Skip to main content

Strategies for Screening Induced Mutants for Stress Tolerance

  • Chapter
  • First Online:
Mutation Breeding for Sustainable Food Production and Climate Resilience

Abstract

Crop plants are exposed to a multitude of biotic and abiotic factors, which necessitates improving tolerance/resistance in plant germplasm using conventional, mutagenesis and biotechnological approaches. Several induced mutants have been improved for tolerance/resistance with other desirable characteristics and mutant varieties have been released for cultivation. As per the FAO/IAEA mutant variety database, so far 248 and 558 mutant varieties have been developed for biotic and abiotic stress tolerance, respectively. Progress in this area has been majorly based on mutation induction and screening of putative mutants using a wide range of selection strategies especially, pre-field screening at seedling and flowering stages based on simple phenotypic responses. Several methodological considerations are now advocated for taking up a suitable in vivo/in vitro screening method for a given plant stress factor. For a specific crop and stress tolerance, it is necessary to establish reliable, rapid and high throughput screening techniques in putative mutant lines. Plant cell and tissue culture based in vitro selection strategies have been established for developing stress-tolerant mutants using selection agents for biotic stress, for example, culture filtrate, pathotoxin, or spore suspension or NaCl or PEG. Disease-resistant lines have been developed in banana, carnation, grapevine, strawberry, pineapple, tomato, alfalfa, barley, chickpea, asparagus, sugarcane, celery, oats and wheat for use in breeding programmes. Methodologies to screen for the mutant traits using different cellular, analytical and molecular tools will have to be extensively adopted in plant populations under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdalla EA, Ahmed TE, Bakhit OA, Gamar YA, Elshaikh SA, Mohammed YE, Sulaiman AA, Mardi HG (2018) Tafra-1, a groundnut mutant with end-of-season drought tolerance for the low rain fall dry lands of North Kordofan State. The 2nd National Variety Release Committee, Elobeid, North Kordofan State, Elobeid, Sudan

    Google Scholar 

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Google Scholar 

  • Ahmad I, Day JP, MacDonald MV, Ingram DS (1991) Haploid culture and UV mutagenesis in rapid-cycling Brassica napus for the generation of resistance to chlorsulfuron and Alternaria brassicicola. Ann Bot 67(6):521–519

    Article  Google Scholar 

  • Ali A, Naz S, Alam S, Javed I (2007) In vitro induced mutation for screening of red rot (Colletotrichum falcatum) resistance in sugarcane (Saccharum officinarum). Pak J Bot 39:1979–1994

    Google Scholar 

  • Aslam Z (2008) Salt tolerance and screening techniques for sat tolerance in plants. In: Sustainable crop production on salt-affected land, Proc. Int. Conf., Faisalabad, Pakistan, 4–6 December 2006. Saline Agriculture Research Centre, UAF, Pakistan

    Google Scholar 

  • Azad MAK et al (2014) Enhancing abiotic stress tolerance in groundnut through induced mutation. In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring genetic diversity of crops. Academic Publishers, Wageningen, Netherlands, pp 329–344

    Chapter  Google Scholar 

  • Azad MAK, Yasmine F, Kamruzzaman M, Rani MH, Begum HA (2021) Development of climate adaptable/resilient crop varieties through induced mutation. In: Sivasankar S, Ellis N, Jankuloski L, Ingelbrecht I (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. CAB International, Wallingford, UK, pp 157–171. https://doi.org/10.1079/9781789249095.000

    Chapter  Google Scholar 

  • Badigannavar A, Niaba T, Oliveira AC, Li G, Vaksmann M, Viana VV, Ganapathi TR, Sarsu F (2018) Physiological, genetic and molecular basis of drought resilience in sorghum [Sorghum bicolor (L.) Moench]. Indian J Plant Physiol 23(2018):670–688

    Article  CAS  Google Scholar 

  • Bado S, Forster BP, Ghanim AMA, Jankowicz-Cieslak J, Berthold G, Liu L (2016) Protocols for pre-field screening of mutants for salt tolerance in rice, wheat and barley. Springer International. ISBNs 978-3-31-926588-9, 978-3-31-926590-2

    Book  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Beddington J, Asaduzzaman M, Fernandez A, Clark M, Guillou M, Jahn M, Erda L, Mamo T, Van Bo N, Nobre CA, Scholes R, Sharma R, Wakhungu J (2011) Achieving food security in the face of climate change: Summary for policy makers from the Commission on Sustainable Agriculture and Climate Change. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, Denmark

    Google Scholar 

  • Bhagwat B, Duncan EJ (1998) Mutation breeding of banana cv Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Sci Hort 73:11–22

    Article  CAS  Google Scholar 

  • Bigini V, Camerlengo F, Botticella E, Sestili F, Savatin DV (2021) Biotechnological resources to increase disease-resistance by improving plant immunity: a sustainable approach to save cereal crop production. Plants 10:1146. https://doi.org/10.3390/plants10061146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borja WOR, Sotomayor I, Ivan G, Vera D, Cedeño M, Castillo B, Tanaka A, Hase Y, Sekozawa Y, Sugaya S, Gemma H (2007) Alteration of resistance to black Sigatoka (Mycosphaerella fijiensis Morelet) in banana by in vitro irradiation using carbon ion-beam. Plant Biotechnol 24:349–353

    Article  Google Scholar 

  • Brederode FT, Linthorst HJ, Bol JF (1991) Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol 17(6):1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary S, Sidhu GPS (2021) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep. https://doi.org/10.1007/s00299-021-02759-5

  • Chaudhary J, Alisha A, Bhatt V, Chandanshive S, Kumar N, Mir Z, Kumar A, Yadav SK, Shivaraj SM, Sonah H, Deshmukh R (2019) Mutation breeding in tomato: advances, applicability and challenges. Plants 8(5):128. https://doi.org/10.3390/plants8050128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalvi SG, Vasckar VC, Yadav A, Tawar PN, Dixit G, Prsad T, Deshmukh RB (2012) Screening of promising sugarcane somaclones for agronomic traits and smut resistance using PCR amplification of inter transcriped region (ITS) of Sporisorium scitaminae. Sugar Tech 14:68–75

    Article  Google Scholar 

  • Dalvi S, Prasad DT, Dixit G, Suprasanna P, Tawar P (2018) EMS induced in vitro mutagenesis for abiotic and biotic stress tolerance, and isolation of morphologically and biochemically distinct phenotypes in sugarcane. In: FAO-IAEA International symposium on plant mutation breeding and biotechnology, 27–31 August 2018, Vienna, Austria. Abstract no-IAEA-CN-263-166, p 33

    Google Scholar 

  • Dhankher OP, Foyer CH (2018) Climate resilient crops for improving global food security and safety. Plant Cell Environ 41(5):877–884

    Article  PubMed  Google Scholar 

  • Dhingra OD, Sinclair JB (1986) Basic plant pathology methods. CRC Press, Boca Raton, FL, p 355

    Google Scholar 

  • Do KT (2009) Socio-economic impact of mutant rice varieties in Southern Vietnam. In: Shu QY (ed) Symposium proceeding. Induced Plant Mutations in the Genomic Era. ISBN-978-82-5-106324-8, I0956e.pdf (fao.org)

    Google Scholar 

  • Dölfors F, Holmquist L, Tzelepis G, Dixelius C (2022) Rhizoctonia solani infection assay of young sugar beet and Arabidopsis plantlets. Bio-protocol 12(2):e4300. https://doi.org/10.21769/BioProtoc.4300

    Article  PubMed  PubMed Central  Google Scholar 

  • Drizou F, Neil G, Toby B, Rumiana R (2017) Development of high-throughput methods to screen disease caused by Rhizoctonia solani AG 2-1 in oilseed rape. Plant Methods 13. https://doi.org/10.1186/s13007-017-0195-1

  • Elgailani A, Ahmed T, Bakhit O, Gamar Y, Elshaikh S, Mohammed Y, Sulaiman A, Mardi H (2021) Groundnut mutants with end-of-season drought tolerance for the marginal dry of North Kordofon State, Sudan. In: Sivasankar S, Ellis N, Jankuloski L, Ingelbrecht I (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. CAB International, Wallingford, pp 243–257. https://doi.org/10.1079/9781789249095.000

    Chapter  Google Scholar 

  • FAO/IAEA Mutant Variety Database (2021) MVD – Home. https://mvd.iaea.org

  • Food and Agriculture Organization of the United Nations (2010) Global survey of agricultural mitigation projects, Mitigation of climate change in agriculture series No. 1. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Forster BP (2014) The development of “EldoNgano I”: the world’s first Ug99 resistant mutant wheat variety. IAEA Bull 55:18–11

    Google Scholar 

  • Galvez HF, Canama AO, Colle MG, Quilloy RB, de Vera ML, Bituin JL, Tiongco RL, Frankie RB, Hautea DM (2009) Development of deletion mutants of tomato Hawaii 7996 for resistance to Ralstonia solanacearum and other important traits by targeted EMS and irradiation mutagenesis. University Library, University of the Philippines at Los Baños, Los Baños

    Google Scholar 

  • Gilliham M, Able JA, Roy SJ (2017) Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J 90:898–917. https://doi.org/10.1111/tpj.13456

    Article  CAS  PubMed  Google Scholar 

  • Gunasekera TS, Paul ND, Ayres PG (2003) The effects of ultraviolet-B (UV-B: 290–320 nm) radiation on blister blight disease of tea (Camellia sinensis). Plant Pathol 46(2):179–185

    Article  Google Scholar 

  • Haq MA (2009) Development of mutant varieties of crop plants at NIAB and the impact on agricultural production in Pakistan. In: Shu QY (ed) Symposium proceeding. Induced Plant Mutations in the Genomic Era. ISBN-978-82-5-106324-8, I0956e.pdf (fao.org)

    Google Scholar 

  • Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Hussain M, Jankuloski L, Rahman MH, Malek M, Islam MDK, Raheemi MR, Dana J, Lwin KM, Ahmad F, Rizwan M, Talha GM, Asif M, Ali S (2021) Improving sustainable cotton production through enhanced resilience to climate change using mutation breeding. In: Sivasankar S, Ellis N, Jankuloski L, Ingelbrecht I (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. cabi.org. https://doi.org/10.1079/9781789249095.0000

    Chapter  Google Scholar 

  • Jain SM (2010) In vitro mutagenesis in banana (Musa sp) improvement. Acta Hortic 879:605–614

    Article  Google Scholar 

  • Jain SM (2012) Date palm biotechnology: current status and prospective - an overview. Emir J Food Agric 24(5):386–399

    Google Scholar 

  • Jain SM, Suprasanna P (2011) Induced mutations for enhancing nutrition for food production. Gene Conserv 40:201–215

    Google Scholar 

  • Joshi S, Thoday-Kennedy E, Daetwyler HD, Hayden M, Spangenberg G, Kant S (2021) High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance. PLoS One 16(7):e0254908. https://doi.org/10.1371/journal.pone.0254908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junior BJ, Latado RR, Neto TA (2008) Resistance of mutants of sweet orange induced by gamma-rays to citrus canker (Xanthomonas citri subsp citri) under artificial inoculation (IAEA-CN--167). International Atomic Energy Agency (IAEA), Vienna, pp 112–113

    Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Izabela AS, Cetner MD, Łukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. https://doi.org/10.1007/s11738-016-2113-y

    Article  CAS  Google Scholar 

  • Kaur S, Padmanabhan SY, Kaur P (1975) Induction of resistance to blast disease (Pyricularia oryzae) in the high yielding variety, Ratna (IR 8 x TKM 6). In: Induced mutations against plant diseases, Proceedings of a symposium, Vienna, 31 Jan. 4 Feb. 1977. International Atomic Energy Agency (IAEA), pp 147–156

    Google Scholar 

  • Kaur M, Thind KS, Sanghera GS, Kumar R, Kashyap L (2016) Gamma rays induced variability for economic traits, quality and red rot resistance in sugarcane (Saccharum spp.). Int J Sci Environ Technol 5(2):355–365

    Google Scholar 

  • Khadka K, Earl HJ, Raizada MN, Navabi A (2020) A physio-morphological trait-based approach for breeding drought tolerant wheat. Front Plant Sci 11:715. https://doi.org/10.3389/fpls.2020.00715

    Article  PubMed  PubMed Central  Google Scholar 

  • Kharkwal MC, Jain HK, Sharma B (1986) Induced mutations for improvement of chickpea, lentil, pea and cowpea. In: Proc. FAO/IAEA workshop on improvement of grain legume production using induced mutations, 1–5 July, Pullman, Washington (USA), 1988. IAEA, Vienna, Austria, pp 89–109

    Google Scholar 

  • Kharkwal MC, Pandey RN, Pawar SE (2004) Mutation breeding for crop improvement. In: Jain HK, Kharkwal MC (eds) Plant breeding – Mendelian to molecular approaches. Narosa Publishing House, New Delhi, pp 601–645

    Google Scholar 

  • Kharkwal MC, Nagar JP, Kala YK (2005) 547 - A high yielding chickpea (Cicer arietinum L.) mutant variety for late sown conditions of North Western Plains Zone of India. Indian J Genet 65:229–230

    Google Scholar 

  • Kharkwal MC, Gopalakrishna T, Pawar SE, Ahsanul HM (2008) Mutation breeding for improvement of food legumes. In: Kharkwal MC (ed) Food legumes for nutritional security and sustainable agriculture, vol. 1. Proc. Fourth International Food Legumes Research Conference (IFLRC-IV), Oct. 18–22, New Delhi, India. Indian Society of Genetics and Plant Breeding, New Delhi, India, pp 194–221

    Google Scholar 

  • Kim SL, Kim N, Lee H, Lee E, Cheon KS, Kim M, Baek JH, Choi I, Ji H, Yoon IS, Jung KH, Kwon TR, Kim KH (2020) High-throughput phenotyping platform for analysing drought tolerance in rice. Planta 252:38. https://doi.org/10.1007/s00425-020-03436-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiraly Z, Klement Z, Solymosy F, Vörös J (1974) Methods in plant pathology. AkadémiaiKiadó, Budapest, Hungary, p 509

    Google Scholar 

  • Kunz BA, Dando PK, Grice DM, Mohr PG, Schenk PM, Cahill DM (2008) UV-induced DNA damage promotes resistance to the biotrophic pathogen Hyaloperonospora parasitica in Arabidopsis. Plant Physiol 148(2):1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TD, Chung TBP (2021) Soybean breeding through induced mutation in Vietnam. In: Sivasankar S, Ellis N, Jankuloski L, Ingelbrecht I (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. CAB International, Wallingford, pp 40–46. https://doi.org/10.1079/9781789249095.000

    Chapter  Google Scholar 

  • Lebeda A (ed) (1986) Methods of testing vegetable crops for resistance to plant pathogens. Olomouc, Czech Republic, VHJ Sempra, VŠÚZ (Research and Breeding Institute for Vegetable Crops), p 286

    Google Scholar 

  • Lebeda A, Švábová L (2005) In vitro selection for improved plant resistance to toxin-producing pathogens. J Phytopathol 153:52–64

    Article  Google Scholar 

  • Lebeda A, Švábová L (2010) In vitro screening methods for assessing plant disease resistance. In: Mass screening techniques for selecting crops resistant to diseases. IAEA, Austria, pp 201–235

    Google Scholar 

  • Malaspina P, Giordani P, Faimali M, Garaventa F, Modenesi P (2014) Assessing photosynthetic biomarkers in lichen transplants exposed under different light regimes. Ecol Indic 43:126–131. https://doi.org/10.1016/j.ecolind.2014.02.034

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mba C, Rownak A, Jain SM, Gregorios GB, Zapata-Arias FJ (2007) Induced mutations for enhancing salinity tolerance. In: Jenks MA et al (eds) Rice, Advances in molecular breeding toward drought and salt tolerant crops, pp 413–454

    Google Scholar 

  • Mbow CC, Rosenzweig LG, Barioni TG, Herrero BM, Krishnapillai M, Liwenga E, Pradhan P, Rivera-Ferre MG, Sapkota T, Tubiello FN, Xu Y (2019) Food security. In: Shukla PR, Skea J, CalvoBuendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, Geneva

    Google Scholar 

  • Meena HP, Bainsla NK, Yadav DK (2016) Breeding for abiotic stress tolerance in crop plants, recent advances in plant stress physiology. Daya Publishing House, New Delhi

    Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mickelbart M, Hasegawa P, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251. https://doi.org/10.1038/nrg3901

    Article  CAS  PubMed  Google Scholar 

  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30(1):1–16

    Article  CAS  Google Scholar 

  • Oloriz MI, Gil V, Rojas L, Portal O, Izquierdo Y, Jiménez E, Höfte M (2012a) Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling. Plant Cell Rep 31(5):955–969. https://doi.org/10.1007/s00299-011-1216-6

    Article  CAS  PubMed  Google Scholar 

  • Oloriz MI, Gil V, Rojas L, Veitía N, Höfte M, Jiménez E (2012b) Selection and characterisation of sugarcane mutants with improved resistance to brown rust obtained by induced mutation. Crop Pasture Sci 62(12):1037–1044

    Article  Google Scholar 

  • Pande S, Siddique KHM, Kishore GK, Bayaa B, Gaur PM, Gowda CLL, Bretag TW, Crouch JH (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Aust J Agric Res 56:317–332

    Article  Google Scholar 

  • Pande S, Rao JN, Sharma M, Pathak M, Stevenson P (2010) Mass-screening techniques for the early selection of disease resistance in chickpea (Cicer arietinum). In: Mass screening techniques for selecting crops resistant to diseases. IAEA, Austria, pp 201–235

    Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 188:537. https://doi.org/10.3389/fpls.2017.00537

    Article  Google Scholar 

  • Pando LG, Eguiluz A, Jimenez J, Falconi J (2008) Barley (Hordeun vulgare) and kiwicha (Amaranthus caudatus) improvement by mutation induction in Peru. Abstract. In: Book of abstracts, FAO/IAEA international symposium on induced mutations in plants, 12–15 Aug, Vienna, Austria, p 141

    Google Scholar 

  • Pathirana R (2011) Plant mutation breeding in agriculture. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 6:1–20. https://doi.org/10.1079/pavsnnr20116032

    Article  Google Scholar 

  • Peiris R, Wickramasinghe TK, Indrasena SP (2009) M 127 – a promising tomato variety developed through induced mutation technique. In: Induced plant mutations in the genomics era. Proceedings of an international joint FAO/IAEA symposium, 2008. International Atomic Energy Agency, Vienna, Austria, pp 379–380

    Google Scholar 

  • Perez-Bueno ML, Pineda M, Barón M (2019) Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Front Plant Sci 10:1135. https://doi.org/10.3389/fpls.2019.01135

    Article  PubMed  PubMed Central  Google Scholar 

  • Phadvibulya V, Boonsirichai K, Adthalungrong A, Srithongchai W (2009) Selection for resistance to yellow vein mosaic virus disease of okra by induced mutation. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 349–351

    Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants (Basel) 8(2):34. https://doi.org/10.3390/plants8020034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy KS (2009) A new mutant for yellow mosaic virus resistance in mungbean variety Sml-668 by recurrent gamma rays irradiation. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 361–336

    Google Scholar 

  • Reddy KS, Pawar SE, Bhatia CR (1987) Screening for Powdery mildew (Erysiphe polygoni DC) resistance in mung bean (Vigna radiata. L) using excised leaves. Indian Acad Sci (Plant Sci) 97:365–369

    Google Scholar 

  • Russell GE (1978) Plant breeding for pest and disease resistance. Butterworths, London, UK, p 485

    Google Scholar 

  • Sahoo BB, Kole PC, Sahoo MR (2015) Effects of γ irradiation on leaf blight disease of some taro (Colocasia esculenta L. Schott) genotypes. Int J Bioresour Stress Manage 6(1):7–14

    Article  Google Scholar 

  • Saito A, Nakazawa N, Suzuki M (2001) Selection of mutants resistant to Alternaria blotch from in vitro-cultured apple shoots irradiated with X- and γ-rays. J Plant Physiol 158(3):391–400

    Article  CAS  Google Scholar 

  • Saraswathi M, Kannan G, Uma S, Thangavelu R, Backiyarani S (2016) Improvement of banana cv. Rasthali (Silk, AAB) against Fusarium oxysporum f. sp. cubense (VCG 0124/5) through induced mutagenesis: determination of LD50 specific to mutagen, explants, toxins and in vitro and in vivo screening for Fusarium wilt resistance. Indian J Exp Biol 54:345–353

    CAS  PubMed  Google Scholar 

  • Sarsu F, Ghanim AMA, Das P, Bahuguna RN, Kusolwa PM, Ashraf M, Singla-Pareek SL, Pareek A, Forster BP, Ingelbrecht I (2018) Pre-field screening protocols for heat-tolerant mutants in rice. Springer, Cham. ISBN 978-3-319-77338-4, https://www.springer.com/gp/book/9783319773377

    Book  Google Scholar 

  • Sarsu F, Koffi IB, Jankuloski L (2021) Contribution of induced mutation in crops to global food security. ACI Avances En Ciencias E Ingenierías 12(3):10. https://doi.org/10.18272/nv12i3.2031

    Article  Google Scholar 

  • Shahzad A, Ullah S, Dar AA, Sardar MF, Mehmood T, Tufail MA, Shakoor A, Haris M (2021) Nexus on climate change: agriculture and possible solution to cope future climate change stresses. Environ Sci Pollut Res Int 28(12):14211–14232

    Article  PubMed  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CABI, Wallingford

    Book  Google Scholar 

  • Si P, Buirchell B, Sweetingham M (2008) Induced mutation in narrow-leafed lupin improvement: an example of herbicide tolerance. Abstract. In: Book of abstracts, FAO/IAEA international symposium on induced mutations in plants, 12–15 Aug, Vienna, Austria, p 14

    Google Scholar 

  • Singh DP, Singh A (2005) Disease and insect resistance in plants. Science Publishers Inc., Enfield, NH, p 417

    Google Scholar 

  • Singh BB, Mai-Kodomi Y, Terao T (1999) A simple screening method for drought tolerance in cowpea. Indian J Genet Plant Breed 59:211–220

    Google Scholar 

  • Sivasankar S, Heng LH, Kang S (2020) Agriculture: improving crop production. https://doi.org/10.1016/B978-0-12-409548-9.12323-1

  • Soeranto SH, Indriatama WM (2021) Mutation breeding of sorghum to support. In: Sivasankar S, Ellis N, Jankuloski L, Ingelbrecht I (eds) Mutation breeding, genetic diversity and crop adaptation to climate change. CAB International, Wallingford, pp 120–126. https://doi.org/10.1079/9781789249095.000

    Chapter  Google Scholar 

  • Spencer-Lopes MM, Forster BP, Jankuloski L (2018) Manual on mutation breeding. ISBN: 978-92-5-130526-3. http://www.fao.org

  • Suprasanna P, Mirajkar SJ, Patade VY, Jain SM, Tomlekova NB, Kozgar MI, Wani MR (2014) Induced mutagenesis for improving plant abiotic stress tolerance. Wageningen Acad Publ, Wageningen

    Book  Google Scholar 

  • Suprasanna P, Mirajkar SJ, Bhagwat SG (2015) Induced mutations and crop improvement. Plant diversity, organization, function and improvement, Plant biology and biotechnology. Springer, India, pp 593–617

    Google Scholar 

  • Svabova L, Lebeda A (2005) In vitro selection for improved plant resistance to toxin-producing pathogens. J Phytopathol 153:52–64

    Article  CAS  Google Scholar 

  • TNAU (2013) Crop improvement: screening methods for specific traits - A. Screening techniques for pest and disease resistance. http://www.agritech.tnau.ac.in/crop_improvement/crop_imprv_screen.html

  • Trigiano RN, Windham MT, Windham AS (2004) Plant pathology. Concepts and laboratory exercises. CRC Press, Boca Raton, FL, p 413

    Google Scholar 

  • Vinh MQ, Thinh DK, Bang DT, At DH, Ham LH (2009) Current status and research directions of induced mutation application to seed crops improvement in Vietnam, 2009. In: Shu QY (ed) Symposium proceeding. Induced Plant Mutations in the Genomic Era. ISBN-978-82-5-106324-8, I0956e.pdf (fao.org)

    Google Scholar 

  • Yamagishi H, Ashizawa M, Yui S (1985) Screening techniques of disease resistance in cruciferae vegetables. Jpn Agr Res Q 19:185–189

    Google Scholar 

  • Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J (2020) Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol Plant 13:187–214

    Article  CAS  PubMed  Google Scholar 

  • Zambrano AY, Demey JR, Fuchs M, González V, Rea R, De Sousa O, Gutierrez Z (2003) Selection of sugarcane plants resistant to SCMV. Plant Sci 165(1):221–225

    Article  CAS  Google Scholar 

  • Zhang MX, Xu JL, Luo RT, Shi D, Li ZK (2003) Genetic analysis and breeding use of blast resistance in a japonica rice mutant R917. Euphytica 130:71–76

    Article  CAS  Google Scholar 

  • Zhang C, Mansfeld BN, Lin Y-C, Grumet R (2021) Quantitative high-throughput, real-time bioassay for plant pathogen growth in vivo. Front Plant Sci 12:637190. https://doi.org/10.3389/fpls.2021.637190

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarsu, F., Penna, S., Nikalje, G.C. (2023). Strategies for Screening Induced Mutants for Stress Tolerance. In: Penna, S., Jain, S.M. (eds) Mutation Breeding for Sustainable Food Production and Climate Resilience. Springer, Singapore. https://doi.org/10.1007/978-981-16-9720-3_6

Download citation

Publish with us

Policies and ethics