway CA. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296:298–300.

    CAS  PubMed  Google Scholar 

  471. Elward K, Gasque P. “Eat me” and “don’t eat me” signals govern the innate immune response and tissue repair in the CNS emphasis on the critical role of the complement system. Mol Immunol. 2003;40:85–94.

    CAS  PubMed  Google Scholar 

  472. Grimsley C, Ravichandran KS. Cues for apoptotic cell engulfment eat-me, don’t eat-me and come-get-me signals. Trends Cell Biol. 2003;13:648–56.

    CAS  PubMed  Google Scholar 

  473. Meri S, Pangburn MK. Discrimination between activators and nonactivators of the alternative pathway of complement regulation via a sialic acid/polyanion binding site on factor, H. Proc Natl Acad Sci USA. 1990;87:3982–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  474. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    CAS  PubMed  Google Scholar 

  475. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000;405:85–90.

    CAS  PubMed  Google Scholar 

  476. Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129:154–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  477. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.

    CAS  PubMed  Google Scholar 

  478. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.

    CAS  PubMed  Google Scholar 

  479. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

    PubMed  PubMed Central  Google Scholar 

  480. Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I, Krüger U, Becker T, Ebsen M, Röcken C, Kabelitz D, Schäfer H, Sebens S. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer. 2014;135:843–61.

    CAS  PubMed  Google Scholar 

  481. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  482. Koning N, van Eijk M, Pouwels W, Brouwer MSM, Voehringer D, Huitinga I, Hoek RM, Raes G, Hamann J. Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J Innate Immun. 2010;2:195–200.

    CAS  PubMed  Google Scholar 

  483. Boyd CR, Orr SJ, Spence S, Burrows JF, Elliott J, Carroll HP, Brennan K, Ní Gabhann J, Coulter WA, Jones C, Crocker PR, Johnston JA, Jefferies CA. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production. J Immunol. 2009;183:7703–9.

    CAS  PubMed  Google Scholar 

  484. Higuchi H, Shoji T, Iijima S, Nishijima K. Constitutively expressed Siglec-9 inhibits LPS-induced CCR7, but enhances IL-4-induced CD200R expression in human macrophages. Biosci Biotechnol Biochem. 2016;80(6):1141–8.

    CAS  PubMed  Google Scholar 

  485. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science. 2000;290:1768–71.

    CAS  PubMed  Google Scholar 

  486. David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. 2011;12:388–99.

    CAS  PubMed  Google Scholar 

  487. Higuchi H, Shoji T, Murase Y, Iijima S, Nishijima K. Siglec-9 modulated IL-4 responses in the macrophage cell line RAW264. Biosci Biotechnol Biochem. 2016;80:501–9.

    CAS  PubMed  Google Scholar 

  488. Beauvillain C, Cunin P, Doni A, Scotet M, Jaillon S, Loiry ML, Magistrelli G, Masternak K, Chevailler A, Delneste Y, Jeannin P. CCR7 is involved in the migration of neutrophils to lymph nodes. Blood. 2011;117:1196–204.

    CAS  PubMed  Google Scholar 

  489. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007;117:514–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  490. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8:458–66.

    CAS  PubMed  Google Scholar 

  491. Stevceva L, Pavli P, Husband AJ, Doe WF. The inflammatory infiltrate in the acute stage of the dextran sulphate sodium induced colitis: B cell response differs depending on the percentage of DSS used to induce it. BMC Clin Pathol. 2001;1:3.

    PubMed  PubMed Central  Google Scholar 

  492. Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541–6.

    CAS  PubMed  Google Scholar 

  493. Heimesaat MM, Fischer A, Siegmund B, Kupz A, Niebergall J, Fuchs D, Jahn HK, Freudenberg M, Loddenkemper C, Batra A, Lehr HA, Liesenfeld O, Blaut M, Göbel UB, Schumann RR, Bereswill S. Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4. PLoS One. 2007;2:e662.

    PubMed  PubMed Central  Google Scholar 

  494. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140:1756–67.

    CAS  PubMed  Google Scholar 

  495. Fuchs A, Colonna M. Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumors of the gastrointestinal tract. Curr Opin Gastroenterol. 2013;29:581–7.

    CAS  PubMed  Google Scholar 

  496. Li X, Chen G, Li Y, Wang R, Wang L, Lin Z, Gao X, Feng J, Ma Y, Shen B, Li Y, Han G. Involvement of T cell Ig Mucin-3 (Tim-3) in the negative regulation of inflammatory bowel disease. Clin Immunol. 2010;134:169–77.

    CAS  PubMed  Google Scholar 

  497. McWhirter JR, Kretz-Rommel A, Saven A, Maruyama T, Potter KN, Mockridge CI, Ravey EP, Qin F, Bowdish KS. Antibodies selected from combinatorial libreries block a tumor antigen that plays a key role in immunomodulation. Proc Natl Acad Sci U S A. 2006;103:1041–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  498. Barclay AN, Wright GJ, Brooke G, Brown MH. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 2002;23:285–90.

    CAS  PubMed  Google Scholar 

  499. Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2):glycoprotein is conserved in humans. Immunology. 2001;102:173–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  500. Gorczynski R, Chen Z, Kai Y, Lee L, Wong S, Marsden PA. CD200 is a ligand for all members of the CD200R family of immunoregulatory molecules. J Immunol. 2004;172:7744–9.

    CAS  PubMed  Google Scholar 

  501. Koning N, Swaab DF, Hoek RM, Huitinga I. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J Neuropathol Exp Neurol. 2009;68:159–67.

    CAS  PubMed  Google Scholar 

  502. Gorczynski RM, Khatri I, Lee L, Boudakov I. An interaction between CD200 and monoclonal antibody agonists to CD200R2 in development of dendritic cells that preferentially induce populations of CD4(+)CD25(+) T regulatory cells. J Immunol. 2008;180:5946–55.

    CAS  PubMed  Google Scholar 

  503. Chitnis T, Imitola J, Wang Y, Elyaman W, Chawla P, Sharuk M, Raddassi K, Bronson RT, Khoury SJ. Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. Am J Pathol. 2007;170:1695–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  504. Rygiel TP, Meyaard R. CD200R signalling in tumor tolerance and inflammation A tricky balance. Curr Opin Immunol. 2012;24:233–8.

    CAS  PubMed  Google Scholar 

  505. Rijkers ES, Baridi RT, Veninga A, Hoek RM, Meyaard L. The inhibitory CD200R is diferentially expressed on human and mouse T and B lymphocytes. Mol Immunol. 2008;45:1126–35.

    CAS  PubMed  Google Scholar 

  506. Banerjee D, Dick AD. Blocking CD200-CD200 receptor axis augments NOS-2 expression and aggravates experimental uveoretinitis in Lewis rats. Ocul Immunol Inflamm. 2004;12:115–25.

    CAS  PubMed  Google Scholar 

  507. Gorczynski RM, Chen Z, Fu XM, Zeng H. Increased expression of the novel molecule OX-2 is involved in prolongation of murine renal allograft survival. Transplantation. 1998;65:1106–14.

    CAS  PubMed  Google Scholar 

  508. Clark DA, Keil A, Chen Z, Markert U, Manuel J, Gorczynski RM. Placental trophoblast from successful human pregnancies expresses the tolerance signaling molecule, CD200 (OX-2). Am J Reprod Immunol. 2003;50:187–95.

    PubMed  Google Scholar 

  509. Wong KK, Brenneman F, Chesney A, Spaner DE, Gorczynski RM. Soluble CD200 is critical to engraft chronic lymphocytic leukemia cells in immunocompromised mice. Cancer Res. 2012;72:4931–43.

    CAS  PubMed  Google Scholar 

  510. Broderick C, Hoek RM, Forrester JV, Liversidge J, Sedgwick JD, Dick AD. Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol. 2002;161:1669–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  511. Gorczynski RM, Chen Z, Yu K, Hu J. CD200 immunoadhesin suppresses collagen-induced arthritis in mice. Clin Immunol. 2001;101:328–34.

    CAS  PubMed  Google Scholar 

  512. Chen Z, Yu K, Zhu F, Gorczynski R. Over-expression of CD200 protects mice from dextran sodium sulfate induced colitis. PLoS One. 2016;11(2):e0146681.

    PubMed  PubMed Central  Google Scholar 

  513. Yu K, Chen Z, Khatri I, Gorczynski RM. CCR4 dependent migration of Foxp3+ Treg cells to skin grafts and draining lymph nodes is implicated in enhanced graft survival in CD200tg recipients. Immunol Lett. 2011;141:116–22.

    CAS  PubMed  Google Scholar 

  514. Arévalo-Martín A, Vela JM, Molina-Holgado E, Borrell J, Guaza C. Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci. 2003;23:2511–6.

    PubMed  PubMed Central  Google Scholar 

  515. Hernangómez M, Mestre L, Correa FG, Loría F, Mecha M, Iñigo PM, Docagne F, Williams RO, Borrell J, Guaza C. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia. 2012;60:1437–50.

    PubMed  Google Scholar 

  516. Sánchez AJ, García-Merino A. Neuroprotective agents cannabinoids. Clin Immunol. 2012;142:57–67.

    PubMed  Google Scholar 

  517. Zajicek JP, Apostu VI. Role of cannabinoids in multiple sclerosis. CNS Drugs. 2011;25:187–201.

    CAS  PubMed  Google Scholar 

  518. Molina-Holgado E, Vela JM, Arévalo-Martín A, Almazán G, Molina-Holgado F, Borrell J, Guaza C. Cannabinoids promote oligodendrocyte progenitor survival involvement of cannabinoid receptors and phosphatidylinositol-3-kinase/Akt signaling. J Neurosci. 2002;22:9742–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  519. O’Sullivan SE, Kendall DA. Cannabinoid activation of peroxisome proliferator-activated receptors potential for modulation of inflammatory diseases. Immunobiology. 2010;215:611–26.

    PubMed  Google Scholar 

  520. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG. Classification of cannabinoid receptors.XXVII International Union of Pharmacology. Pharmacol Rev. 2002;54:161–202.

    CAS  PubMed  Google Scholar 

  521. Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995;232:54–61.

    PubMed  Google Scholar 

  522. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–5.

    CAS  PubMed  Google Scholar 

  523. Siddiqui S, Schwarz F, Springer S, Khedri Z, Yu H, Deng L, Verhagen A, Naito-Matsui Y, Jiang W, Kim D, Zhou J, Ding B, Chen X, Varki N, Varki A. Studies on the detection, expression, glycosylation, dimerization, and ligand binding properties of mouse Siglec-E. J Biol Chem. 2017;292(3):1029–37.

    CAS  PubMed  Google Scholar 

  524. Chen WL, Han CF, Xie B, Hu X, Yu Q, Shi L, Wang Q, Li D, Wang J, Zheng P, Liu Y, Cao X. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell. 2013;152:467–78.

    CAS  PubMed  Google Scholar 

  525. Padler-Karavani V, Hurtado-Ziola N, Chang YC, Sonnenburg JL, Ronaghy A, Yu H, Verhagen A, Nizet V, Chen X, Varki N, Varki A, Angata T. Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J. 2014;28(3):1280–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  526. Stanczak MA, Siddiqui SS, Trefny MP, Thommen DS, Boligan KF, von Gunten S, Tzankov A, Tietze L, Lardinois D, Heinzelmann-Schwarz V, von Bergwelt-Baildon MS, Zhang W, Lenz HJ, Han Y, Amos CI, Syedbasha M, Egli A, Stenner F, Speiser DE, Varki A, Zippelius A, Läubli H. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J Clin Invest. 2018;128(11):4912–23.

    PubMed  PubMed Central  Google Scholar 

  527. Stanczak MA, et al. Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. J Clin Invest. 2018;128(11):4912–23.

    PubMed  PubMed Central  Google Scholar 

  528. Yamanaka M, Kato Y, Angata T, Narimatsu H. Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology. 2009;19:841–6.

    CAS  PubMed  Google Scholar 

  529. Skokowa J, Ali SR, Felda O, Kumar V, Konrad S, Shushakova N, Schmidt RE, Piekorz RP, Nürnberg B, Spicher K, et al. Macrophages induce the inflammatory response in the pulmonary Arthus reaction through G alpha i2 activation that controls C5aR and Fc receptor cooperation. J Immunol. 2005;174:3041–50.

    CAS  PubMed  Google Scholar 

  530. Tomioka Y, Morimatsu M, Nishijima K, Usui T, Yamamoto S, Suyama H, Ozaki K, Ito T, Ono E. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice. Biochem Biophys Res Commun. 2014;450:532–7.

    CAS  PubMed  Google Scholar 

  531. Laubli H, Pearce OM, Schwarz F, Siddiqui SS, Deng L, Stanczak MA, et al. Engagement of myelomonocytic Siglecs by tumor-associated ligands modulates the innate immune response to cancer. Proc Natl Acad Sci U S A. 2014;111(39):14211–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  532. Jandus C, Boligan KF, Chijioke O, Liu H, Dahlhaus M, Demoulins T, Schneider C, Wehrli M, Hunger RE, Baerlocher GM, Simon HU, Romero P, Münz C, von Gunten S. Interactions between Siglec-7/9 receptors and ligands influence NK celldependent tumor immunosurveillance. J Clin Invest. 2014;124(4):1810–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  533. Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10(5):520–9.

    PubMed  PubMed Central  Google Scholar 

  534. Higuchi H, Shoji T, Iijima S, Nishijima K. Constitutively expressed Siglec-9 inhibits LPS-induced CCR7, but enhances IL-4-induced CD200R expression in human macrophages. Biosci Biotechnol Biochem. 2016;80(6):141–8.

    Google Scholar 

  535. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–89.

    CAS  PubMed  Google Scholar 

  536. Angata T, Varki A. Cloning, characterization, and phylogenetic analysis of siglec-9, a new member of the CD33-related group of siglecs. Evidence for co-evolution with sialic acid synthesis pathways. J Biol Chem. 2000;275:22127–35.

    CAS  PubMed  Google Scholar 

  537. Zhang JQ, Nicoll G, Jones C, Crocker PR. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem. 2000;275:22121–6.

    CAS  PubMed  Google Scholar 

  538. Lizcano A, Secundino I, Döhrmann S, Corriden R, Rohena C, Diaz S, Ghosh P, Deng L, Nizet V, Varki A. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood. 2017;129(23):3100–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  539. Silvola JMU, Virtanen H, Siitonen R, Hellberg S, Liljenbäck H, Metsälä O, Ståhle M, Saanijoki T, Käkelä M, Hakovirta H, Ylä-Herttuala S, Saukko P, Jauhiainen M, Veres TZ, Jalkanen S, Knuuti J, Saraste A, Roivainen A. Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques. Sci Rep. 2016;6:35089.

    CAS  PubMed  PubMed Central  Google Scholar 

  540. Aalto K, Autio A, Kiss EA, Elima K, Nymalm Y, Veres TZ, Marttila-Ichihara F, Elovaara H, Saanijoki T, Crocker PR, Maksimow M, Bligt E, Salminen TA, Salmi M, Roivainen A, Jalkanen S. Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer. Blood. 2011;118(13):3725–33.

    CAS  PubMed  Google Scholar 

  541. Li XG, Autio A, Ahtinen H, Helariutta K, Liljenbäck H, Jalkanen S, Roivainen A, Airaksinen AJ. Translating the concept of peptide labeling with 5-deoxy-5-[18F]fluororibose into preclinical practice: 18F-labeling of Siglec-9 peptide for PET imaging of inflammation. Chem Commun. 2013;49(35):3682–4.

    CAS  Google Scholar 

  542. Ahtinen H, Kulkova J, Lindholm L, Eerola E, Hakanen AJ, Moritz N, Söderström M, Saanijoki T, Jalkanen S, Roivainen A, Aro HT. 68Ga-DOTA-Siglec-9 PET/CT imaging of peri-implant tissue responses and staphylococcal infections. EJNMMI Res. 2014;4:45.

    PubMed  PubMed Central  Google Scholar 

  543. Virtanen H, Autio A, Siitonen R, Liljenbäck H, Saanijoki T, Lankinen P, Mäkilä J, Käkelä M, Teuho J, Savisto N, Jaakkola K, Jalkanen S, Roivainen A. 68Ga-DOTA-Siglec-9 - a new imaging tool to detect synovitis. Arthritis Res Ther. 2015;17:308.

    PubMed  PubMed Central  Google Scholar 

  544. Salmi M, Jalkanen S. Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol. 2005;5(10):760–71.

    CAS  PubMed  Google Scholar 

  545. Lalor PF, Sun PJ, Weston CJ, Martin-Santos A, Wakelam MJ, Adams DH. Activation of vascular adhesion protein-1 on liver endothelium results in an NF-kappaB-dependent increase in lymphocyte adhesion. Hepatology. 2007;45(2):465–74.

    CAS  PubMed  Google Scholar 

  546. Jalkanen S, Karikoski M, Mercier N, Koskinen K, Henttinen T, Elima K, Salmivirta K, Salmi M. The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E- and P-selectins and leukocyte binding. Blood. 2007;110(6):1864–70.

    CAS  PubMed  Google Scholar 

  547. Kivi E, Elima K, Aalto K, Nymalm Y, Auvinen K, Koivunen E, Otto DM, Crocker PR, Salminen TA, Salmi M, Jalkanen S. Human Siglec-10 can bind to vascular adhesion protein-1 and serves as its substrate. Blood. 2009;114(26):5385–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  548. Elovaara H, Parkash V, Fair-Mäkelä R, Salo-Ahen OM, Guédez G, Bligt-Lindén E, Grönholm J, Jalkanen S, Salminen TA. Multivalent interactions of human primary amine oxidase with the V and C22 domains of sialic acid-binding immunoglobulin-like lectin-9 regulate its binding and amine oxidase activity. PLoS One. 2016;11(11):e0166935.

    PubMed  PubMed Central  Google Scholar 

  549. Lopes de Carvalho L, Elovaara H, de Ruyck J, Vergoten G, Jalkanen S, Guédez G, Salminen TA. Mapping the interaction site and effect of the Siglec-9 inflammatory biomarker on human primary amine oxidase. Sci Rep. 2018;8(1):2086.

    PubMed  PubMed Central  Google Scholar 

  550. Chang YC, Olson J, Beasley FC, Tung C, Zhang J, Crocker PR, Varki A, Zinet V. Engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. Plos Pathol. 2014;10(1):e1003846.

    Google Scholar 

  551. Hajishengallis G, Lambris JD. Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol. 2011;11:187–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  552. Nordström T, Movert E, Olin AI, Ali SR, Nizet V, Varki A, Areschoug T. Human Siglec-5 inhibitory receptor and immunoglobulin A (IgA) have separate binding sites in streptococcal β protein. J Biol Chem. 2011;286:33,981–91.

    Google Scholar 

  553. Saito M, Yamamoto S, Ozaki K, Tomioka Y, Suyama H, Morimatsu M, Nishijima KI, Yoshida SI, Ono E. A soluble form of Siglec-9 provides a resistance against Group B Streptococcus (GBS) infection in transgenic mice. Microb Pathog. 2016;99:106–10.

    CAS  PubMed  Google Scholar 

  554. http://www.glycoforum.gr.jp/science/glycomicrobiology/GM09/GM09E.html

  555. Khatua B, Bhattacharya K, Mandal C. Sialoglycoproteins adsorbed by Pseudomonas aeruginosa facilitate their survival by impeding neutrophil extracellular trap through siglec-9. J Leukoc Biol. 2012;91:641–55.

    CAS  PubMed  Google Scholar 

  556. Khatua B, Ghoshal A, Bhattacharya K, Mandal C, Saha B, Crocker PR, Mandal C. Sias acquired by Pseudomonas aeruginosa are involved in reduced complement deposition and siglec mediated host-cell recognition. FEBS Lett. 2010;584:555–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  557. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71.

    CAS  PubMed  Google Scholar 

  558. Bandala-Sanchez E, Bediaga NN, Goddard-Borger ED, Ngui K, Naselli G, Stone NL, Neale AM, Pearce LA, Wardak A, Czabotar P, Haselhorst T, Maggioni A, Hartley-Tassell LA, Adams TE, Harrison LC. CD52 glycan binds the proinflammatory B box of HMGB1 to engage the Siglec-10 receptor and suppress human T cell function. Proc Natl Acad Sci U S A. 2018;115(30):7783–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  559. Chen GY, Chen X, King S, Cavassani KA, Cheng J, Zheng X, Cao H, Yu H, Qu J, Fang D, Wu W, Bai XF, Liu JQ, Woodiga SA, Chen C, Sun L, Hogaboam CM, Kunkel SL, Zheng P, Liu Y. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol. 2011;29:428–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  560. Bandala-Sanchez E, Zhang Y, Reinwald S, Dromey JA, Lee BH, Qian J, Böhmer RM, Harrison LC. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat Immunol. 2013;14:741–8.

    CAS  PubMed  Google Scholar 

  561. Li N, Zhang W, Wan T, Zhang J, Chen T, Yu Y, Wang J, Cao X. Cloning and characterization of Siglec-10, a novel sialic acid binding member of the Ig superfamily, from human dendritic cells. J Biol Chem. 2001;276(28):106–28,112.

    Google Scholar 

  562. Tone M, Nolan KF, Walsh LA, Tone Y, Thompson SA, Waldmann H. Structure and chromosomal location of mouse and human CD52 genes. Biochim Biophys Acta. 1999;1446:334–40.

    CAS  PubMed  Google Scholar 

  563. Kubota H, Okazaki H, Onuma M, Kano S, Hattori M, Minato N. Identification and gene-cloning of a new phosphatidylinositol-linked antigen expressed on mature lymphocytes. J Immunol. 1990;145:3924–31.

    CAS  PubMed  Google Scholar 

  564. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  565. Ugrinova I, Pasheva E. Chapter 2—HMGB1 protein: a therapeutic target inside and outside the cell. In: Donev R, editor. Advances in protein chemistry and structural biology, vol. 107. Academic Press; 2017. p. 37–76.

    Google Scholar 

  566. Parlato M, Souza-Fonseca-Guimaraes F, Philippart F, Misset B, Captain Study G, Adib-Conquy M, Cavaillon JM. CD24-triggered caspase-dependent apoptosis via mitochondrial membrane depolarization and reactive oxygen species production of human neutrophils is impaired in sepsis. J Immunol. 2014;192(5):2449–59.

    CAS  PubMed  Google Scholar 

  567. Chen GY, Chen X, King S, Cavassani KA, Cheng J, Zheng X, Cao H, Yu H, Qu J, Fang D, Wu W, Bai XF, Liu JQ, Woodiga SA, Chen C, Sun L, Hogaboam CM, Kunkel SL, Zheng P, Liu Y. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol. 2011;29(5):28–35.

    Google Scholar 

  568. Paulson JC, Kawasaki N. Sialidase inhibitors DAMPen sepsis. Nat Biotechnol. 2011;29(5):406–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  569. Ding Y, Guo Z, Liu Y, Li X, Zhang Q, Xu X, Gu Y, Zhang Y, Zhao D, Cao X. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I-peptide complex formation. Nat Immunol. 2016;17(10):1167–75.

    CAS  PubMed  Google Scholar 

  570. Hale G. CD52 (CAMPATH1). J Biol Regul Homeost Agents. 2001;15(4):386–91.

    CAS  PubMed  Google Scholar 

  571. Ito K, Hasegawa A, Komori S, Koyama K. Biochemical property and immunogenicity of mouse male reproductive tract CD52 (mrt-CD52). J Reprod Immunol. 2007;75:32–9.

    CAS  PubMed  Google Scholar 

  572. Rashidi M, Bandala-Sanchez E, Lawlor KE, Zhang Y, Neale AM, Vijayaraj SL, O’Donoghue R, Wentworth JM, Adams TE, Vince JE, Harrison LC. CD52 inhibits Toll-like receptor activation of NF-κB and triggers apoptosis to suppress inflammation. Cell Death Differ. 2018;25:392–405.

    CAS  PubMed  Google Scholar 

  573. Angata T, Hingorani R, Varki NM, Varki A. Cloning and characterization of a novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) Siglec-3-related gene clusters. J Biol Chem. 2001;276:45128–36.

    CAS  PubMed  Google Scholar 

  574. Hoffmann A, Kerr S, Jellusova J, Zhang J, Weisel F, Wellmann U, Winkler TH, Kneitz B, Crocker PR, Nitschke L. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat Immunol. 2007;8:695–704.

    CAS  PubMed  Google Scholar 

  575. Pfrengle F, Macauley MS, Kawasaki N, Paulson JC. Copresentation of antigen and ligands of Siglec-G induces B cell tolerance independent of CD22. J Immunol. 2013;191:1724–31.

    CAS  PubMed  Google Scholar 

  576. Ding Y, Guo Z, Liu Y, Li X, Zhang Q, Xu X, Cao X. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I-peptide complex formation. Nat Immunol. 2016;17:1167–75.

    CAS  PubMed  Google Scholar 

  577. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12:557–69.

    CAS  PubMed  Google Scholar 

  578. Li N, Zhang W, Wan T, Zhang J, Chen T, Yu Y, Wang J, Cao X. Cloning and characterization of Siglec-10, a novel sialic acid binding member of the Ig superfamily, from human dendritic cells. J Biol Chem. 2001;276:28,106–12.

    CAS  Google Scholar 

  579. Nitschke L. Siglec-G is a B-1 cell inhibitory receptor and also controls B cell tolerance. Ann N Y Acad Sci. 2015;1362:117–21.

    CAS  PubMed  Google Scholar 

  580. Jellusova J, Duber S, Guckel E, Binder CJ, Weiss S, Voll R, Nitschke L. Siglec-G regulates B1 cell survival and selection. J Immunol. 2010;185(6):277–84.

    Google Scholar 

  581. Yamada E, McVicar DW. Paired receptor systems of the innate immune system. Curr Protoc Immunol. 2008;81:Chapter 1: Appendix 1X

    Google Scholar 

  582. Angata T, Kerr SC, Greaves DR, Varki NM, Crocker PR, Varki A. Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem. 2002;277(27):24,466–74.

    CAS  Google Scholar 

  583. Hayakawa T, Khedri Z, Schwarz F, Landig C, Liang SY, Yu H, Chen X, Fujito NT, Satta Y, Varki A, Angata T. Coevolution of Siglec-11 and Siglec-16 via gene conversion in primates. BMC Evol Biol. 2018;17(1):228.

    Google Scholar 

  584. Abi-Rached L, Parham P. Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J Exp Med. 2005;201:1319–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  585. Wang X, Mitra N, Cruz P, Deng L, Varki N, Angata T, Green ED, Mullikin J, Hayakawa T, Varki A, NISC Comparative Sequencing Program. Evolution of siglec-11 and siglec-16 genes in hominins. Mol Biol Evol. 2012;29(8):2073–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  586. Wang X, Chow R, Deng L, Anderson D, Weidner N, Godwin AK, Bewtra C, Zlotnik A, Bui J, Varki A, Varki N. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology. Glycobiology. 2011;21(8):1038–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  587. Shahraz A, Kopatz J, Mathy R, Kappler J, Winter D, Kapoor S, Schütza V, Scheper T, Gieselmann V, Neumann H. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages. Sci Rep. 2015;5:16,800.

    CAS  Google Scholar 

  588. Salminen A, Kaarniranta K. Siglec receptors and hiding plaques in Alzheimer’s disease. J Mol Med (Berl). 2009;87(7):697–701.

    CAS  Google Scholar 

  589. Linnartz B, Wang Y, Neumann H. Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation. Int J Alzheimers Dis. 2010;2010:587463.

    PubMed  PubMed Central  Google Scholar 

  590. Linnartz-Gerlach B, Mathews M, Neumann H. Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neuroscience. 2014;275:113–24.

    CAS  PubMed  Google Scholar 

  591. Shahraz A, Kopatz J, Mathy R, Kappler J, Winter D, Kapoor S, Schütza V, Scheper T, Gieselmann V, Neumann H. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages. Sci Rep. 2015;5:16800.

    CAS  PubMed  PubMed Central  Google Scholar 

  592. Barclay AN, Hatherley D. The counterbalance theory for evolution and function of paired receptors. Immunity. 2008;29:675–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  593. Kuroki K, Furukawa A, Maenaka K. Molecular recognition of paired receptors in the immune system. Front Microbiol. 2012;3:429.

    PubMed  PubMed Central  Google Scholar 

  594. Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol. 2002;20:217–51.

    CAS  PubMed  Google Scholar 

  595. Schwarz F, Landig CS, Siddiqui S, Secundino I, Olson J, Varki N, Nizet V, Varki A. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017;36(6):751–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  596. Pearcy OM, Läubli H. Sialic acids in cancer biology and immunity. Glycobiology. 2016;26(2):111–28.

    Google Scholar 

  597. Ali SR, Fong JJ, Carlin AF, Busch TD, Linden R, Angata T, Nizet V. Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med. 2014;211(6):1231–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  598. Huang PJ, Low PY, Wang I, Hsu SD, Angata T. Soluble Siglec-14 glycan-recognition protein is generated by alternative splicing and suppresses myeloid inflammatory responses. J Biol Chem. 2018;293(51):19645–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  599. Thornhill SI, Mak A, Lee B, Lee HY, Poidinger M, Connolly JE, Fairhurst AM. Monocyte Siglec-14 expression is upregulated in patients with systemic lupus erythematosus and correlates with lupus disease activity. Rheumatology (Oxford). 2017;56(6):1025–30.

    CAS  Google Scholar 

  600. Lintner KE, Wu YL, Yang Y, Spencer CH, Hauptmann G, Hebert LA, Atkinson JP, Yu CY. Early components of the complement classical activation pathway in human systemic autoimmune diseases. Front Immunol. 2016;7:36.

    PubMed  PubMed Central  Google Scholar 

  601. Wielgat P, Mroz RM, Stasiak-Barmuta A, Szepiel P, Chyczewska E, Braszko JJ, Holownia A. Inhaled corticosteroids increase siglec-5/14 expression in sputum cells of COPD patients. Adv Exp Med Biol. 2015;839:1–5.

    CAS  PubMed  Google Scholar 

  602. Chang YC, Olson J, Beasley FC, Tung C, Zhang J, Crocker PR, Varki A, Nizet V. Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathogens. 2014;10:e1003846.

    PubMed  PubMed Central  Google Scholar 

  603. Angata T, Ishii T, Motegi T, Oka R, Taylor RE, Soto PC, Kitazume S. Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci. 2013;70(17):3199–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  604. Fong JJ, Sreedhara K, Deng L, Varki NM, Angata T, Liu Q, Nizet V, Varki A. Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J. 2015;34(22):2775–88. https://doi.org/10.15252/embj.201591407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  605. Fong JJ, Sreedhara K, Deng L, Varki NM, Angata T, Liu Q, Varki A. Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. EMBO J. 2015;34(22):2775–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  606. Angata T, Kerr SC, Greaves DR, Varki NM, Crocker PR, Varki A. Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem. 2002;277(27):24466–74.

    CAS  PubMed  Google Scholar 

  607. Wang X, Mitra N, Cruz P, Deng L, Program NCS, Varki N, Angata T, Green ED, Mullikin J, Hayakawa T, et al. Evolution of siglec-11 and siglec-16 genes in hominins. Mol Biol Evol. 2012;29(8):2073–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  608. Landig CS, Hazel A, Kellman BP, Fong JJ, Schwarz F, Agarwal S, Varki N, Massari P, Lewis NE, Ram S, Varki A. Evolution of the exclusively human pathogen Neisseria gonorrhoeae: Human-specific engagement of immunoregulatory Siglecs. Evol Appl. 2019;12(2):337–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  609. Criss AK, Seifert HS. A bacterial siren song: Intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol. 2012;10(3):178–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  610. Ketterer MR, Rice PA, Gulati S, Kiel S, Byerly L, Fortenberry JD, Apicella MA. Desialylation of Neisseria gonorrhoeae lipooligosaccharide by cervicovaginal microbiome sialidases: The potential for enhancing infectivity in men. J Infect Dis. 2016;214:1621–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  611. Harvey HA, Jennings MP, Campbell CA, Williams R, Apicella MA. Receptor-mediated endocytosis of Neisseria gonorrhoeae into primary human urethral epithelial cells: the role of the asialoglycoprotein receptor. Mol Microbiol. 2001;42(3):659–72.

    CAS  PubMed  Google Scholar 

  612. Ulyanova T, Shah DD, Thomas ML. Molecular cloning of MIS, a myeloid inhibitory siglec that binds tyrosine phosphatases SHP-1 and SHP-2. J Biol Chem. 2001;276:14451–8.

    CAS  PubMed  Google Scholar 

  613. McMillan SJ, Sharma RS, McKenzie EJ, Richards HE, Zhang J, Prescott A, Crocker PR. Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b β2-integrin-dependent signaling. Blood. 2013;121(11):2084–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  614. Chen Z, Bai FF, Han L, Zhu J, Zheng T, Zhu Z, Zhou LF. Targeting neutrophils in severe asthma via Siglec-9. Int Arch Allergy Immunol. 2018;175(1–2):5–15.

    CAS  PubMed  Google Scholar 

  615. Spence S, Greene MK, Fay F, Hams E, Saunders SP, Hamid U, Fitzgerald M, Beck J, Bains BK, Smyth P, Themistou E, Small DM, Schmid D, O’Kane CM, Fitzgerald DC, Abdelghany SM, Johnston JA, Fallon PG, Burrows JF, McAuley DF, Kissenpfennig A, Scott CJ. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci Transl Med. 2015;7:303 ra140.

    Google Scholar 

  616. Boyd CR, Orr SJ, Spence S, Burrows JF, Elliott J, Carroll HP, Brennan K, Gabhann JN, Coulter WA, Johnston JA, Jefferies CA. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production. J Immunol. 2009;183(12):7703–9.

    CAS  PubMed  Google Scholar 

  617. McMillan SJ, Sharma RS, Richards HE, Hegde V, Crocker PR. Siglec-E promotes β2-integrin-dependent NADPH oxidase activation to suppress neutrophil recruitment to the lung. J Biol Chem. 2014;289:20370–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  618. Erdmann H, Steeg C, Koch-Nolte F, Fleischer B, Jacobs T. Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E). Cell Microbiol. 2009;11(11):1600–11.

    CAS  PubMed  Google Scholar 

  619. Flores R, Zhang P, Wu W, Wang X, Ye P, Zheng P, Liu Y. 2019. Siglec genes confer resistance to systemic lupus erythematosus in humans and mice. Cell Mol Immunol. 2019;16(2):154–64. https://doi.org/10.1038/cmi.2017.160. Epub 2018 Mar 5

    Article  CAS  PubMed  Google Scholar 

  620. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, Bianchi ME, Kirschning C, Wagner H, Manfredi AA, Kalden JR, Schett G, Rovere-Querini P, Herrmann M, Voll RE. Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med. 2008;205:3007–18. https://doi.org/10.1084/jem.20081165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  621. Urbonaviciute V, Voll RE. High-mobility group box 1 represents a potential marker of disease activity and novel therapeutic target in systemic lupus erythematosus. J Intern Med. 2011;270:309–18. https://doi.org/10.1111/j.1365-2796.2011.02432.x.

    Article  CAS  PubMed  Google Scholar 

  622. Gicheva N, Macaule MS, Arlian BM, Paulson JC, Kawasaki N. Siglec-F is a novel intestinal M cell marker. Biochem Biophys Res Commun. 2016;479:1–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  623. Bolden JE, Lucas EC, Zhou G, O’Sullivan JA, de Graaf CA, McKenzie MD, Di Rago L, Baldwin TM, Shortt J, Alexander WS, Bochner BS, Ritchie ME, Hilton DJ, Fairfax KA. Identification of a Siglec-F+ granulocyte-macrophage progenitor. J Leukoc Biol. 2018;104(1):123–33. https://doi.org/10.1002/JLB.1MA1217-475R.

    Article  CAS  PubMed  Google Scholar 

  624. Zhang JQ, Biedermann B, Nitschke L, Crocker PR. The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innateimmunesystemwhereasmSiglec-Fisrestrictedtoeosinophils. Eur J Immunol. 2004;34:1175–84.

    CAS  PubMed  Google Scholar 

  625. Hudson SA, Bovin NV, Schnaar RL, Crocker PR, Bochner BS. Eosinophil-selective binding and proapoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6′-sulfated sialyl Lewis x. J Pharmacol Exp Ther. 2009;330:608–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  626. Kiwamoto T, Katoh T, Evans CM, Janssen WJ, Brummet ME, Hudson SA, Zhu Z, Tiemeyer M, Bochner BS. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. J Allergy Clin Immunol. 2015;135:1329–1340.e9.

    CAS  PubMed  Google Scholar 

  627. Drissen R, Buza-Vidas N, Woll P, Thongjuea S, Gambardella A, Giustacchini A, Mancini E, Zriwil A, Lutteropp M, Grover A, Mead A, Sitnicka E, Jacobsen SEW, Nerlov C. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat Immunol. 2016;17:666–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  628. Bain CC, Montgomery J, Scott CL, Kel JM, Girard-Madoux MJH, Martens L, Zangerle-Murray TFP, Ober-Blöbaum J, Lindenbergh-Kortleve D, Samsom JN, Henri S, Lawrence T, Saeys Y, Malissen B, Dalod M, Clausen BE, Mowat AM. TGF beta R signaling controls CD103(+)CD11b(+) dendritic cell development in the intestine. Nat Commun. 2017;8:620.

    CAS  PubMed  PubMed Central  Google Scholar 

  629. Sorobetea D, Holm JB, Henningsson H, Kristiansen K, Svensson-Frej M. Acute infection with the intestinal parasite Trichurismuris has long term consequences on mucosal mast cell homeostasis and epithelial integrity. Eur J Immunol. 2017;47:257–68.

    CAS  PubMed  Google Scholar 

  630. Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, Dardalhon V, Cesses P, Garnier L, Pouzolles M, Brulin B, Bruschi M, Harcus Y, Zimmermann VS, Taylor N, Maizels RM, Jay P. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature. 2016;529:226–30.

    CAS  PubMed  Google Scholar 

  631. Gicheva N, Macauley MS, Arlian BM, Paulson JC, Kawasaki N. Siglec-F is a novel intestinal M cell marker. Biochem Biophys Res Commun. 2016;479:1–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  632. Varki A, Angata T. Siglecs – the major subfamily of I-type lectins. Glycobiology. 2006;16(1):1R–27R. https://doi.org/10.1093/glycob/cwj008.

    Article  CAS  PubMed  Google Scholar 

  633. Fairfax KA, Bolden JE, Robinson AJ, Lucas EC, Baldwin TM, Ramsay KA, Cole R, Hilton DJ, de Graaf CA. 2018. Transcriptional profiling of eosinophil subsets in interleukin-5 transgenic mice. J Leukoc Biol. 2018;104(1):195–204. https://doi.org/10.1002/JLB.6MA1117-451R.

    Article  CAS  PubMed  Google Scholar 

  634. Patnode ML, Cheng CW, Chou CC, Singer MS, Elin MS, Uchimura K, Crocker PR, Khoo KH, Rosen SD. Galactose 6-O-sulfotransferases are not required for the generation of Siglec-F ligands in leukocytes or lung tissue. J Biol Chem. 2013;288:26533–36545.

    CAS  PubMed  PubMed Central  Google Scholar 

  635. McMillan SJ, Richards HE, Crocker PR. Siglec-F-dependent negative regulation of allergen-induced eosinophilia depends critically on the experimental model. Immunol Lett. 2014;160:11–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  636. Kiwamoto T, Kotoh T, Evans CM, Janssen WJ, Brummet ME, Hudson SA, Zhu Z, Tiemeyer M, Bochner BS. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. Am Acad Allergy. 2015;135:1329–40.

    CAS  Google Scholar 

  637. Abdala VH, Loffredo LF, Misharin AV, Berdnikovs S. Phenotypic plasticity and targeting of Siglec-FhighCD11clow eosinophils to the airway in a murine model of asthma. Eur J Allergy Clin Immunol. 2016;71:267–71.

    Google Scholar 

  638. Wielgat P, Trofimiuk E, Czarnomysy R, Braszko JJ, Car H. Sialic acids as cellular markers of immunomodulatory action of dexamethasone on glioma cells of different immunogenicity. Mol Cell Biochem. 2019;455:147–57. https://doi.org/10.1007/s11010-018-3478-6.

    Article  CAS  PubMed  Google Scholar 

  639. Duong BH, Tian H, Ota T, Completo G, Han S, Vela JL, Ota M, Kubitz M, Bovin N, Paulson JC, Nemazee D. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J Exp Med. 2010;207(1):173–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  640. Jellusova J, Wellmann U, Amann K, Winkler TH, Nitschke L. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity. J Immunol. 2010;184(7):3618–27.

    CAS  PubMed  Google Scholar 

  641. Jellusova J, Düber S, Gückel E, Binder CJ, Weiss S, Voll R, Nitschke L. Siglec-G regulates B1 cell survival and selection. J Immunol. 2010;185(6):3277–84.

    CAS  PubMed  Google Scholar 

  642. Tsubata T. Role of inhibitory BCR co-receptors in immunity. Infect Disord Drug Targets. 2012;12(3):181–90. Review

    CAS  PubMed  Google Scholar 

  643. Whitney G, Wang S, Chang H, Cheng KY, Lu P, Zhou XD, Yang WP, McKinnon M, Longphre M. A new siglec family member, siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33. Eur J Biochem. 2001;268:6083–96.

    CAS  PubMed  Google Scholar 

  644. Engel P, Wagner N, Miller AS, Tedder TF. Identification of the ligand-binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J Exp Med. 1995;1995(181):1581–6.

    Google Scholar 

  645. Meyer SJ, Linder AT, Brandl C, Nitschke L. B cell Siglecs-news on signaling and its interplay with ligand binding. Front Immunol. 2018;9:2820.

    PubMed  PubMed Central  Google Scholar 

  646. Bökers S, Urbat A, Daniel C, Amann K, Smith KG, Espeli M, Nitschke L. Siglec-G deficiency leads to more severe collagen-induced arthritis and earlier onset of lupus-like symptoms in MRL/lpr mice. J Immunol. 2014;192:2994–3002.

    PubMed  Google Scholar 

  647. Özgör L, Meyer SJ, Korn M, Terörde K, Nitschke L. Sialic acid ligand binding of CD22 and Siglec-G determines distinct B cell functions but is dispensable for B cell tolerance induction. J Immunol. 2018;pii:ji1800296.

    Google Scholar 

  648. Hardy RR, Hayakawa K. B cell development pathways. Annu Rev Immunol. 2001;19:595–621.

    CAS  PubMed  Google Scholar 

  649. Li N, Zhang W, Wan T, Zhang J, Chen T, Yu Y, Wang J, Cao X. Cloning and characterization of Siglec-10, a novel sialic acid binding member of the Ig superfamily, from human dendritic cells. J Biol Chem. 2001;276:28106–12.

    CAS  PubMed  Google Scholar 

  650. Munday J, Kerr S, Ni J, Cornish AL, Zhang JQ, Nicoll G, Floyd H, Mattei MG, Moore P, Liu D, Crocker PR. Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. Biochem J. 2001;355:489–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  651. Kitzig F, Martinez-Barriocanal A, Lopez-Botet M, Sayos J. Cloning of two new splice variants of Siglec-10 and mapping of the interaction between Siglec-10 and SHP-1. Biochem Biophys Res Commun. 2002;296:355–62.

    CAS  PubMed  Google Scholar 

  652. Chen GY, Brown NK, Zheng P, Liu Y. Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity. Glycobiology. 2014;24(9):800–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  653. Teshima T, Ordemann R, Reddy P, Gagin S, Liu C, Cooke KR, Ferrara JL. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nat Med. 2002;8(6):575–81.

    CAS  PubMed  Google Scholar 

  654. Toubai T, Rossi C, Oravecz-Wilson K, Zajac C, Liu C, Braun T, Fujiwara H, Wu J, Sun Y, Brabbs S, Tamaki H, Magenau J, Zheng P, Liu Y, Reddy P. Siglec-G represses DAMP-mediated effects on T cells. JCI. Insight. 2017;2(14):92293.

    Google Scholar 

  655. Hutzler S, Özgör L, Naito-Matsui Y, Kläsener K, Winkler TH, Reth M, Nitschke L. The ligand-binding domain of Siglec-G is crucial for its selective inhibitory function on B1 cells. J Immunol. 2014;192(11):5406–14.

    CAS  PubMed  Google Scholar 

  656. Simonetti G, Bertilaccio MT, Rodriguez TV, Apollonio B, Dagklis A, Rocchi M, Innocenzi A, Casola S, Winkler TH, Nitschke L, Ponzoni M, Caligaris-Cappio F, Ghia P. SIGLEC-G deficiency increases susceptibility to develop B-cell lymphoproliferative disorders. Haematologica. 2014;99(8):1356–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  657. Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HR, Schreuder J, Lum J, Malleret B, Zhang S, Larbi A, Zolezzi F, Renia L, Poidinger M, Naik S, Newell EW, Robson P, Ginhoux F. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat Immunol. 2015;16(7):718–28.

    CAS  PubMed  Google Scholar 

  658. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Weiner HL. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.

    CAS  PubMed  Google Scholar 

  659. Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O’Keeffe S, Phatnani HP, Maniatis T. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep. 2013;4:385–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  660. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 2013;16:1896–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  661. Konishi H, Kobayashi M, Kunisawa T, Imai K, Sayo A, Malissen B, Crocker PR, Sato K, Kiyama H. Siglec-H is a microglia-specific marker that discriminates microglia from CNS-associated macrophages and CNS-infiltrating monocytes. Glia. 2017;65(12):1927–43.

    PubMed  Google Scholar 

  662. Blasius AL, Cella M, Maldonado J, Takai T, Colonna M. Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood. 2006;107:2474–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  663. Kopatz J, Beutner C, Welle K, Bodea LG, Reinhardt J, Claude J, Linnartz-Gerlach B, Neumann H. Siglec-h on activated microglia for recognition and engulfment of glioma cells. Glia. 2013;61(7):1122–33.

    PubMed  Google Scholar 

  664. Takagi H, Fukaya T, Eizumi K, Sato Y, Sato K, Shibazaki A, Otsuka H, Hijikata A, Watanabe T, Ohara O, Kaisho T, Malissen B, Sato K. Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity. 2011;35(6):958–71.

    CAS  PubMed  Google Scholar 

  665. Schmitt H, Sell S, Koch J, Seefried M, Sonnewald S, Daniel C, Winkler TH, Nitschke L. Siglec-H protects from virus-triggered severe systemic autoimmunity. J Exp Med. 2016;213(8):1627–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  666. Blomberg S, Eloranta ML, Magnusson M, Alm GV, Ronnblom L. Expression of the markers BDCA-2 and BDCA-4 and production of interferon-α by plasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Rheum. 2003;48:2524–32.

    CAS  PubMed  Google Scholar 

  667. Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity. 2010;33:955–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  668. Davison LM, Jørgensen TN. Sialic acid-binding immunoglobulin-type lectin H-positive plasmacytoid dendritic cells drive spontaneous lupus-like disease development in B6.Nba2 mice. Arthritis Rheumatol. 2015;67(4):1012–22.

    CAS  PubMed  Google Scholar 

  669. Drake CG, Rozzo SJ, Hirschfeld HF, Smarnworawong NP, Palmer E, Kotzin BL. Analysis of the New Zealand Black contribution to lupus-like renal disease: multiple genes that operate in a threshold manner. J Immunol. 1995;154:2441–7.

    CAS  PubMed  Google Scholar 

  670. Gubbels MR, Jorgensen TN, Metzger TE, Menze K, Steele H, Flannery SA, Rozzo SJ, Kotzin BL. Effects of MHC and gender on lupus-like autoimmunity in Nba2 congenic mice. J Immunol. 2005;175:6190–6.

    CAS  PubMed  Google Scholar 

  671. Jorgensen TN, Alfaro J, Enriquez HL, Jiang C, Loo WM, Atencio S, Bupp MR, Mailloux CM, Metzger T, Flannery S, Rozzo SJ, Kotzin BL, Rosemblatt M, Bono MR, Erickson LD. Development of murine lupus involves the combined genetic contribution of the SLAM and FcγR intervals within the Nba2 autoimmune susceptibility locus. J Immunol. 2010;184:775–86.

    CAS  PubMed  Google Scholar 

  672. Rozzo SJ, Allard JD, Choubey D, Vyse TJ, Izui S, Peltz G, Kotzin BL. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity. 2001;15:435–43.

    CAS  PubMed  Google Scholar 

  673. Atencio S, Amano H, Izui S, Kotzin BL. Separation of the New Zealand Black genetic contribution to lupus from New Zealand Black determined expansions of marginal zone B and B1a cells. J Immunol. 2004;172:4159–66.

    CAS  PubMed  Google Scholar 

  674. Handa-Narumi M, Yoshimura T, Konishi H, Fukata Y, Manabe Y, Tanaka K, Bao GM, Kiyama H, Fukase K, Ikenaka K. Branched sialylated N-glycans are accumulated in brain synaptosomes and interact with Siglec-H. Cell Struct Funct. 2018;43(2):141–52.

    PubMed  Google Scholar 

  675. Ishii A, Ikeda T, Hitoshi S, Fujimoto I, Torii T, Sakuma K, Nakakita S, Hase S, Ikenaka K. Developmental changes in the expression of glycogenes and the content of N-glycans in the mouse cerebral cortex. Glycobiology. 2007;17:261–76.

    CAS  PubMed  Google Scholar 

  676. Torii T, Yoshimura T, Narumi M, Hitoshi S, Takaki Y, Tsuji S, Ikenaka K. Determination of major sialylated N-glycans and identification of branched sialylated N-glycans that dynamically change their content during development in the mouse cerebral cortex. Glycoconj J. 2014;31:671–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  677. Sala C, Roussignol G, Meldolesi J, Fagni L. Key role of the postsynaptic density scaffold proteins Shank and Homer in the functional architecture of Ca2+ homeostasis at dendritic spines in hippocampal neurons. J Neurosci. 2005;25:4587–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  678. Redelinghuys P, Antonopoulos A, Liu Y, Campanero-Rhodes MA, McKenzie E, Haslam SM, Dell A, Feizi T, Crocker PR. Early murine T-lymphocyte activation is accompanied by a switch from N-Glycolyl- to N-acetyl-neuraminic acid and generation of ligands for siglec-E. J Biol Chem. 2011;286:34522–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  679. Raghavan M, Wijeyesakere SJ, Peters LR, Del Cid N. Calreticulin in the immune system: ins and outs. Trends Immunol. 2013;34:13–21.

    CAS  PubMed  Google Scholar 

  680. Wake H, Moorhouse AJ, Miyamoto A, Nabekura J. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci. 2013;36:209–17.

    CAS  PubMed  Google Scholar 

  681. Zhang J, Raper A, Sugita N, Hingorani R, Salio M, Palmowski MJ, Cerundolo V, Crocker PR. Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood. 2006;107:3600–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, CH. (2022). Sialic Acid-Binding Ig-Like Lectins (Siglecs). In: Glycobiology of Innate Immunology. Springer, Singapore. https://doi.org/10.1007/978-981-16-9081-5_7

Download citation

Publish with us

Policies and ethics