Skip to main content

Crucifer’s Pathogens Genome

  • Chapter
  • First Online:
Genomics of Crucifer's Host- Pathosystem

Abstract

The information on genome sequences, analysis and assembly of limited pathogens of crucifers has been generated and made available. It has given deeper insight into the molecular and biological functions of host–pathogen interactions in different ecological situations in nature and directed in the modern agricultural operations. The Albugo candida genome size is 45.3 Mb which is significantly smaller than a comparable biotrophs, Hyaloperonospora arabidopsidis. A. candida genome is deficient in enzymes required for nitrate and sulfate assimilation and has a reduced number of cell wall degrading enzymes. It has low number (26) of RXLR effector-like genes. Alternaria brassicae genome assembly consists of 17 contigs of 34.14 Mb sequences. The contigs ranges in length from 66.7 to 7.01 Mb. Of the 17 contigs, 1 represents the mitochondrial genome. The assembly contains nine complete chromosomes. The Colletotrichum higginsianum genome is 53.4 Mb in size and distributed among 12 chromosomes including two mini-chromosomes less than 1 Mb. The fungi causing powdery mildew disease has about four times larger genome size than those of other ascomycetes. The genome of G. orontii is 160 Mb in size. The fungi Fusarium oxysporum genome is 57.3 Mb in size with 583 scaffolds. The G:C content is 47.4%. The genome analysis of Hyaloperonospora has revealed phylogeny of H. parasitica with other species infecting cruciferous genera and species along with major species clusters in it. The final version of H. arabidopsidis genome of Emoy 2 isolates assembly consists of 81.6 Mb (V8.3.2) comprising of 42% of the Hpa genome. The genome assemblies for two isolates of H. brassicae differing for their virulence comprise of genome size of 72.762 and 76.950 Mb and 6470 and 6470 scaffolds. Leptosphaeria maculans genome is 45 Mb in size and organized in an unused patchwork fashion with G:C rich blocks known as isochore structure. There is reduction in intergenic space with multiple overlapping un-translated regions (UTRS) in L. maculans. Plasmodiophora brassicae genome is compact and small in size of 24.2–25.5 Mb with high gene density. Thirteen chitin syntheses gene have been identified. The white stem rot pathogen Sclerotinia sclerotiorum genome is 38.3 Mb in size and contains 679 sequence contigs giving 8X sequencing coverage of the genome. A complete assembly of S. sclerotiorum genome contains an additional 80S, 146 bp. It produces a number of extracellular pectin–degrading enzymes and biosyntheses genes of phytotoxins and other secondary metabolites. Bacterium Xanthomonas campestris comprises circular chromosomes of approximately 5,000,000 base pairs (bp), have a high G + C content and do not carry plasmids. Genome-wide comparisons have revealed three secretion system (type I, III, IV) associated with pathogenesis. The genome of Turnip Mosaic Virus (TuMV) isolates are 9798 nt in length, few are one to three nucleotide shorter in the terminal UTR’s. Genome sequencing, comparative genome, transcriptome and secretome analysis of pathogenic species, clades and isolates facilitates determination of phylogeny, host specificity, pathogenicity factors/genes, evolution period, clonal reproduction, genetic exchange, and molecular genetical mechanisms and events in all host-pathosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJ, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D (2013) Hybridization and speciation. J Evol Biol 26:229–246. https://doi.org/10.1111/j.1420-9101.2012.02599.x

    Article  CAS  PubMed  Google Scholar 

  • Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Mol Plant Microbe Interact 12(12):1031–1043

    Article  CAS  PubMed  Google Scholar 

  • Alex LA, Borkovich KA, Simon MI (1996) Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc Natl Acad Sci U S A 93:3416–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7(8):e1002230. https://doi.org/10.1371/journal.pgen.1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amselem J, Lebrun MH, Quesneville H (2015) Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes. BMC Genomics 16(1):141

    Article  PubMed  PubMed Central  Google Scholar 

  • An SQ, Lu GT, Su HZ, Li RF, He YQ, Jiang BL, Tang DJ, Tang JL (2011) Systematic mutagenesis of all predicted GntR genes in Xanthomonas campestris pv. campestris reveals a gntR family transcriptional regulator controlling hyper-sensitive response and virulence. Mol Plant-Microbe Interact 24:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Anderson RG, Deb D, Fedkenheuer K, McDowell JM (2015) Recent progress in RXLR effector research. Mol Plant-Microbe Interact 28:1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Ando S, Yamada T, Asano T, Kamachi S, Tsushima S, Hagio T, Tabei Y (2006) Molecular cloning of PbSTKLl gene from Plasmodiophora brassicae expressed during club root development. J Phytopathol 154:185–189

    Article  CAS  Google Scholar 

  • Antipov D, Korobeynikov A, McLean JS, Pevzner PA (2016) HYBRIDSPADES: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32:1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Asman AKM, Fogelqvist J, Vetukuri RR, Dixelius C (2016) Phytophthora infestans Argonaute 1 binds microRNA and small RNAs from effector genes and transposable elements. New Phytol 211:993–1007

    Article  PubMed  Google Scholar 

  • Atreya CD, Raccah B, Pirone TP (1990) A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology 178:161–165

    Article  CAS  PubMed  Google Scholar 

  • Avenot H, Simoneau P, Iacomi-Vasilescu B, Bataille-Simoneau N (2005) Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance. Curr Genet 47:234–243. https://doi.org/10.1007/s00294-005-0568-2

    Article  CAS  PubMed  Google Scholar 

  • Ayhan DH, Lopez-Díaz C, Di Pietro A, Ma LJ (2018) Improved assembly of reference genome Fusarium oxysporum f. sp. lycopersici strain Fol4287. Microbiol Resour Announc 7:e00910–e00918

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker KF (1948) Fusarium wilt of garden stock (Mathiola incana). Phytopathology 38:399–403

    Google Scholar 

  • Balesdent M, Barbetti M, Li H, Sivasithamparam K, Gout L, Rouxel T (2005) Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology 95:1061–1071

    Article  CAS  PubMed  Google Scholar 

  • Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJG, Slater H, Dow JM, Williams P, Daniels MJ (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566

    Article  CAS  PubMed  Google Scholar 

  • Barbetti MJ, Carter EC (1986) Diseases of rapeseed. In: Lawson JA (ed) Rapeseed in Western Australia. No. 4105. WA Department of Agriculture, Perth, WA, pp 14–19

    Google Scholar 

  • Barbetti MJ, Banga SS, Salisbury PA (2012) Challenges for crop production and management from pathogen biodiversity and diseases under current and future climate scenarios—case study with oilseed Brassicas. Field Crop Res 127:225–240

    Article  Google Scholar 

  • Barr ME (1987) Prodromus to class Loculoascomycetes. Hamilton I. NewelL Inc., Amherst, MA

    Google Scholar 

  • Bashi ZD, Gyawali S, Bekkaoui D, Coutu C, Lee L, Poon J, Rimmer SR, Khachatourians GG, Hegedus DD (2016) The Sclerotinia sclerotiorum Slt2 mitogen-activated protein kinase ortholog, SMK3, is required for infection initiation but not lesion expansion. Can J Microbiol 850:836–850. https://doi.org/10.1139/cjm-2016-0091

    Article  CAS  Google Scholar 

  • Basso J, Dallaire P, Charest PJ, Devantier Y, Laliberte JF (1994) Evidence for an internal ribosome entry site within the 59 non-translated region of turnip mosaic potyvirus RNA. J Gen Virol 75:3157–3165

    Article  CAS  PubMed  Google Scholar 

  • Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RH, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang Y, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JD, McDowell JM, Beynon J, Tyler BM (2010) Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genomed. Science 330:1549–1551. https://doi.org/10.1126/Science1195203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker A, Katzen F, Puhler A, Ielpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50:145–152

    Article  CAS  PubMed  Google Scholar 

  • Belmas E, Briand M, Kwasiborski A, Colou J, N’Guyen G, Iacomi B, Grappin P, Campion C, Simoneau P, Barret M, Guillemette T (2018) Genome sequence of the necrotrophic plant pathogen Alternaria brassicicola Abra43. Genome Announce 6:e01559–e01517

    Article  Google Scholar 

  • Berger PH, Barnett OW, Brunt AA et al (2000) Family Potyviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL et al (eds) Virus taxonomy: Seventh report of the international committee on taxonomy of viruses. Academic Press, San Diego, CA, pp 703–724

    Google Scholar 

  • Bhatnagar D, Ehrlich KC, Cleveland TE (2003) Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl Microbiol Biotechnol 61:83–93. https://doi.org/10.1007/s00253-002-1199-x

    Article  CAS  PubMed  Google Scholar 

  • Bi K, He Z, Gao Z, Zhao Y, Fu Y, Cheng J, Xie J, Jiang D, Chen T (2016) Integrated omics study of lipid droplets from Plasmodiophora brassicae. Sci Rep 6:36965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi K, Chen T, He Z, Gao Z, Zhao Y, Liu H, Fu Y, Xie J, Cheng J, Jiang D (2019) Comparative genomics reveals the unique evolutionary status of Plasmodiophora brassicae and the essential role of GPCR signaling pathways. Phytopathol Res 1:12

    Article  Google Scholar 

  • Biemont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443(7111):521–524

    Article  CAS  PubMed  Google Scholar 

  • Bischoff M (1994) PCR- und RAPD-Analysis an Plasmodiophora brassicae Woronin und Vertretern der Gattung Brassica L.: Identifikation einer Nitrilasesequenz in Brassicaceen. Diploma Thesis, J.W. Goethe-Universität, Frankfurt am Main, Germany

    Google Scholar 

  • Bittner-Eddy PD, Allen RL, Rehmany AP, Birch P, Beynon JL (2003) Use of suppression subtractive hybridization to identify downy mildew genes expressed during infection of Arabidopsis thaliana. Mol Plant Pathol 4(6):501–507. https://doi.org/10.1046/j.1364-3703.2003.00194.x

    Article  CAS  PubMed  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193:5450–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Pathogen profile: Sclerotinia sclerotiorum (Lib.) de Bary, biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Bosland PW, Williams PH (1987) An evaluation of Fusarium oxysporum from crucifers based on pathogenicity, isozyme polymorphism, vegetative compatibility, and geographic origin. Can J Bot 65:2067–2073

    Article  Google Scholar 

  • Bosland PW, Williams PH (1988) Pathogenicity of geographic isolates of Fusarium oxysporum from crucifers on a differential set of crucifer seedlings. J Phytopathol 123:63–68

    Article  Google Scholar 

  • Braselton JP (1982) Karyotypic analysis of Plasmodiophora brassicae based on serial thin sections of pachytene nuclei. Can J Bot 60:403–408

    Article  Google Scholar 

  • Brodmann D, Schuller A, Ludwig-Muller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant-Microbe Interact 15(7):693–700

    Article  CAS  PubMed  Google Scholar 

  • Bryan RJ, Trese AT, Braselton JP (1996) Molecular karyotypes for the obligate, intracellular, plant pathogens, Plasmodiophora brassicae and Spongospora subterranea. Mycologia 88:358–360

    Article  CAS  Google Scholar 

  • Bryngelsson T, Gustafsson M, Green B, Lind C (1988) Uptake of host DNA by the parasitic fungus Plasmodiophora brassicae. Physiol Mol Plant Pathol 33:163–171

    Article  CAS  Google Scholar 

  • Buchanan-Wollaston V, Ainsworth C (1997) Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridization. Plant Mol Biol 33:821–834

    Article  CAS  PubMed  Google Scholar 

  • Buczacki ST (1983) Plasmodiophora. An interrelationship between biological and practical problems. In: Buczacki ST (ed) Zoosporic plant pathogens. Academic Press, London, pp 161–191

    Google Scholar 

  • Buhariwalla S, Mithen R (1995) Cloning of a Brassica repetitive DNA element from resting spores of Plasmodiophora brassicae. Physiol Mol Plant Pathol 47:95–101

    Article  CAS  Google Scholar 

  • Buhariwalla S, Greaves S, Magrath R, Mithen R (1995) Development of specific PCR primers for the amplification of polymorphic DNA from the obligate root pathogen Plasmodiophora brassicae. Physiol Mol Plant Pathol 47:83–94

    Article  CAS  Google Scholar 

  • Bull CT, Koike ST (2015) Practical benefits of knowing the enemy: modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant pathogenic bacteria. Annu Rev Phytopathol 53:157–180. https://doi.org/10.1146/annurev-phyto-080614-120122

    Article  CAS  PubMed  Google Scholar 

  • Bulman S, Siemens J, Ridgway HJ, Eady C, Conner AJ (2006) Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS Microbiol Lett 264:198–204

    Article  CAS  PubMed  Google Scholar 

  • Bulman S, Ridgway HJ, Eady C, Conner AJ (2007) Intron-rich gene structure in the intracellular plant parasite Plasmodiophora brassicae. Protist 158:423–433

    Article  CAS  PubMed  Google Scholar 

  • Cameron DL, Schröder J, Penington JS, Do H, Molania R, Dobrovic A, Speed TP, Papenfuss AT (2017) GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res 27:2050–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canonne J, Marino D, Jauneau A, Pouzet C, Briere C, Roby D, Rivas S (2011) The Xanthomonas type III effector XopD targets the Arabidopsis transcription factor MYB30 to suppress plant defense. Plant Cell 23:3498–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canonne J, Pichereaux C, Marino D, Roby D, Rossignol M, Rivas S (2012) Identification of the protein sequence of the type III effector Xop D from theB100 strain of Xanthomonas campestris pv campestris. Plant Signal Behav 7:184–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao T, Srivastava S, Rahman MH, Kav NNV, Hotte N, Deyholos MK, Strelkov SE (2008) Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci 174:97–115

    Article  CAS  Google Scholar 

  • Carbone I, Anderson JB, Kohn LM (1995) A group-I intron in the mitochondrial small subunit ribosomal RNA gene of Sclerotinia sclerotiorum. Curr Genet 27:166–176

    Article  CAS  PubMed  Google Scholar 

  • Carzaniga R, Bowyer P, O’Connell RJ (2001) Production of extracellular matrices during development of infection structures by the downy mildew Peronospora parasitica. New Phytol 149:83–93

    Article  CAS  PubMed  Google Scholar 

  • Castaneda A, Reddy JD, El-Yacoubi B, Gabriel DW (2005) Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Mol Plant–Microbe Interact 18:1306–1317

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T, Chao EE, Lewis R (2018) Multigene phylogeny and cell evolution of chromist infra kingdom Rhizaria: contrasting cell organization of sister phyla Cercozoa and Retaria. Protoplasma 255(5):1517–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerniglia CE, Hebert RL, Szaniszlo PJ, Gibson DT (1978) Fungal transformation of naphthalene. Arch Microbiol 117:135–143. https://doi.org/10.1007/BF00402301

    Article  CAS  PubMed  Google Scholar 

  • Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser micro dissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc Natl Acad Sci U S A 107:460–465. https://doi.org/10.1073/pnas.0912492107

    Article  PubMed  Google Scholar 

  • Chen C, Harel A, Gorovoits R, Yarden O, Dickman MB (2004) MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and CAMP sensing. Mol Plant-Microbe Interact 17:404–413. https://doi.org/10.1094/MPMI.2004.17.4.404

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Ullah C, Reichelt M, Gershenzon J, Hammerbacher A (2019) Sclerotinia sclerotiorum circumvents flavonoid defenses by catabolizing flavonol glycosides and aglycones. Plant Physiol 180:1975–1987. https://doi.org/10.1104/pp.19.00461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YJ, Hong SB, Shin HD (2003) Diversity of the Hyaloperonospora parasitica complex from core brassicaceous hosts based on ITS rDNA sequences. Mycol Res 107:1314–1322

    Article  CAS  PubMed  Google Scholar 

  • Choi HW, Choi YJ, Kim DS, Hwang IS, Choi DS, Kim NH, Lee DH, Shin HD, Nam J, Hwang BK (2009a) First report of powdery mildew caused by Erysiphe cruciferarum on Arabidopsis thaliana in Korea. Plant Pathol J 25(1):86–90

    Article  CAS  Google Scholar 

  • Choi YJ, Shin HD, Hong SB, Thines M (2009b) The host range of Albugo candida extends from Brassicaceae through Cleomaceae to Capparaceae. Mycol Prog 8:329–335

    Article  Google Scholar 

  • Choi YJ, Thines M, Shin HD (2011) A new perspective on the evolution of white blister rust: Albugo s.str. (Albugonales; Oomycota) is not restricted to Brassicales but also present on Fabales. Org Divers Evol 11:193–199

    Article  Google Scholar 

  • Chu M, Lopez-Moya JJ, Llave-Correas C, Pirone TP (1997) Two separate regions in the genome of the tobacco etch virus contain determinants of the wilting response of tabasco pepper. Mol Plant-Microbe Interact 10:472–480

    Article  CAS  PubMed  Google Scholar 

  • Ciaghi S, Neuhauser S, Schwelm A (2018) Draft genome resource for the potato powdery scab pathogen Spongospora subterranea. Mol Plant-Microbe Interact 31(12):1227–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho PS, Vicente JG, Monteiro AA, Holub EB (2012) Pathotypic diversity of Hyaloperonospora brassicae collected from Brassica oleracea. Eur J Plant Pathol 134:763–771. https://doi.org/10.1007/s10658-012-0052-z

    Article  Google Scholar 

  • Cole SJ, Diener AC (2013) Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f.sp. matthioli. New Phytol 200:172–184

    Article  CAS  PubMed  Google Scholar 

  • Cooper AJ, Latunde-Dada AO, Woods-Tor A, Lynn J, Lucas JA, Crute IR, Holub EB (2008) Basic compatibility of Albugo candida in Arabidopsis thaliana and Brassica juncea causes broad-spectrum suppression of innate immunity. Mol Plant-Microbe Interact 21:745–756. https://doi.org/10.1094/MPMI-21-6-0745

    Article  CAS  PubMed  Google Scholar 

  • Coplin DL, Cook D (1990) Molecular genetics of extracellular polysaccharide biosynthesis in vascular phytopathogenic bacteria. Mol Plant–Microbe Interact 3:271–279

    Article  CAS  PubMed  Google Scholar 

  • Corbett M, Virtue S, Bell K, Birch P, Burr T, Hyman L, Lilley K, Poock S, Toth I, Salmond G (2005) Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant-Microbe Interact 18:334–342

    Article  CAS  PubMed  Google Scholar 

  • Cozijnsen AJ, Howlett BJ (2003) Characterization of the mating-type locus of the plant pathogenic ascomycete Leptosphaeria maculans. Curr Genet 43:351–357. https://doi.org/10.1007/s00294-003-0391-6

    Article  CAS  PubMed  Google Scholar 

  • Craig L, Pique ME, Tainer JA (2004) Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378

    Article  CAS  PubMed  Google Scholar 

  • Cramer RA, Mauricio La Rota C, Cho Y, Thon M, Craven KD, Knudson DL, Mitchell TK, Lawrence CB (2006) Bioinformatic analysis of expressed sequence tags derived from a compatible Alternaria brassicicola –Brassica oleracea interaction. Mol Plant Pathol 7(2):113–124

    Article  CAS  PubMed  Google Scholar 

  • Crane JL, Shearer CA (1991) A nomenclature of Leptosphaeria V. Cesati & G. de Notaris. IL Nat Hist Surv Bull 34:1–355

    Google Scholar 

  • Cresnar B, Petric S (2011) Cytochrome P450 enzymes in the fungal kingdom. Biochim Biophys Acta Prot Proteom 1814:29–35. https://doi.org/10.1016/j.bbapap.2010.06.020

    Article  CAS  Google Scholar 

  • Cui W, Beever RE, Parkes SL, Templeton MD (2004) Evolution of an osmo sensing histidine kinase in field strains of Botryotinia fuckeliana (Botrytis cinerea) in response to dicarboximide fungicide usage. Phytopathology 94:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Cunnac S, Lindeberg M, Collmer A (2009) Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12:53–60

    Article  CAS  PubMed  Google Scholar 

  • Da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, Do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, De Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463

    Article  PubMed  Google Scholar 

  • Dallery JF, Lapalu N, Zampounis A, Pigne S, Luyten I, Amselem J, Wittenberg AHJ, Zhou S, de Queiroz MV, Robin GP, Auger A, Hainaut M, Henrissat B, Kim KT, Lee YH, Lespinet O, Schwartz DC, Thon MR, O’Connell RJ (2017) Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters. BMC Genomics 18:667

    Article  PubMed  PubMed Central  Google Scholar 

  • Dallot S, Quiot-Douine L, Saenz P, Cervera MT, Garcia J-A, Quiot J-B (2001) Identification of Plum pox virus determinants implicated in specific interactions with different Prunus spp. Phytopathology 91:159–164

    Article  CAS  PubMed  Google Scholar 

  • Dang HX, Pryor B, Peever T, Lawrence CB (2015) The Alternaria genome database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics 16:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Daval S, Belcour A, Gazengel K, Legrand L, Gouzy J, Cottret L, Lebreton L, Aigu Y, Mougel C, Manzanares-Dauleux MJ (2019) Computational analysis of the Plasmodiophora brassicae genome: mitochondrial sequence description and metabolic pathway database design. Genomics 111(6):1629–1640. https://doi.org/10.1016/j.ygeno.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  • De Silva A, Bolton MD, Nelson BD (2005) Transformation of Sclerotinia sclerotiorum with the green fluorescent protein gene and expression of fluorescence of host tissues. Phytopathology 95:523

    Google Scholar 

  • Del Ponte EM, Eduardo S, Lehner MS, Ju TJDP, Mizubuti G, Pethybridge SJ (2017) Independently founded populations of Sclerotinia sclerotiorum from a tropical and a temperate region have similar genetic structure. PLoS One 12:e0173915

    Article  PubMed  PubMed Central  Google Scholar 

  • Delourme R, Pilet-Nayel ML, Archipiano M, Horvais R, Tanguy X, Rouxel T, Brun H, Renard M, Balesdent MH (2004) A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology 94:578–583. https://doi.org/10.1094/PHYTO.2004.94.6.578

    Article  CAS  PubMed  Google Scholar 

  • Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghy S, Rollins J, van Kan J, Seidl MF, Faino L, Mbengue M, Navaud O, Raffaele S, Hammond-Kosack K, Heard S, Oliver R (2017) The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol 9(3):593–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diener AC (2013) Routine mapping of Fusarium wilt resistance in BC1 populations of Arabidopsis thaliana. BMC Plant Biol 13:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Diener AC, Ausubel FM (2005) Resistance to Fusarium oxysporum 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dion Y, Gugel RK, Rakow GFW, Séguin-Swartz G, Landry BS (1995) RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Desm.) Ces. et de Not.] in canola (Brassica napus L.). Theor Appl Genet 91:1190–1194. https://doi.org/10.1007/BF00220928

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Raffaele S, Kamoun S (2015) The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev 35:57–65

    Article  CAS  PubMed  Google Scholar 

  • Doughan B, Rollins JA, Avery SV (2016) Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis. Fungal Biol 120:1105–1117. https://doi.org/10.1016/j.funbio.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  • Dow JM, Osbourn AE, Wilson TJ, Daniels MJ (1995) A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis. Mol Plant Microbe Interact 8:768–777

    Article  CAS  PubMed  Google Scholar 

  • Dow JM, Feng JX, Barber CE, Tang JL, Daniels MJ (2000) Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris. Microbiology 146:885–891

    Article  CAS  PubMed  Google Scholar 

  • Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100:10995–11000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drès M, Mallet J (2002) Host races in plant–feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond Ser B Biol Sci 357:471–492. https://doi.org/10.1098/rstb.2002.1059

    Article  Google Scholar 

  • Dry IB, Yuan KH, Hutton DG (2004) Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Fungal Genet Biol 41:102–108

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Ge C, Liu S, Wang J, Zhou M (2013) A two-component histidine kinase shk1 controls stress response, sclerotial formation and fungicide resistance in Sclerotinia sclerotiorum. Mol Plant Pathol 14:708–718. https://doi.org/10.1111/mpp.12041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunbar M, Adhikari A, Kontz B, Varenhorst A, Nleya T, Byamukama E, Mathew F (2017) First report of Alternaria black spot caused by Alternaria alternate on Brassica carinata in South Dakota. Plant Dis 101:1951

    Article  Google Scholar 

  • Ekblom R, Wolf JBW (2014) A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7:1026–1042

    Article  PubMed  PubMed Central  Google Scholar 

  • Erental A, Harel A, Yarden O (2007) Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. Mol Plant-Microbe Interact 20:944–954. https://doi.org/10.1094/MPMI-20-8-0944

    Article  CAS  PubMed  Google Scholar 

  • Eriksson OE, Hawksworth DL (1991) Outline of the ascomycetes -1990. Systema Ascomycetum 9:39–271

    Google Scholar 

  • Eshel D, Miyara I, Ailing T, Dinoor A, Prusky D (2002) pH regulates endo-glucanase expression and virulence of Alternaria alternata in Persimmon fruit. Mol Plant-Microbe Interact 15:774–779

    Article  CAS  PubMed  Google Scholar 

  • Faggian R, Bulman SR, Lawrie AC, Porter IJ (1999) Specific polymerase chain reaction primers for the detection of Plasmodiophora brassicae in soil and water. Phytopathology 89:392–397

    Article  CAS  PubMed  Google Scholar 

  • Fahling M, Graf H, Siemens J (2003) Pathotype separation of Plasmodiophora brassicae by the host plant. J Phytopathol 151(7–8):425–430. https://doi.org/10.1046/j.1439-0434.2003.00744.x

    Article  Google Scholar 

  • Faino L, Seidl MF, Datema E, van den Berg GCM, Janssen A, Wittenberg AHJ, Thomma BPHJ (2015) Single-Molecule Real-Time sequencing combined with optical mapping yields completely finished fungal genome. MBio 6:e00936–e00915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faino L, Seidi MF, Shi-Kunne X, Pauper M, van den Berg GCM, Wittenberg AHJ, Thomma BPHJ (2016) Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res 26:1091–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H, Yu G, Liu Y, Zhang X, Liu J, Zhang Y, Rollins JA, Sun F, Pan H (2017) An atypical fork head-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. Mol Plant Pathol 18:963–975. https://doi.org/10.1111/mpp.12453

    Article  CAS  PubMed  Google Scholar 

  • Fargier E, Manceau C (2007) Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol 56:805–818

    Article  Google Scholar 

  • Farris JJ (1989) The retention index and the rescaled consistency index. Cladistics 5:417–419

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the Boots trap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Feng J, Hwang SF, Strelkov SE (2013) Assessment of gene expression profiles in primary and secondary zoospores of Plasmodiophora brassicae by dot blot and real-time PCR. Microbiol Res 168(8):518–524

    Article  CAS  PubMed  Google Scholar 

  • Feng BZ, Zhu XP, Fu L, Lv RF, Storey D, Tooley P, Zhang XG (2014) Characterization of necrosis-inducing NLP proteins in Phytophthora capsici. BMC Plant Biol 14:126. https://doi.org/10.1186/1471-2229-14-126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira ME, Rimmer SR, Williams PH, Osborn TC (1995) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85:213–217

    Article  CAS  Google Scholar 

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006a) World-wide importance of Phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15

    Article  Google Scholar 

  • Fitt BDL, Evans N, Howlett BJ, Cooke M (2006b) Sustainable strategies for managing Brassica napus (oilseed rape) resistance to Leptosphaeria maculans (phoma stem canker), vol 114. Springer, New York, NY

    Book  Google Scholar 

  • Flor HH (1971) Current status of gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fomeju FB, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R (2014) Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker. BMC Genome 15:498

    Article  Google Scholar 

  • Fu L, Zhu C, Ding X, Yang X, Morris PF, Tyler BM, Zhang X (2015) Characterization of cell-death-inducing members of the pectate lyase gene family in Phytophthora capsici and their contributions to infection of pepper. Mol Plant-Microbe Interact 28:766–775

    Article  CAS  PubMed  Google Scholar 

  • Fudal I, Ross S, Brun H, Besnard A-L, Ermel M, Kuhn M-L, Balesdent M-H, Rouxel T (2009) Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans. Mol Plant-Microbe Interact 22:932–941. https://doi.org/10.1094/MPMI-22-8-0932

    Article  CAS  PubMed  Google Scholar 

  • Fujimura M, Ochiai N, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2000) Fungicide resistance and osmotic stress sensitivity in os mutants of Neurospora crassa. Pestic Biochem Physiol 67(2):125–133. https://doi.org/10.1006/pest.2000.2479

    Article  CAS  Google Scholar 

  • Fujimura M, Ochiai N, Oshima M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2003) Putative homologs of SSK22 MAPKK kinase and PBS2 MAPK kinase of Saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in Neurospora crassa. Biosci Biotechnol Biochem 67:186–191

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa I (1990) Turnip mosaic virus strains in cruciferous crops in Japan. Jpn Agric Res Q 23:289–293

    Google Scholar 

  • Gabriel DW (1999) Why do pathogens carry avirulence genes? Physiol Mol Plant Pathol 55:205–214

    Article  CAS  Google Scholar 

  • Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K (2013) Comparative genomic and transcriptomic analysis reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197:1236–1249. https://doi.org/10.1111/nph.12085

    Article  CAS  PubMed  Google Scholar 

  • Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv. http://arxiv.org/abs/1207.3907v2

  • Gaumann E (1918) Uber die Formen der Peronospora parasitica (Pers.) Fries. Ein Beitrag zur Speziesfrage bei den parasitischen Pilzen. Beih Bot Centralbl 34(1):395–533

    Google Scholar 

  • Gaumann E (1923) Contributions toward a monograph of the genus Peronospora corda. Beitrage zur kryptogamenflora de schweiz 5:360

    Google Scholar 

  • Gaumann E (1926) Uber die Spezialisierung des falschen Mehltaus (Peronospora brassicae Gm.) auf dem Kohl und seinen Verwandten. Landwirtschaftliches Jahrbuch der Schweiz 40:463–468

    Google Scholar 

  • Ge XT, Li YP, Wan ZJ, You MP, Finnegan PM, Banga SS, Sandhu PS, Garg H, Salisbury PA, Barbetti MJ (2012) Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes. Field Crop Res 127:248–258. https://doi.org/10.1016/j.fcr.2011.11.022

    Article  Google Scholar 

  • George H, Hirschi K, Van Etten H (1998) Biochemical properties of the products of cytochrome P450 genes (PDA) encoding pisatin demethylase activity in Nectria haematococca. Arch Microbiol 170:147–154. https://doi.org/10.1007/s002030050627

    Article  CAS  PubMed  Google Scholar 

  • Ghanbarnia K, Fudal I, Larkan NJ, Links MG, Balesdent MH, Profotova B, Fernando WGD, Borhan MH (2015) Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Mol Plant Pathol 16:699–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs A, Ohshima K (2010) Potyviruses in the digital revolution. Annu Rev Phytopathol 48:205–223. https://doi.org/10.1146/annurev-phyto-073009-114404

    Article  CAS  PubMed  Google Scholar 

  • Goker M, Riethmüller A, Voglmayr H, Weiss M, Oberwinkler F (2004) Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycol Prog 3:83–94

    Article  Google Scholar 

  • Goker M, Voglmayr H, Oberwinkler F (2009) Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycol Res 113:308–325. https://doi.org/10.1016/j.mycres.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  • Golicz AA, Martinez PA, Zander M, Patel DA, Van De Wouw AP, Visendi P, Fitzgerald TL, Edwards D, Batley J (2015) Gene loss in the fungal canola pathogen Leptosphaeria maculans. Funct Integr Genomics 15:189–196

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Campo C (1999) Taxonomy. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier Science, Amsterdam, pp 3–32

    Chapter  Google Scholar 

  • Goodwin S, McPherson JD, Mc Combie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  • Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L, Balesdent MH, Rouxel T (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol Microbiol 60:67–80

    Article  CAS  PubMed  Google Scholar 

  • Gout L, Kuhn ML, Vincenot L, Bernard-Samain S, Cattolico L, Barbetti M, Moreno-Rico O, Balesdent MH, Rouxel T (2007) Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen Leptosphaeria maculans. Environ Microbiol 9:2978–2992

    Article  CAS  PubMed  Google Scholar 

  • Graf H, Fahling M, Siemens J (2004) Chromosome polymorphism of the obligate biotrophic parasite Plasmodiophora brassicae. J Phytopathol 152:86–91

    Article  CAS  Google Scholar 

  • Grandaubert J, Lowe RGT, Soyer JL, Schoch CL, van de Wouw AP, Fudal I, Robbertse B, Lapalu N, Links MG, Ollivier B, Linglin J, Barbe V, Mangenot S, Cruaud C, Borhan H, Howlett BJ, Balesdent M-H, Rouxel T (2014) Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal pathogens. BMC Genomics 15:891. https://doi.org/10.1186/1471-2164-15-891

    Article  PubMed  PubMed Central  Google Scholar 

  • Green SK, Deng TC (1985) Turnip mosaic virus strains in cruciferous hosts in Taiwan. Plant Dis 69:28–31

    Article  Google Scholar 

  • Gudesblat GE, Torres PS, Vojnov AA (2009) Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol 149:1017–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimaraes RL, Stotz HU (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136:3703–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Jagannathan V, Lakshmikumaran M (1990) A novel AT-rich tandem repeat of Brassica nigra. Plant Sci 68:223–229

    Article  CAS  Google Scholar 

  • Gurlebeck D, Thieme F, Bonas U (2006) Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J Plant Physiol 163:233–255

    Article  PubMed  Google Scholar 

  • Guy E, Genissel A, Hajri A, Chabannes M, David P, Carrère S, Lautier M, Roux B, Boureau T, Arlat M, Poussier S, Noël LD (2013) Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on Arabidopsis revealed by association and reverse genetics. mBio 4(3):e00538–e00512. https://doi.org/10.1128/mBio.00538-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyon K, Balague C, Roby D, Raffaele S (2014) Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics 15:336

    Article  PubMed  PubMed Central  Google Scholar 

  • Gyawali S, Harrington M, Durkin J, Horner K, Parkin IAP, Hegedus DD, Bekkaoui D, Buchwaldt L (2016) Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol Breed 36:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AMV, Alvarado L, Anderson VL, Bollmann M, Armstrong R, Avrova A, Baxter L, Beynon J, Boevink PC, Stephanie R, Bos JIB, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Green NF, Fischbach MA, Fugelsad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grunwald NJ, Horn K, Horner NR, Hu CH, Huitema E, Jeong DH, Jones AME, Jones JDG, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, MacLean D, Chibucos MC, McDonald H, Mc Walters J, Meijer HJG, Morgan W, Morris PF, Munro CA, O’Neill K, Ospina-Giraldo M, Pinzón A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schmann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJI, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PRJ, Whisson SC, Judelson HS, Nusbaum C (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    Article  CAS  PubMed  Google Scholar 

  • Hacquard S, Kracher B, Maekawa T, Vernaldi S, Schulze-Lefert P, van Themaat EVL (2013) Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc Natl Acad Sci U S A 110(24):E2219–E2228. https://doi.org/10.1073/pnas.1306807110

    Article  PubMed  PubMed Central  Google Scholar 

  • Hane JK, Williams AH, Taranto AP, Solomon PS, Oliver RP (2015) Repeat induced point mutation: a fungal-specific, endogenous mutagenesis process. In: van den Berg MA, Maruthachalam K (eds) Genetic transformation systems in fungi, vol 2. Springer International Publishing, pp 55–68

    Chapter  Google Scholar 

  • Hansen CE, Flengsrud R, Kopperud C (1994) Two-dimensional gel electrophoresis of proteins in healthy roots and clubroots of Brassica oleracea. Acta Agric Sci B Soil Plant Sci 44:123–128

    CAS  Google Scholar 

  • Hardie DG (1999) Plant protein serine/threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol 50:97–131. https://doi.org/10.1146/annurev.arplant.50.1.97

    Article  CAS  PubMed  Google Scholar 

  • Harel A, Bercovich S, Yarden O (2006) Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid independent manner. Mol Plant-Microbe Interact 19:682–693

    Article  CAS  PubMed  Google Scholar 

  • Harper FR, Pittman UJ (1974) Yield loss by Brassica campestris and Brassica napus from systemic stem infection by Albugo cruciferarum. Phytopathology 64:408–410

    Article  Google Scholar 

  • He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL (2007) Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biol 8:R218

    Article  PubMed  PubMed Central  Google Scholar 

  • He YW, Wu J, Zhou L, Yang F, He YO, Jiang BL, Bai LQ, Xu YQ, Deng ZX, Tang JL, Zhang LH (2011) Xanthomonas campestris diffusible factor is3-hydroxybenzoic acid and is associated with xanthomonad in biosynthesis, cell viability, antioxidant activity, and systemic invasion. Mol Plant-Microbe Interact 24:948–957

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618. https://doi.org/10.1111/mec.12415

    Article  PubMed  Google Scholar 

  • Henson JM, French R (1993) The polymerase chain reaction and plant disease diagnosis. Annu Rev Phytopathol 31:81–109

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Takamatsu S (1996) Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience 37:283–288

    Article  Google Scholar 

  • Hiura M (1930) Biologic forms of A. candida (Pers.) Kuntze on some cruciferous plants. Jpn J Bot 5:1–20

    Google Scholar 

  • Hjulsager CK, Lund OS, Johansen IE (2002) A new pathotype of Pea seed borne mosaic virus explained by properties of the P3-6K1- and viral genome-linked protein (VPg)-coding regions. Mol Plant-Microbe Interact 15:169–171

    Article  CAS  PubMed  Google Scholar 

  • Holm L (1957) Etudes taxonomiques sur les pleosporacees. Symb Bot Ups 14:1–188

    Google Scholar 

  • Holst-Jensen A, Vaage M, Schumacher T (1998) An approximation to the phylogeny of Sclerotinia and related genera. Nor J Bot 18:705–719

    Article  Google Scholar 

  • Holub EB (2008) Natural history of Arabidopsis thaliana and oomycete symbioses. Eur J Plant Pathol 122:91–109. https://doi.org/10.1007/s10658-008-9286-1

    Article  CAS  Google Scholar 

  • Howlett BJ, Lowe RGT, Marcroft SJ, van de Wouw AP (2015) Evolution of virulence in fungal plant pathogens: exploiting fungal genomics to control plant disease. Mycologia 107(3):441–451. https://doi.org/10.3852/14-317

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YM, Liu YF, Fang MC, Song WL (2011) XCC2731, a GGDEF domain protein in Xanthomonas campestris, is involved in bacterial attachment and is positively regulated by Clp. Microbiol Res 166:548–565

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Chen C, Peever T, Dang H, Lawrence C, Mitchell T (2012) Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics 13:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huser A, Takahara H, Schmalenbach W, O’Connell R (2009) Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Mol Plant-Microbe Interact 22:143–156. https://doi.org/10.1094/MPMI-22-2-0143

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Iacomi-Vasilescu B, Avenota H, Bataille-Simoneau N, Laurent E, Guénard M, Simoneau P (2004) In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola field isolates highly resistant to both dicarboximides and phenylpyrroles. Crop Prot 23:481–488

    Article  CAS  Google Scholar 

  • Ielpi L, Couso RO, Dankert MA (1993) Sequential assembly and polymeri-zation of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J Bacteriol 175:2490–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatov AN, Monakhos GF, Djalilov FS, Pozmogova GV (2002) Aviru-lence gene from Xanthomonas campestris pv. campestris homologous to the avrBs2 locus is recognized in race-specific reaction by two different resistance genes in Brassicas. Russ J Genet 38:1404–1410

    Article  CAS  Google Scholar 

  • Ii WMJ, Rollins JVA (2007) Deletion of the adenylate cyclase (Sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genet Biol 44:521–530

    Article  Google Scholar 

  • Ito S, Yano S, Tanaka S, Kameya-Iwaki M (1994) The use of resting spore spheroplasts in the DNA analysis of Plasmodiophora brassicae. Ann Phytopathol Soc Jpn 60:491–495

    Article  CAS  Google Scholar 

  • Ito S, Tanaka S, Miyanaga C, Takabayashi S, Yano S, Kameya-Iwaki M (1996) Constitutive and inducible proteins in the root of Chinese cabbage infected with Plasmodiophora brassicae. J Phytopathol 144:89–95

    Article  CAS  Google Scholar 

  • Ito S, Maehara T, Tanaka S, Kameya-Iwaki M, Yano S, Kishi F (1997) Cloning of a single-copy DNA sequence unique to Plasmodiophora brassicae. Physiol Mol Plant Pathol 50:289–300

    Article  CAS  Google Scholar 

  • Ito S, Nakamura T, Matsumoto T, Maehara T, Tanaka S, Kameya-Iwaki M, Kishi F (1998) Characterization of DNA sequences cloned from resting spores of Plasmodiophora brassicae. J Phytopathol 146(2–3):143–147. https://doi.org/10.1111/j.1439-0434.1998.tb04671.x

    Article  CAS  Google Scholar 

  • Ito S, Ichinose H, Yanagi C, Tanaka S, Kameya-Iwaki M, Kishi F (1999) Identification of an in planta-induced mRNA of Plasmodiophora brassicae. J Phytopathol 147:79–82

    Article  CAS  Google Scholar 

  • Jansson PE, Kenne L, Lindberg B (1975) Structure of extracellular polysac-charide from Xanthomonas campestris. Carbohydr Res 45:275–282

    Article  CAS  PubMed  Google Scholar 

  • Jasalavich CA, Morales VM, Pelcher LE, Seguin-Swartz G (1995) Comparison of nuclear ribosomal DNA sequences from Alternaria species pathogenic to crucifers. Mycol Res 99(5):604–614

    Article  CAS  Google Scholar 

  • Jayawardena RS, Hyde KD, Damm U, Cai L, Liu M, Li XH, Zhang W, Zhao W, Yan JY (2016) Notes on currently accepted species of Colletotrichum. Mycosphere 7:1192–1260. https://doi.org/10.5943/mycosphere/si/2c/9

    Article  Google Scholar 

  • Jenner CE, Walsh JA (1996) Pathotypic variation in Turnip mosaic virus with special reference to European isolates. Plant Pathol 45:848–856

    Article  Google Scholar 

  • Jenner CE, Tomimura K, Ohshima K, Hughes SL, Walsh JA (2002) Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59

    Article  CAS  PubMed  Google Scholar 

  • Jenner CE, Wang X, Tomimura K, Ohshima K, Ponz F, Walsh JA (2003) The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in Brassicas. Mol Plant-Microbe Interact 16:777–784

    Article  CAS  PubMed  Google Scholar 

  • Jestin C, Lodé M, Vallée P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares-Dauleux MJ, Delourme R (2011) Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed 27:271–287

    Article  Google Scholar 

  • Jiang B, Xu RQ, Li XZ, Wei HY, Bai F, Hu X, He YQ, Tang JL (2006) Construction and characterization of a hrpG mutant rendering constitutive expression of hrp genes in Xanthomonas campestris pv. campestris. Prog Nat Sci 16:480–485

    Article  CAS  Google Scholar 

  • Jiang BL, He YQ, Cen WJ, Wei HY, Jiang GF, Jiang W, Hang XH, Feng JX, Lu GT, Tang DH, Tang JL (2008a) The type III secretion effector xopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res Microbiol 159:216–220

    Article  CAS  PubMed  Google Scholar 

  • Jiang BL, Liu J, Chen LF, Ge YY, Hang XH, He YQ, Tang DJ, Lu GT, Tang JL (2008b) DsbB is required for the pathogenesis process of Xanthomonas campestris pv. campestris. Mol Plant-Microbe Interact 21:1036–1045

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009) Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Mol Plant-Microbe Interact 22:1401–1411

    Article  CAS  PubMed  Google Scholar 

  • Johansen IE, Lund OS, Hjulsager CK, Laursen J (2001) Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. J Virol 75:6609–6614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PM (1928) Morphology and cultural history of Plasmodiophora brassicae. Arch Protistenkd 62:313–327

    Google Scholar 

  • Judelson HS, Ah-Fong AM (2010) The kinome of Phytophthora infestans reveals oomycete-specific innovations and links to other taxonomic groups. BMC Genomics 11:700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judelson HS, Ah-Fong AMV (2019) Exchanges at the plant-oomycete interface that influence disease. Plant Physiol 179:1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Judelson HS, Shrivastava J, Manson J (2012) Decay of genes encoding the oomycete flagellar proteome in the downy mildew Hyaloperonospora arabidopsidis. PLoS One 7(10):e47624. https://doi.org/10.1371/journal.pone.0047624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurick WM, Dickman MB, Rollins JA (2004) Characterization and functional analysis of a CAMP-dependent protein kinase a catalytic subunit gene (Pka1) in Sclerotinia sclerotiorum. Physiol Mol Plant Pathol 64:155–163. https://doi.org/10.1016/j.pmpp.2004.07.004

    Article  CAS  Google Scholar 

  • Kageyama K, Komatsu T, Suga H (2003) Refined PCR protocol for detection of plant pathogens in soil. J Gen Plant Pathol 69:153–160

    CAS  Google Scholar 

  • van Kan JAL, Stassen JHM, Mosbach A, Theo AJ, Lee VD, Faino L, Farmer AD, Papasotiriou DG, Zhou S, Seidl MF, Cottam E, Edel D, Hahn M, Schwartz DC, Dietrich RA, Widdison S, Scalliet G (2017) A gapless genome sequence of the fungus Botrytis cinerea. Mol Plant Pathol 18:75–89

    Article  PubMed  Google Scholar 

  • Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Feldblyum T, Nierman W, Benito MI, Lin X, Town CD, Venter JC, Fraser CM, Tabata S, Nakamura Y, Kaneko T, Sato S, Asamizu E, Kato T, Kotani H et al (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  CAS  Google Scholar 

  • Kay S, Boch J, Bonas U (2005) Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Mol Plant-Microbe Interact 18:838–848

    Article  CAS  PubMed  Google Scholar 

  • Keen NT (1990) Gene-for-gene complementarity in plant–pathogen interactions. Annu Rev Genet 24:447–463

    Article  CAS  PubMed  Google Scholar 

  • Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, Bailey K, Holub E, Studholme DJ, Maclean D, Jones JD (2011) Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol 9:e1001094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Chen C, Kabbage M, Dickman MB (2011) Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases. Appl Environ Microbiol 77:7721–7729. https://doi.org/10.1128/AEM.05472-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Virus taxonomy: classification and nomenclature of viruses. In: Andrew MQK, Adams MJ, Eric BC, Elliot JL (eds) Ninth report of the International Committee on Taxonomy of Viruses. International Union of Microbiological Societies Virology Division, Elsevier Academic, San Diego, CA

    Google Scholar 

  • King R, Urban M, Hammond-Kosack MCU, Hassani-Pak K, Hammond-Kosack KE (2015) The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genomics 16:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Kistler HC (1997) Genetic diversity in the plant-pathogenic fungus Fusarium oxysporum. Phytopathology 87:474–479

    Article  CAS  PubMed  Google Scholar 

  • Kistler HC, Benny U (1989) The mitochondrial genome of Fusarium oxysporum. Plasmid 22:86–89

    Article  CAS  PubMed  Google Scholar 

  • Kistler HC, Bosland PW, Benny U, Leong S, Williams PH (1987) Relatedness of strains of Fusarium oxysporum from crucifers measured by examination of mitochondrial and ribosomal DNA. Phytopathology 77:1289–1293

    Article  CAS  Google Scholar 

  • Kistler HC, Momol EA, Benny U (1991) Repetitive genomic sequences for determining relatedness among strains of Fusarium oxysporum. Phytopathology 81:331–336

    Article  CAS  Google Scholar 

  • Klein PG, Klein RR, Rodrıguez-Cerezo E, Hunt AG, Shaw JG (1994) Mutational analysis of the tobacco vein mottling virus genome. Virology 204:759–769

    Article  CAS  PubMed  Google Scholar 

  • Klewer A, Luerßen H, Graf H, Siemens J (2001) Restriction Fragment Length Polymorphism markers to characterize Plasmodiophora brassicae single-spore isolates with different virulence patterns. J Phytopathol 149:121–127

    Article  CAS  Google Scholar 

  • Koebnik R, Kruger A, Thieme F, Urban A, Bonas U (2006) Specific binding of the Xanthomonas campestris pv. vesicatoria Ara C-type transcriptional activator HrpX to plant-inducible promoter boxes. J Bacteriol 188(21):7652–7660. https://doi.org/10.1128/JB.00795-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korn M, Schmidpeter J, Dahl M, Müller S, Voll LM, Koch C (2015) A genetic screen for pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum identifies the plasma membrane proton pump Pma2 required for host penetration. PLoS One 10:e0125960. https://doi.org/10.1371/journal.pone.0125960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusch S, Ahmadinejad N, Panstruga R, Kuhn H (2014) In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f.sp. hordei). BMC Genomics 15:843. https://doi.org/10.1186/1471-2164-15-843

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, Kuo A, Miller NA, Rice BJ, Raffaele S, Cano LM, Bharti AK, Donahoo RS, Finley S, Huitema E, Hulvey J, Platt D, Salamov A, Savidor A, Sharma R, Stam R, Storey D, Thines M, Win J, Haas BJ, Dinwiddie DL, Jenkins J, Knight JR, Affourtit JP, Han CS, Chertkov O, Lindquist EA, Detter C, Grigoriev IV, Kamoun S, Kingsmore SF (2012) Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Mol Plant-Microbe Interact 25:1350–1360. https://doi.org/10.1094/MPMI-02-12-0028-R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara-Márquez A, Zavala-Páramo MG, López-Romero E, Calderón-Cortés N, López-Gómez R, Conejo-Saucedo U, Cano-Camacho H (2011) Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analysis with genes from phytopathogenic and saprophytic/opportunistic microorganisms. BMC Microbiol 11:260

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197:595–605. https://doi.org/10.1111/nph.12043

    Article  CAS  PubMed  Google Scholar 

  • Larkan NJ, Lydiate DJ, Yu F, Rimmer SR, Borhan MH (2014) Co-localization of the blackleg resistance genes Rlm2 and LepR3 on Brassica napus chromosome A10. BMC Plant Biol 14:1595. https://doi.org/10.1186/s12870-014-0387-z

    Article  CAS  Google Scholar 

  • Larkan NJ, Yu F, Lydiate DJ, Rimmer SR, Borhan MH (2016) Single R gene introgression lines for accurate dissection of the Brassica - Leptosphaeria pathosystem. Front Plant Sci 7:1771. https://doi.org/10.3389/fpls.2016.01771

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebrun I, Marques-Porto R, Pereira AS, Pereira A, Perpetuo EA (2009) Bacterial toxins: an overview on bacterial proteases and their action as virulence factors. Mini-Rev Med Chem 9:820–828. https://doi.org/10.2174/138955709788452603

    Article  CAS  PubMed  Google Scholar 

  • Lee BM, Park YJ, Park DS, Kang HW, Kim JG, Song ES, Park IC, Yoon UH, Hahn JH, Koo BS, Lee GB, Kim H, Park HS, Yoon KO, Kim JH, Jung C, Koh NH, Seo JS, Go SJ (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemarié S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Jubault M, Manzanares-Dauleux MJ, Gravot A (2015) Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant Cell Physiol 56(11):2158–2168

    PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Rollins JA (2010) The development-specific Ssp1 and Ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fungal Genet Biol 47:531–538. https://doi.org/10.1016/j.fgb.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAM tools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Liang X, Rollins JA (2012) Sclerotinia sclerotiorum-glutamyl transpeptidase (Ss-Ggt1) is required for regulating glutathione accumulation and development of sclerotia and compound appressoria. Mol Plant-Microbe Interact 25:412–420

    Article  PubMed  Google Scholar 

  • Li RF, Lu GT, Li L, Su HZ, Feng GF, Chen Y, He Y-Q, Jiang B-L, Tang D-J, Tang J-L (2014) Identification of a putative cognate sensor kinase for the two-component response regulator HrpG, a key regulator controlling the expression of the hrp genes in Xanthomonas campestris pv. campestris. Environ Microbiol 16(7):2053–2071. https://doi.org/10.1111/1462-2920.12207

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Guo M, Xu DF, Chen FX, Zhang HJ, Pan Y, Li MM, Gao Z (2015) The nascent-polypeptide-associated complex alpha subunit regulates the polygalacturonases expression negatively and influences the pathogenicity of Sclerotinia sclerotiorum. Mycologia 107:1130–1137. https://doi.org/10.3852/14-250

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang Y, Zhang Y, Yu PL, Pan H, Rollins JA (2018) Introduction of large sequence inserts by CRISPR-Cas9 to create pathogenicity mutants in the multinucleate filamentous pathogen Sclerotinia sclerotiorum. MBio 9(3):e00567–e00518. https://doi.org/10.1128/mBio.00567-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Lv H, Zhang S, Zhang S, Li F, Zhang H, Qian W, Fang Z, Sun R (2019) TuMV management for Brassica crops through host resistance: retrospect and prospects. Plant Pathol 68:1035–1044. https://doi.org/10.1111/ppa.13016

    Article  CAS  Google Scholar 

  • Liang Y, Yajima W, Davis MR, Kav NNV, Stephen E (2013) Disruption of a gene encoding a hypothetical secreted protein from Sclerotinia sclerotiorum reduces its virulence on canola (Brassica Napus) disruption of a gene encoding a hypothetical secreted protein from Sclerotinia sclerotiorum reduces its virulence on Canola (Brassica napus). Can J Plant Pathol 35:46–55

    Article  CAS  Google Scholar 

  • Liang X, Liberti D, Li M, Kim Y, Hutchens A, Wilson RON, Rollins JA (2015) Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants. Mol Plant Pathol 16:559–571. https://doi.org/10.1111/mpp.12211

    Article  CAS  PubMed  Google Scholar 

  • Liang YUE, Xiong WEI, Steinkellner S, Feng JIE (2017) Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum. Mol Plant Pathol 19:1–10. https://doi.org/10.1111/mpp.12627

    Article  CAS  Google Scholar 

  • Liao M, Chen C, Li Q (2017) The complete mitochondrial genome of Alternaria alternata (Hypocreales: Nectriceae). Mitochondrial DNA B 2:587–588

    Article  Google Scholar 

  • Liberti D, Rollins JA, Dobinson KF (2013) Peroxysomal carnitine acetyl transferase influences host colonization capacity in Sclerotinia sclerotiorum. Mol Plant–Microbe Interact 26:768–780

    Article  CAS  PubMed  Google Scholar 

  • Lindgren PB (1997) The role of hrp genes during plant–bacterial interactions. Annu Rev Phytopathol 35:129–152

    Article  CAS  PubMed  Google Scholar 

  • Links MG, Holub E, Jiang RH, Sharpe AG, Hegedus D, Beynon E, Sillito D, Clarke WE, Uzuhashi S, Borhan MH (2011) De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes. BMC Genomics 12:503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XP, Lu WC, Liu YK, Wei SQ, Xu JB, Liu ZR, Zhang HJ, Li JL, Ke GL, Yao WY, Cai YS, Wu FY, Cao SC, Li YH, Xie SD, Lin BX, Zhang CL (1996) Occurrence and strain differentiation on Turnip mosaic potyvirus and sources of resistance in Chinese cabbage in China. Acta Hortic 407:431–440

    Article  Google Scholar 

  • Liu L, Zhao D, Zheng L, Hsiang T, Wei Y, Fu Y, Huang J (2013) Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis. Microbiol Pathol 64:6–17. https://doi.org/10.1016/j.micpath.2013.06.001

    Article  CAS  Google Scholar 

  • Liu L, Wang Q, Zhang X, Liu J, Zhang Y (2018) Ssams2, a gene encoding GATA transcription factor, is required for appressoria formation and chromosome segregation in Sclerotinia sclerotiorum. Front Microbiol 9:1–12. https://doi.org/10.3389/fmicb.2018.03031

    Article  Google Scholar 

  • Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12:733–735

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Wang Z, Sun Z, Fernando DWG, Mcvetty PBE, Li G (2011) Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar ‘Surpass 400’. Theor Appl Genet 122:1223–1231. https://doi.org/10.1007/s00122-010-1526-z

    Article  PubMed  Google Scholar 

  • Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TL, Johnson KB, Rodriguez RJ, Dickman MB, Cluffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Patil P, Van Sluys M-A, White FF, Ryan RP, Dow JM, Rabinowicz P, Salzberg SL, Leach JE, Sonti R, Brendel V, Bogdanove AJ (2008) Acquisition and evolution of plant pathogenesis- associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLoS One 3:e3828

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Muller J (1999) Plasmodiophora brassicae, the causal agent of clubroot disease: a review on molecular and biochemical events in pathogenesis/Plasmodiophora brassicae, the causative agent of cabbage hernia: an overview of molecular and biochemical processes during pathogenesis. J Plant Dis Prot 106(2):109–127

    Google Scholar 

  • Ludwig-Muller J, Thermann P, Pieper K, Hilgenberg W (1994) Peroxidase and chitinase isoenzyme activities during root infection of Chinese cabbage with Plasmodiophora brassicae Woron. Physiol Plant 90:661–670

    Article  Google Scholar 

  • Ludwig-Müller J, Jülke S, Geiß K, Richter F, Mithöfer A, Šola I, Rusak G, Keenan S, Bulman S (2015) A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid. Mol Plant Pathol 16(4):349–364. https://doi.org/10.1111/mpp.12185

    Article  CAS  PubMed  Google Scholar 

  • Lv H, Fang Z, Yang L, Zhang Y, Wang Y (2020) An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era. Hortic Res 7:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J (2015) Comparative genomic and transcriptional analysis of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Sci Rep 5:15565. https://doi.org/10.1038/srep15565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J (2016) A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants. PLoS Pathol 12:e1005435. https://doi.org/10.1371/journal.ppat.1005435

    Article  CAS  Google Scholar 

  • Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim W-B, Woloshuk C, Xie X, Xu J-R, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee Y-H, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park S-Y, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzanares-Dauleux MJ, Barret P, Thomas G (2000) Development of a pathotype specific SCAR marker in Plasmodiophora brassicae. Eur J Plant Pathol 106:781–787

    Article  CAS  Google Scholar 

  • Manzanares-Dauleux MJ, Divaret I, Baron F, Thomas G (2001) Assessment of biological and molecular variability between and within field isolates of Plasmodiophora brassicae. Plant Pathol 50:165–173

    Article  CAS  Google Scholar 

  • Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463. https://doi.org/10.1093/bioinformatics/btq467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Laurent F, van Tuinen D, Dumas-Gaudot E, Gianinazzi-Pearson V, Gianinazzi S, Franken P (1997) Differential display analysis of RNA accumulation in arbuscular mycorrhiza of pea and isolation of a novel symbiosis-regulated plant gene. Mol Gen Genet 256:37–44

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer R, Bansal VK, Thiagarajah MR, Stringam GR, Good AG (1997) Molecular mapping of resistance to Leptosphaeria maculans in Australian cultivars of Brassica napus. Genome 40:294–301. https://doi.org/10.1139/g97-041

    Article  CAS  PubMed  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed  PubMed Central  Google Scholar 

  • McMullan M, Gardiner A, Bailey K, Kemen E, Ward BJ, Cevik V, Robert-Seilaniantz A, Schultz-Larsen T, Balmuth A, Holub E, van Oosterhout C, Jones JDG (2015) Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. elife 4:e04550. https://doi.org/10.7554/eLife.04550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medstrand P, van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL (2005) Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet Genome Res 110(1–4):342–352

    Article  CAS  PubMed  Google Scholar 

  • Meena PD, Awasthi RP, Chattopadhyay C, Singh F, Singh B, Gupta A (2002) Yield loss in Indian mustard due to white rust and effect of some cultural practices on Alternaria blight and white rust severity. J Oilseed Brassica 4:18–24

    Google Scholar 

  • Mendes-Pereira E, Balesdent MH, Hortense B, Rouxel T (2003) Molecular phylogeny of the Leptosphaeria maculans–L. biglobosa species complex. Mycol Res 107:1287–1304

    Article  CAS  PubMed  Google Scholar 

  • Merits A, Guo D, Jarveku LL, Saarma M (1999) Biochemical and genetic evidence for interactions between potato A potyvirus encoded proteins P1 and P3 and proteins of the putative replication complex. Virology 263:15–22

    Article  CAS  PubMed  Google Scholar 

  • Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant–fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13(2):210–226. https://doi.org/10.1111/j.1462-5822.2010.01530.x

    Article  CAS  PubMed  Google Scholar 

  • Mohanta TK, Bae H (2015) The diversity of fungal genome. Biol Proced Online 17:8. https://doi.org/10.1186/s12575-015-0020-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moller M, Harling R (1996) Randomly amplified polymorphic DNA (RAPD) profiling of Plasmodiophora brassicae. Lett Appl Microbiol 22:70–75

    Article  Google Scholar 

  • Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419. https://doi.org/10.1078/1438-4221-00223

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Hilgenberg W (1986) Isomers of zeatin and zeatin riboside in clubroot tissue: evidence for trans-zeatin biosynthesis by Plasmodiophora brassicae. Physiol Plant 66:245–250

    Article  Google Scholar 

  • Murphy PJ, Langridge P, Smith SE (1997) Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 135:291–301

    Article  CAS  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Ishida J, Nakashima M, Kamiya A, Enju A, Sakurai T, Satoh M, Kobayashi M, Tosa Y, Park P, Shinozaki K (2003) The cDNA microarray analysis using an Arabidopsis pad3 mutant reveals the expression profiles and classification of genes induced by Alternaria brassicicola attack. Plant Cell Physiol 44:377–387

    Article  CAS  PubMed  Google Scholar 

  • Ngoc LBT, Verniere C, Jarne P, Brisse S, Guerin F, Boutry S, Gagnevin L, Pruvost O (2009) From local surveys to global surveillance: three high-throughput genotyping methods for epidemiological monitoring of Xanthomonas citri pv. citri pathotypes. Appl Environ Microbiol 75(4):1173–1184. https://doi.org/10.1128/AEM.02245-08

    Article  CAS  Google Scholar 

  • Nguyen HD, Tomitaka Y, Ho SYW, Duchêne S, Vetten H-J, Lesemann D, Walsh JA, Gibbs AJ, Ohshima K (2013a) Turnip mosaic potyvirus probably first spread to Eurasian Brassica crops from wild orchids about 1000 years ago. PLoS One 8(2):e55336. https://doi.org/10.1371/journal.pone.0055336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HD, Tran HTN, Ohshima K (2013b) Genetic variation of the Turnip mosaic virus population of Vietnam: a case study of founder, regional and local influences. Virus Res 171:138–149. https://doi.org/10.1016/j.virusres.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HD, Lewis CT, Levesque CA, Grafenhan T (2016) Draft genome sequence of Alternaria alternata ATCC 34957. Genome Announce 4:e01554–e01515

    Article  Google Scholar 

  • O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun M-H, Lee Y-H, Miyara I, Moore N, Neumann U, Nordström K, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhakolli UR, Stüber K, Sukno SA, Sweigard JA, Takano Y, Takahara H, Trail F, van der Does HC, Voll LM, Will I, Young S, Zeng Q, Zhang J, Zhou S, Dickman MB, Schulze-Lefert P, van Themaat EVL, Ma L-J, Vaillancourt LJ (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analysis. Nat Genet 44:1060–1065. https://doi.org/10.1038/ng.2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell KO (1992) Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr Genet 22:213–220

    Article  PubMed  Google Scholar 

  • O’Donnell K, Gueidan C, Sink S, Johnston PR, Crous PW, Glenn A, Riley R, Zitomer NC, Colyer P, Waalwijk C, van der Lee T, Moretti A, Kang S, Kim H-S, Geiser DM, Juba JH, Baayen RP, Cromey MG, Bithell S, Sutton DA, Skovgaard K, Ploetz R, Corby Kistler H, Elliott M, Davis M, Sarver BAJ (2009) A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet Biol 46:936–948

    Article  PubMed  Google Scholar 

  • Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I (2001) Characterization of mutations in the two-component histidine-kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag Sci 57:437–442

    Article  CAS  PubMed  Google Scholar 

  • Ochiai H, Inoue V, Takeya M, Sasaki A, Kaku H (2005) Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Jpn Agric Res Q 39:275–287

    Article  CAS  Google Scholar 

  • Ohshima Y, Yamaguchi R, Hirota T, Hamamoto K, Tomimura Z, Tan T, Sano F, Azuhata JA, Walsh J, Fletcher J, Chen A, Gera A, Gibbs A (2002) Molecular evolution of Turnip mosaic virus; evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83:1511–1521

    Article  CAS  PubMed  Google Scholar 

  • Ohshima K, Tomitaka Y, Wood JT, Minematsu Y, Kajiyama H, Tomimura K, Gibbs AJ (2007) Patterns of recombination in Turnip mosaic virus genomic sequences indicate hot spots of recombination. J Gen Virol 88:298–315

    Article  CAS  PubMed  Google Scholar 

  • Oome S, Raaymakers TM, Cabral A, Samwel S, Böhm H, Albert I, Thorsten N, Van den Ackerveken G (2014) Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc Natl Acad Sci U S A 111:16955–16960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima M, Fujimura M, Banno S, Hashimoto C, Motoyama T, Ichiishi A, Yamaguchi I (2002) A point mutation in the two component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology 92:75–80

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Rollins JA (2017) The GATA-Type IVb zinc-finger transcription factor SsNsd1 regulates asexual—Sexual development and appressoria formation in Sclerotinia sclerotiorum. Mol Plant Pathol 9:1679–1689

    Google Scholar 

  • Pan Y, Wei J, Yao C, Reng H, Gao Z (2018) Plant science SsSm1, a cerato-platanin family protein, is involved in the hyphal development and pathogenic process of Sclerotinia sclerotiorum. Plant Sci 270:37–46. https://doi.org/10.1016/j.plantsci.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  • Park J, Lee S, Choi J, Ahn K, Park B, Park J, Kang S, Lee Y-H (2008) Fungal cytochrome P450 database. BMC Genomics 9:402. https://doi.org/10.1186/1471-2164-9-402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker JE, Barber CE, Fan MJ, Daniels MJ (1993) Interaction of Xanthomonas campestris with Arabidopsis thaliana: characterization of a gene from X. c. pv. raphani that confers avirulence to most A. thaliana accessions. Mol Plant-Microbe Interact 6:216–224

    Article  CAS  PubMed  Google Scholar 

  • Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8:2033–2046. https://doi.org/10.1105/tpc.8.11.2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil PB, Bogdanove AJ, Sonti RV (2007) The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in Xanthomonads that infect rice, citrus and crucifers. BMC Evol Biol 7:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen C, van Themaat EVL, McGuffin LJ, Abbott JC, Burgis TA, Barton G, Bindschedler LV, Lu X, Maekawa T, WeBling R, Cramer R, Christensen HT, Panstruga R, Spanu PD (2012) Structure and evolution of barley powdery mildew effector candidates. BMC Genomics 13:694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, De Samblanx GW, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid- independent pathway. Plant Cell 8:2309–2323

    Google Scholar 

  • Perez-Lopez E, Waldner M, Hossain M, Kusalik AJ, Wei Y, Bonham-Smith PC, Todd CD (2018) Identification of Plasmodiophora brassicae effectors-a challenging goal. Virulence 9(1):1344–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrie GA (1988) Races of Albugo candida (white rust and stag head) on cultivated cruciferae in Saskatchewan. Can J Plant Pathol 10:142–150

    Article  Google Scholar 

  • Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Cociancich S, Couloux A, Darrasse A, Gouzy J, Jacques MA, Lauber E, Manceau C, Mangenot S, Poussier S, Segurens B, Szurek B, Verdier V, Arlat M, Rott P (2009) The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem- limited Xanthomonadaceae. BMC Genomics 10:616

    Article  PubMed  PubMed Central  Google Scholar 

  • Pillonel C, Meyer T (1997) Effect of phenylpyrroles on glycerol accumulation and protein kinase activity of Neurospora crassa. Pestic Sci 49(3):229–236. https://doi.org/10.1002/(SICI)1096-9063(199703)49:3<229::AID-PS525>3.0.CO;2-T

    Article  CAS  Google Scholar 

  • Plaumann PL, Schmidpeter J, Dahl M, Taher L, Koch C (2018) A dispensable chromosome is required for virulence in the hemibiotrophic plant pathogen Colletotrichum higginsianum. Front Microbiol 9:1005. https://doi.org/10.3389/fmicb.2018.01005

    Article  PubMed  PubMed Central  Google Scholar 

  • Ploch S, Choi YJ, Rost C, Shin HD, Schilling E, Thines M (2010) Evolution of diversity in Albugo is driven by high host specificity and multiple speciation events on closely related Brassicaceae. Mol Phylogenet Evol 57:812–820

    Article  PubMed  Google Scholar 

  • Poplawsky AR, Chun W (1998) Xanthomonas campestris pv. campestris requires a functional pig B for epiphytic survival and host infection. Mol Plant-Microbe Interact 11:466–475

    Article  CAS  PubMed  Google Scholar 

  • Pound GS, Williams PH (1963) Biological races of Albugo candida. Phytopathology 53:1146–1149

    Google Scholar 

  • Prigent S, Frioux C, Dittami SM, Thiele S, Larhlimi A, Collet G, Gutknecht F, Got J, Eveillard D, Bourdon J, Plewniak F, Tonon T, Siegel A (2017) Meneco, a topology-based gap-filling tool applicable to degraded genome-wide metabolic networks. PLoS Comput Biol 13(1):e1005276. https://doi.org/10.1371/journal.pcbi.1005276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, Dangl J, Ehrhardt D, Friesner JD, Frommer WB, Grotewold E, Meyerowitz E, Nemhauser J, Nordborg M, Pikaard C, Shanklin J, Somerville C, Stitt M, Torii KU, Waese J, Wagner D, McCourt P (2016) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–944

    Article  CAS  PubMed  Google Scholar 

  • Provvidenti R (1980) Evaluation of Chinese cabbage cultivars from Japan and the People’s Republic of China for resistance to Turnip Mosaic Virus and Cauliflower Mosaic Virus. J Am Soc Hortic Sci 105:571–573

    Article  Google Scholar 

  • Pruvost O, Verniere C, Vital K, Guerin F, Jouen E, Chiroleu F, Ah-You N, Gagnevin L (2011) Insertion sequence- and tandem repeat-based genotyping techniques for Xanthomonas citri pv. mangiferae indicae. Phytopathology 101(7):887–893. https://doi.org/10.1094/PHYTO-11-10-0304

    Article  CAS  PubMed  Google Scholar 

  • Qian W, Jia Y, Ren SX, He YQ, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang L, Jiang BL, Zeng S, Gu WY, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao GP, Tang JL, He C (2005) Comparative and functional genomic analysis of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res 15:757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Yu B, Liu J, Zhang X, Li G, Zhang D (2014) MADS-Box transcription factor SsMADS is involved in regulating growth and virulence in Sclerotinia sclerotiorum. Int J Mol Sci 15:8049–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10:417–430. https://doi.org/10.1038/nrmicro2790

    Article  CAS  PubMed  Google Scholar 

  • Rajarammohan S, Kumar A, Gupta V, Pental D, Pradhan AK, Kaur J (2017) Genetic architecture of resistance to Alternaria brassicae in Arabidopsis thaliana: QTL mapping reveals two major resistance-conferring loci. Front Plant Sci 8:260

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajarammohan S, Paritosh K, Pental D, Kaur J (2019) Comparative genomics of Alternaria species provides insights into the pathogenic lifestyle of Alternaria brassicae – a pathogen of the Brassicaceae family. BMC Genomics 20:1036. https://doi.org/10.1186/s12864-019-6414-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman R, Taylor B, Marcroft S, Stiller J, Eckermann P, Coombes N, Rehman A, Lindbeck K, Luckett D, Wratten N, Batley J, Edwards D, Wang X, Raman H (2012) Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theor Appl Genet 125:405–418. https://doi.org/10.1007/s00122-012-1842-6

    Article  CAS  PubMed  Google Scholar 

  • Rao VG (1969) The genus Alternaria from India. Nova Hedwigia 17:219–258

    Google Scholar 

  • Rehmany AP, Lynn JR, Tör M, Holub EB, Beynon JL (2000) A comparison of Peronospora parasitica (downy mildew) isolates from Arabidopsis thaliana and Brassica oleracea using amplified fragment length polymorphism and internal transcribed spacer 1 sequence analysis. Fungal Genet Biol 30:95–103

    Article  CAS  PubMed  Google Scholar 

  • Revers F, Le Gall O, Candresse T, Maule AJ (1999) New advances in understanding the molecular biology of plant/potyvirus interactions. Mol Plant-Microbe Interact 12:367–376

    Article  CAS  Google Scholar 

  • Reymond P, Deleage G, Rascle C, Fevre M (1994) Cloning and sequence analysis of a polygalacturonase-encoding gene from the phytopathogenic fungus Sclerotinia sclerotiorum. Gene 146:233–237

    Article  CAS  PubMed  Google Scholar 

  • Riechmann JL, Laın S, Garcıa JA (1992) Highlights and prospects of potyvirus molecular biology. J Gen Virol 73:1–16

    Article  CAS  PubMed  Google Scholar 

  • Riethmuller A, Voglmayr H, Goker M, Weiß M, Oberwinkler F (2002) Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 94:834–849

    Article  CAS  PubMed  Google Scholar 

  • Rigano LA, Payette C, Brouillard G, Marano MR, Abramowicz L, Torres PS, Yun M, Castagnaro AP, El Oirdi M, Dufour V, Malamud F, Dow JM, Bouarab K, Vojnov A (2007) Bacterial cyclic beta-(1,2)-glucanacts in systemic suppression of plant immune responses. Plant Cell 19:2077–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rimmer SR, Mathur S, Wu CR (2000) Virulence of isolates of Albugo candida from western Canada to Brassica species. Can J Plant Pathol 22:229–235. https://doi.org/10.1080/07060660009500468

    Article  Google Scholar 

  • Rojas MC, Hedden P, Gaskin P, Tudzynski B (2001) The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc Natl Acad Sci U S A 98:5838–5843. https://doi.org/10.1073/pnas.091096298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolfe SA, Strelkov SE, Links MG, Clarke WE, Robinson SJ, Djavaheri M, Malinowski R, Haddadi P, Kagale S, Parkin IAP, Taheri A, Borhan MH (2016) The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genomics 17:272

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolland S, Jobic C, Fevre M, Bruel C (2003) Agrobacterium mediated transformation of Botrytis cinerea simple purification of monokaryotic transformants and rapid conidia based identification of the transfer DNA host genomic DNA flanking sequences. Curr Genet 44:164–171

    Article  CAS  PubMed  Google Scholar 

  • Rollins JA, Pathology P, Hall F (2003) The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant-Microbe Interact 16:785–795. https://doi.org/10.1094/MPMI.2003.16.9.785

    Article  CAS  PubMed  Google Scholar 

  • Rossman AY, Palm ME, Spielman LJ (1987) A literature guide for the identification of the plant pathogenic fungi. APS Press, St Paul. MN

    Google Scholar 

  • Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud M-F, Fischer-Le Saux M, Portier P, Jacques M-A, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël L (2015) Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics 16:975

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin SB, Gout L, Glaser N, Linglin J, Kema GHJ, Lapalu N, Lawrence CB, May K, Meyer M, Ollivier B, Poulain J, Schoch CL, Simon A, Spatafora JW, Stachowiak A, Turgeon BG, Brett M, Tyler BM, Vincent D, Weissenbach J, Amselem J, Quesneville H, Oliver RP, Wincker P, Balesdent MH, Howlett BJ (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun 2:202. https://doi.org/10.1038/ncomms1189

    Article  CAS  PubMed  Google Scholar 

  • Rudrabhatla P, Reddy MM, Rajasekharan R (2006) Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases. Plant Mol Biol 60:293–319. https://doi.org/10.1007/s11103-005-4109-7

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Fouhy Y, Lucey JF, Jiang BL, He YQ, Feng JX, Tang JL, Dow JM (2007) Cyclic di-GMP signaling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63:429–442

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP, Dow JM (2010) Cell–cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci U S A 107:5989–5994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RP, Vorholter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ, Dow JM (2011) Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol 9:344–355

    Article  CAS  PubMed  Google Scholar 

  • Saenz GS, Taylor JW (1999) Phylogeny of Erysiphales (powdery mildews) inferred from internal transcribed spacer (ITS) ribosomal DNA sequences. Can J Bot 77:150–168

    CAS  Google Scholar 

  • Saenz GS, Taylor JW, Gargas A (1994) 18S rRNA gene sequences and supraordinal classification of the Erysiphales. Mycologia 86:212–216

    Article  CAS  Google Scholar 

  • Saenz P, Cervera MT, Dallot S, Quiot L, Quiot J-B, Riechmann JL, Garcıa JA (2000) Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. J Gen Virol 81:557–566

    Article  CAS  PubMed  Google Scholar 

  • Saharan GS, Mehta N (2008) Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer, Dordrecht, p 485

    Book  Google Scholar 

  • Saharan GS, Verma PR (1992) White rusts: a review of economically important species. IDRC-MR315e. International Development Research Centre, IV, Ottawa, ON. 65 p

    Google Scholar 

  • Saharan GS, Verma PR, Meena PD, Kumar A (2014) White rust of crucifers: biology, ecology and management. Springer, New Delhi. 275 p

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2016) Alternaria blight of crucifers: biology, ecology and disease management. Springer, New Delhi. 291 p

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2017) Downy mildew disease of crucifers: biology, ecology and disease management. Springer, Singapore, p 347

    Book  Google Scholar 

  • Saharan GS, Naresh N, Meena PD (2019) Powdery mildew disease of crucifers: biology, ecology and disease management. Springer, Singapore. 362 p

    Book  Google Scholar 

  • Saito I (1977) Sclerotinia sclerotiorum (Lib.) de Bary. Studies on the maturation and germination of sclerotia of Sclerotinia sclerotiorum (Lib.) de Bary, a causal fungus of bean stem rot. Report Hokkaido prefectural Agric. Exp. Stn. No. 26, March, 1977. Hokkaido central agricultural experiment station, 069–13, Japan, 106 p

    Google Scholar 

  • Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, Madupu R, Puiu D, Radune D, Shumway M, Trapnell C, Aparna G (2008) Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9:204. https://doi.org/10.1186/1471-2164-9-204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez F, Wang X, Jenner CE, Walsh JA, Ponz F (2003) Strains of Turnip mosaic potyvirus as defined by the molecular analysis of the coat protein gene of the virus. Virus Res 94:33–43

    Article  CAS  PubMed  Google Scholar 

  • Santana MF, Silva JCF, Mizubuti ESG, Arajo EF, Queiroz MV (2014) Analysis of Tc1-Mariner elements in Sclerotinia sclerotiorum suggests recent activity and flexible transposases. BMC Microbiol 14:256

    Article  PubMed  PubMed Central  Google Scholar 

  • Satou M, Fukumoto F (1996) The host range of downy mildew, Peronospora parasitica, from Brassica oleracea, cabbage and broccoli crops. Ann Phytopathol Soc Jpn 62:393–396

    Article  Google Scholar 

  • Schumacher MM, Enderlin CS, Selitrennikoff CP (1997) The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Curr Microbiol 34:340–347

    Article  CAS  PubMed  Google Scholar 

  • Schwelm A, Fogelqvist J, Knaust A, Jülke S, Lilja T, Bonilla-Rosso G, Karlsson M, Shevchenko A, Dhandapani V, Choi SR, Kim HG, Park JY, Lim YP, Ludwig-Muller J, Dixelius C (2015) The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci Rep 5:11153

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwelm A, Dixelius C, Ludwig-Müller J (2016) New kid on the block – the clubroot pathogen genome moves the plasmodiophorids into the genomic era. Eur J Plant Pathol 145:531–542

    Article  Google Scholar 

  • Schwelm A, Badstober J, Bulman S, Desoignies N, Etemadi M, Falloon RE, Gachon CMM, Legreve A, Lukes J, Merz U, Nenarokova A, Strittmatter M, Sullivan BK, Neuhauser S (2018) Not in your usual top 10: protists that infect plants and algae. Mol Plant Pathol 19(4):1029–1044

    Article  PubMed  Google Scholar 

  • Seidl MF, Faino L, Shi-Kunne X, van den Berg GC, Bolton MD, Thomma BP (2015) The genome of the saprophytic fungus Verticillium tricorpus reveals a complex effector repertoire resembling that of its pathogenic relatives. Mol Plant-Microbe Interact 28:362–373

    Article  CAS  PubMed  Google Scholar 

  • Seifbarghi S, Borhan MH, Wei Y, Coutu C, Robinson SJ, Hegedus DD (2017) Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genome 18:266

    Article  Google Scholar 

  • Selin C, de Kievit TR, Belmonte MF, Fernando WGD (2016) Elucidating the role of effectors in plant-fungal interactions: progress and challenges. Front Microbiol 7:600. https://doi.org/10.3389/fmicb.2016.00600

    Article  PubMed  PubMed Central  Google Scholar 

  • Seruga Musić M, Duc Nguyen H, Černi S, Mamula Đ, Ohshima K, Škorić D (2014) Multi-locus sequence analysis of ‘Candidatus Phytoplasma asteris’ strain and the genome analysis of Turnip mosaic virus co-infecting oilseed rape. J Appl Microbiol 117(8):774–785

    Article  PubMed  Google Scholar 

  • Shattuck VI (1992) The biology, epidemiology and control of Turnip mosaic virus. Plant Breed Rev 14:199–238

    Google Scholar 

  • Shen Y, Diener AC (2013) Arabidopsis thaliana resistance to Fusarium oxysporum 2 implicates Tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS Genet 9:e1003525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y (2006) Non-host resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant-Microbe Interact 19:270–279. https://doi.org/10.1094/MPMI-19-0270

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Bulman S, Rehn F, Sundelin T (2009a) Molecular biology of Plasmodiophora brassicae. J Plant Growth Regul 28:245–251. https://doi.org/10.1007/s00344-009-9091-x

    Article  CAS  Google Scholar 

  • Siemens J, Graf H, Bulman S, In O, Ludwig-Müller J (2009b) Monitoring expression of selected Plasmodiophora brassicae genes during clubroot development in Arabidopsis thaliana. Plant Pathol 58:130–136

    Article  CAS  Google Scholar 

  • da Silva M, Esposito E, Moody JD, Canhos VP, Cerniglia CE (2004) Metabolism of aromatic hydrocarbons by the filamentous fungus Cyclothyrium sp. Chemosphere 57:943–952. https://doi.org/10.1016/j.chemosphere.2004.07.051

    Article  CAS  PubMed  Google Scholar 

  • Simmons EG (1967) Typification of Alternaria, Stemphylium, and Ulocladium. Mycologia 59:67–92

    Article  CAS  PubMed  Google Scholar 

  • Skinner W, Keon J, Hargreaves J (2001) Gene information for fungal plant pathogens from expressed sequences. Curr Opin Microbiol 4:381–386

    Article  CAS  PubMed  Google Scholar 

  • Soanes DM, Richards TA, Talbot NJ (2007) Insights from sequencing fungal and oomycete genomes: what can we learn about plant disease and the evolution of pathogenicity? Plant Cell 19:3318–3326. https://doi.org/10.1105/tpc.107.056663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Smith AD (2011) Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics 27:870–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza DP, Andrade MO, Alvarez-Martinez CE, Arantes GM, Farah CS, Salinas RK (2011) A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathol 7:e1002031

    Article  CAS  Google Scholar 

  • Soyer JL, Clairet C, Gay EJ, Lapalu N, Rouxel T, Stukenbrock EH, Fudal I (2021) Genome-wide mapping of histone modifications during axenic growth in two species of Leptosphaeria maculans showing contrasting genomic organization. Chromosome Res 29(2):219–236. https://doi.org/10.1007/s10577-021-09658-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanu PD (2012) The genomics of obligate (and Non-obligate) biotrophs. Annu Rev Phytopathol 50:91–109. https://doi.org/10.1146/annurev-phyto-081211-173024

    Article  CAS  PubMed  Google Scholar 

  • Spanu PD, Abbot JC, Amselem J, Burgis TA, Soanes DM, Stüber K, van Themaat EVL, Brown JKM, Butcher SA, Gurr SJ, Lebrun MH, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O’Connel RJ, Oberhaensli S, Parlange F, Pendersen C, Quesneville H, Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schön M, Skaminoti P, Sommer H, Stephens A, Takahra H, Thordal-Christensen H, Vigouroux M, Weßling R, Wicker T, Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546. https://doi.org/10.1126/science.1194573

    Article  CAS  PubMed  Google Scholar 

  • Stavolone L, Alioto D, Ragozzino A, Laliberte J-F (1998) Variability among turnip mosaic potyvirus isolates. Phytopathology 88:1200–1204

    Article  CAS  PubMed  Google Scholar 

  • Stobbs LW, Shattuck VI (1989) Turnip mosaic virus strains in southern Ontario, Canada. Plant Dis 73:208–212

    Article  Google Scholar 

  • Studholme DJ, Kemen E, MacLean D, Schornack S, Aritua V, Thwaites R, Grant M, Smith J, Jones JDG (2010) Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol Lett 310:182–192

    Article  CAS  PubMed  Google Scholar 

  • Stukenbrock EH (2013) Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. New Phytol 99:895–907. https://doi.org/10.1111/nph.12374

    Article  Google Scholar 

  • Suehiro N, Natsuaki T, Watanabe T, Okuda S (2004) An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J Gen Virol 85:2087–2098

    Article  CAS  PubMed  Google Scholar 

  • Sundelin T (2008) Identification of expressed Plasmodiophora brassicae genes during plant infection and molecular diagnosis of plant pathogens. Ph D Thesis, University of Copenhagen

    Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9:53–61. https://doi.org/10.1007/BF01576368

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (1993) Phylogenetic analysis using parsimony (PAUP version 3.1.1). Illinois Natural History Surv, Champaign, IL

    Google Scholar 

  • Syme RA, Tan KC, Hane JK, Dodhia K, Stoll T, Hastie M, Furuki E, Ellwood SR, Williams AH, Tan YF, Testa AC, Gorman JJ, Oliver RP (2016) Comprehensive annotation of the Parastagonospora nodorum reference genome using next-generation genomics, transcriptomics and proteogenomics. PLoS One 11:e0147221

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahara H, Dolf A, Endl E, O’Connell R (2009) Flow cytometric purification of Colletotrichum higginsianum biotrophic hyphae from Arabidopsis leaves for stage-specific transcriptome analysis. Plant J 59:672–683. https://doi.org/10.1111/j.1365-313X.2009.03896.x

    Article  CAS  PubMed  Google Scholar 

  • Takamatsu S, Kano Y (2001) PCR primers useful for nucleotide sequencing of rDNA of the powdery mildew fungi. Mycoscience 42:135–139

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Gibbs AJ, Tomitaka Y, Sanchez F, Ponz F, Ohshima K (2005) Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus. J Gen Virol 86:501–510

    Article  CAS  PubMed  Google Scholar 

  • Tang JL, Liu YN, Barber CE, Dow JM, Wootton JC, Daniels MJ (1991) Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol Gen Genet 226:409–417

    Article  CAS  PubMed  Google Scholar 

  • Tanifuji G, Archibald JM, Hashimoto T (2016) Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics. Sci Rep 6:21016. https://doi.org/10.1038/srep21016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarailo-Graovac M, Chen N (2009) Using repeat masker to identify repetitive elements in genomic sequences. Curr Prot. Bioinformatics 5:4.10.1–4.10.14

    Google Scholar 

  • Tatsuzawa F, Saito N, Toki K, Shinoda K, Honda T (2012) Flower colors and their anthocyanins in Matthiola incana cultivars (Brassicaceae). J Jpn Soc Hortic Sci 81:91–100

    Article  CAS  Google Scholar 

  • Terby J (1924) Les divisions sporogoniques du Plasmodiophora brassicae Woron. Bull Acad R Sci Belgique Cl Sci 5:519–537

    Google Scholar 

  • Testa AC, Oliver RP, Hane JK (2016) Occulter Cut: a comprehensive survey of AT-rich regions in fungal genomes. Genome Biol Evol 8:2044–2064

    Article  PubMed  PubMed Central  Google Scholar 

  • Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Buttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klosgen U, Patschkowski T, Ruckert C, Rupp O, Schneiker S, Schuster SC, Vorholter FJ, Weber E, Puhler A, Bonas U, Bartels D, Kaiser O (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol 187:7254–7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thines M (2014) Phylogeny and evolution of plant pathogenic oomycetes—a global overview. Eur J Plant Pathol 138:431–447. https://doi.org/10.1007/s10658-013-0366-5

    Article  Google Scholar 

  • Thines M, Kamoun S (2010) Oomycete-plant co-evolution: recent advances and future prospects. Curr Opin Plant Biol 13:427–433. https://doi.org/10.1016/j.pbi.2010.04.001

    Article  PubMed  Google Scholar 

  • Thines M, Choi YJ, Kemen E, Ploch S, Holub EB, Shin HD, Jones JDG (2009a) A new species of Albugo parasitic to Arabidopsis thaliana reveals new evolutionary patterns in white blister rusts (Albuginaceae). Persoonia 22:123–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thines M, Voglmayr H, Goker M (2009b) Taxonomy and phylogeny of the downy mildews (Peronosporaceae). In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics. John Wiley & Sons, London, pp 47–75

    Chapter  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:5107–15111

    Article  Google Scholar 

  • Thomma BPHJ, Seidl MF, Shi-Kunne X, Cook DE, Bolton MD, van Kan JAL, Faino L (2016) Mind the gap; seven reasons to close fragmented genome assemblies. Fungal Genet Biol 90:24–30

    Article  CAS  PubMed  Google Scholar 

  • Tomimura K, Gibbs AJ, Jenner CE, Walsh JA, Ohshima K (2003) The phylogeny of Turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Mol Ecol 12:2099–2111

    Article  CAS  PubMed  Google Scholar 

  • Tomimura K, Spak J, Katis N, Jenner CE, Walsh JA, Gibbs AJ, Ohshima K (2004) Comparison of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. Virology 330:408–423

    Article  CAS  PubMed  Google Scholar 

  • Tommerup IC, Ingram DS (1971) The life-cycle of Plasmodiophora brassicae Woron. in Brassica tissue cultures and intact roots. New Phytol 70:327–332

    Article  Google Scholar 

  • Tor M, Holub EB, Brose E, Musker R, Gunn N (1994) Map positions of three loci in Arabidopsis thaliana associated with isolate-specific recognition of Peronospora parasitica (downy mildew). Mol Plant-Microbe Interact 7:214–222. https://doi.org/10.1094/MPMI-7-0214

    Article  Google Scholar 

  • Torres PS, Malamud F, Rigano LA, Russo DM, Marano MR, Castagnaro AP, Zorreguieta A, Bouarab K, Dow JM, Vojnov AA (2007) Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ Microbiol 9:2101–2109

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyler BM, Tripathy S, Zhang XM, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CM, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJ, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JK, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BW, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266. https://doi.org/10.1126/Science.1128796

    Article  CAS  PubMed  Google Scholar 

  • Umate P, Tuteja N, Tuteja R (2011) Genome-wide comprehensive analysis of human helicases. Commun Integr Biol 4:118–137. https://doi.org/10.4161/cib.4.1.13844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urcuqui-Inchima S, Haenni A-L, Bernardi F (2001) Potyvirus proteins: a wealth of functions. Virus Res 74:157–175

    Article  CAS  PubMed  Google Scholar 

  • Van de Wouw AP, Thomas VL, Cozijnsen AJ, Marcroft SJ, Salisbury PA, Howlett BJ (2008) Identification of Leptosphaeria biglobosa ‘canadensis’ on Brassica juncea stubble from northern New South Wales, Australia. Aust Plant Dis Notes 3:124–128

    Google Scholar 

  • Van de Wouw AP, Cozijnsen AJ, Hane JK, Brunner PC, McDonald BA, Oliver RP, Howlett BJ (2010) Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathol 6:e1001180. https://doi.org/10.1371/journal.ppat.1001180

    Article  CAS  Google Scholar 

  • Van Wees SCM, Chang HS, Zhu T, Glazebrook J (2003) Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol 132:606–617

    Article  PubMed  PubMed Central  Google Scholar 

  • Veluchamy S, Rollins JA (2008) A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet Biol 45:1265–1276. https://doi.org/10.1016/j.fgb.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  • Veluchamy S, Williams B, Kim K, Dickman MB (2012) Physiological and molecular plant pathology the CuZn superoxide dismutase from Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production. Physiol Mol Plant Pathol 78:14–23. https://doi.org/10.1016/j.pmpp.2011.12.005

    Article  CAS  Google Scholar 

  • Venn L (1979) The genetic control of sexual compatibility in Leptosphaeria maculans. Australas Plant Pathol 8:5–6. https://doi.org/10.1071/APP9790005

    Article  Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to Brassica crops. Mol. Plant Pathol 14(1):2–18

    CAS  Google Scholar 

  • Vicente JG, Conway J, Roberts SJ, Taylor JD (2001) Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492–499

    Article  CAS  PubMed  Google Scholar 

  • Vincenot L, Balesdent MH, Li H, Barbetti MJ, Sivasithamparam K, Gout L, Rouxel T (2008) Occurrence of a new subclade of Leptosphaeria biglobosa in Western Australia. Phytopathology 98:321–329

    Article  CAS  PubMed  Google Scholar 

  • Visser RGF, Bachem CWB, de Boer JM, Bryan GJ, Chakrabati SK, Feingold S, Gromadka R, van Ham RCHJ, Huang S, Jacobs JME, Kuznetsov B, de Melo PE, Milbourne D, Orjeda G, Sagredo B, Tang X (2009) Sequencing the potato genome: outline and first results to come from the elucidation of the sequence of the world’s third most important food crop. Am J Potato Res 86:417

    Article  CAS  Google Scholar 

  • Voglmayr H (2003) Phylogenetic relationships of Peronospora and related genera based on nuclear ribosomal ITS sequences. Mycol Res 107:1132–1142

    Article  CAS  PubMed  Google Scholar 

  • Voglmayr H, Greilhuber J (1998) Genome size determination in peronosporales (Oomycota) by Feulgen image analysis. Fungal Genet Biol 25:181–195. https://doi.org/10.1006/fgbi.1998.1097

    Article  CAS  PubMed  Google Scholar 

  • Voigt K, Cozijnsen AJ, Kroymann J, Pöggeler S, Howlett BJ (2005) Phylogenetic relationships between members of the crucifer pathogenic Leptosphaeria maculans species complex as shown by mating type (MAT1-2), actin, and β-tubulin sequences. Mol Phylogenet Evol 37:541–557

    Article  CAS  PubMed  Google Scholar 

  • Vojnov AA, Slater H, Daniels MJ, Dow JM (2001) Expression of the gumoperon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol Plant-Microbe Interact 14:768–774

    Article  CAS  PubMed  Google Scholar 

  • Vorhoelter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rueckert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Puehler A (2008) The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 134:33–45

    Article  CAS  Google Scholar 

  • Vorholter FJ, Niehaus K, Puhler A (2001) Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core. Mol Gen Genomics 266:79–95

    Article  CAS  Google Scholar 

  • Walker J, Smith AM (1972) Leptosphaeria narmari and L. korrae spp. nov., two long-spored pathogens of grasses in Australia. Trans Br Mycol Soc 58:459–466

    Article  Google Scholar 

  • Wallenhammar AC, Arwidsson O (2001) Detection of Plasmodiophora brassicae by PCR in naturally infested soils. Eur J Plant Pathol 107:313–321

    Article  CAS  Google Scholar 

  • Walsh JA (1989) Genetic control of immunity to Turnip mosaic virus in winter oilseed rape (Brassica napus ssp. oleifera) and the effect of foreign isolates of the virus. Ann Appl Biol 115:89–99

    Article  Google Scholar 

  • Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300

    Article  CAS  PubMed  Google Scholar 

  • Walsh JA, Tomlinson JA (1985) Viruses infecting winter oilseed rape (Brassica napus ssp. oleifera). Ann Appl Biol 107(3):485–495

    Article  Google Scholar 

  • Wang LF, Tang XY, He CZ (2007) The bifunctional effector AvrXccC of Xanthomonas campestris pv. campestris requires plasma membrane-anchoring for host recognition. Mol Plant Pathol 8:491–501

    Article  PubMed  Google Scholar 

  • Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H (2016) The Sclerotinia sclerotiorum FoxE2 gene is required for apothecial development. Mycology 106:484–490

    CAS  Google Scholar 

  • Wei K, Tang DJ, He YQ, Feng JX, Jiang BL, Lu GT, Chen BS, Tang JL (2007) hpaR, a putative marR family transcriptional regulator, is positively controlled by HrpG and HrpX and involved in the pathogenesis, hypersensitive response, and extracellular protease production of Xanthomonas campestris pathovar campestris. J Bacteriol 189:2055–2062

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J (2016) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J 14(6):1368–1380

    Article  CAS  PubMed  Google Scholar 

  • Weld RJ, Eady CC, Ridgway HJ (2005) Agrobacterium mediated transformation of Sclerotinia sclerotiorum. J Microbiol Methods 65(1):202–207. https://doi.org/10.1016/jmimet.2005.07.010

    Article  PubMed  Google Scholar 

  • Wengelnik K, Rossier O, Bonas U (1999) Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. J Bacteriol 181(21):6828–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weßling R, Schmidt SM, Micali CO, Knaust F, Reinhardt R, Neumann U, van Themaat EVL, Panstruga R (2012) Transcriptome analysis of enriched Golovinomyces orontii haustoria by deep 454 pyrosequencing. Fungal Genet Biol 49:470–482

    Article  PubMed  Google Scholar 

  • Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, McDonald N, Wiley K, Bader KC, Gläßer C, Mukhtar MS, Haigis S, Ghamsari L, Stephens AE, Ecker JR, Vidal M, Jones JDG, Mayer KFX, van Themaat EVL, Weigel D, Schulze-Lefert P, Dangl JL, Panstruga R, Braun P (2014) Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16(3):364–375. https://doi.org/10.1016/j.chom.2014.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplication and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. A guide to methods and application. Academic Press, London, pp 315–322

    Google Scholar 

  • White FF, Potnis N, Jones JB, Koebnik R (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10:749–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Oberhaensli S, Parlange F, Buchmann JP, Shatalina M, Roffler S, Ben-David R, Dolezel J, Simkova H, Schulze-Lefert P, Spanu PD, Bruggmann R, Amselem J, Quesneville H, van Themaat EVL, Paape T, Shimizu KK, Keller B (2013) The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet 45:1092–1096

    Article  CAS  PubMed  Google Scholar 

  • Wilson TJG, Bertrand N, Tang JL, Feng JX, Pan MQ, Barber CE, Dow JM, Daniels MJ (1998) The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase. Mol Microbiol 28:961–970

    Article  CAS  PubMed  Google Scholar 

  • Wiltshire SP (1947) Species of Alternaria on Brassicae. Mycol Pap 20:1–15

    Google Scholar 

  • Wolters PJ, Faino L, van den Bosch TBM, Evenhuis B, Visser RGF, Seidl MF, Vleeshouwers VGAA (2018) Gapless genome assembly of the potato and tomato early blight pathogen Alternaria solani. Mol Plant-Microbe Interact 31:692–694

    Article  CAS  PubMed  Google Scholar 

  • Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013) Alternaria redefined. Stud Mycol 75:171–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woudenberg JH, Seidl MF, Groenewald JZ, de Vries M, Stielow JB, Thomma BP, Crous PW (2015) Alternaria section Alternaria: species, formae speciales or pathotypes? Stud Mycol 82:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y (2012) Unwinding and rewinding: double faces of helicase? J Nucl Acids 2012:140601. https://doi.org/10.1155/2012/140601

    Article  CAS  Google Scholar 

  • Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y (2013) Identification of QTLs for resistance to Sclerotinia stem rot and BnaC. IGMT5, a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One 8:e67740. https://doi.org/10.1371/journal.pone.0067740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhao Q, Liu S, Shahid M, Lan L, Cai G, Zhang C, Fan C, Wang Y, Zhou Y (2016) Genome-wide association study identifies new loci for resistance to Sclerotinia stem rot in Brassica napus. Front Plant Sci 7:1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia S, Xu Y, Hoy R, Zhang J, Qin L, Li X (2020) The notorious soil borne pathogenic fungus Sclerotinia sclerotiorum: an update on genes studied with mutant analysis. Pathogens 9(1):27. https://doi.org/10.3390/pathogens9010027

    Article  CAS  Google Scholar 

  • Xiao X, Xie J, Cheng J, Li G, Yi X, Jiang D, Fu Y (2014) Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development. Mol Plant-Microbe Interact 27:40–55. https://doi.org/10.1094/MPMI-05-13-0145-R

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Chen W (2013) Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum. Mol Plant-Microbe Interact 26:431–441. https://doi.org/10.1094/MPMI-07-12-0177-R

    Article  CAS  PubMed  Google Scholar 

  • Xu RQ, Li XZ, Wei HY, Jiang B, Li K, He YQ, Feng JX, Tang JL (2006) Regulation of eight avr genes by hrpG and hrpX in Xanthomonas campestris pv. campestris and their role in pathogenicity. Prog Nat Sci 16:1288–1294

    Article  Google Scholar 

  • Xu RQ, Blanvillain S, Feng JX, Jiang BL, Li XZ, Wei HY, Kroj T, Lauber E, Roby D, Chen B, He YQ, Lu GT, Tang DJ, Vasse J, Arlat M, Tang JL (2008) AvrAC(Xcc8004), a type III effector with a leucine-rich repeat domain from Xanthomonas campestris pathovar campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. J Bacteriol 190:343–355

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Xiang M, White D, Chen W (2015) pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum. Environ Microbiol 17:2896–2909. https://doi.org/10.1111/1462-2920.12818

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Li J, Yu B, Liu L, Zhang X, Liu J, Montes HM (2018) Transcription factor SsSte12 was involved in mycelium growth and development in Sclerotinia sclerotiorum. Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.02476

    Article  Google Scholar 

  • Yajima W, Liang Y, Kav NNV, Sclerotinia A, Bary D (2009) Gene disruption of an arabinofuranosidase/β-xylosidase precursor decreases Sclerotinia sclerotiorum virulence on canola tissue. Mol Plant-Microbe Interact 22:783–789. https://doi.org/10.1094/MPMI-22-7-0783

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L (2018) Colletotrichum higginsianum as a model for understanding host–pathogen interactions: a review. Int J Mol Sci 19(7):2142. https://doi.org/10.3390/ijms19072142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Tang L, Gong Y, Xie J, Fu Y, Jiang D, Li G, Collinge DB, Chen W, Cheng J (2018) A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. New Phytol 217:739–755. https://doi.org/10.1111/nph.14842

    Article  CAS  PubMed  Google Scholar 

  • Yano S, Tanaka S, Ito S, Kameya-Iwaki M (1997) Variations of random amplified polymorphic DNA (RAPD) patterns among field populations of Plasmodiophora brassicae. Ann Phytopathol Soc Jpn 63:179–182

    Article  CAS  Google Scholar 

  • Yarden O, Veluchamy S, Dickman MB, Kabbage M (2014) Physiological and molecular plant pathology Sclerotinia sclerotiorum catalase SCAT1 affects oxidative stress tolerance, regulates ergosterol levels and controls pathogenic development. Physiol Mol Plant Pathol 85:34–41

    Article  CAS  Google Scholar 

  • Yasaka R, Fukagawa H, Ikematsu M, Soda H, Korkmaz S, Golnaraghi A, Katis N, Ho SYW, Gibbs AJ, Ohshima K (2017) The timescale of emergence and spread of Turnip mosaic potyvirus. Sci Rep 7:4240

    Article  PubMed  PubMed Central  Google Scholar 

  • Yerkes WD, Shaw CG (1959) Taxonomy of the Peronospora species on Cruciferae and Chenopodiaceae. Phytopathology 49:499–507

    Google Scholar 

  • Yin X, Yi B, Chen W, Zhang W, Tu J, Fernando WGD, Fu T (2010) Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173:25–35. https://doi.org/10.1007/s10681-009-0095-1

    Article  CAS  Google Scholar 

  • Yoshii M, Yoshioka N, Ishikawa M, Naito S (1998) Isolation of an Arabidopsis thaliana mutant in which accumulation of Cucumber mosaic virus coat protein is delayed. Plant J 13:211–219

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi A, Imanishi J, Gafur A, Tanaka C, Tsuda M (2003) Characterization and genetic analysis of laboratory mutants of Cochliobolus heterostrophus resistant to dicarboximide and phenylpyrrole fungicides. J Gen Plant Pathol 69:101–108

    Article  CAS  Google Scholar 

  • You MP, Akhatar J, Mittal M, Barbetti MJ, Maina S, Banga SS (2021) Comparative analysis of draft genome assemblies developed from whole genome sequences of two Hyaloperonospora brassicae isolate samples differing in field virulence on Brassica napus. Biotech Rep 31:e00653. https://doi.org/10.1016/j.btre.2021.e00653

    Article  CAS  Google Scholar 

  • Yu SC, Zhang FL, Zhao XY, Yu YJ, Zhang DS (2011) Sequence–characterized amplified region and simple sequence repeat markers for identifying the major quantitative trait locus responsible for seedling resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant Breed 130:580–583. https://doi.org/10.1111/j.1439-0523.2011.01874.x

    Article  CAS  Google Scholar 

  • Yu F, Lydiate DJ, Gugel RK, Sharpe AG, Rimmer SR (2012) Introgression of Brassica rapa subsp. sylvestris blackleg resistance into Brassica napus. Mol Breed 30:1495–1506. https://doi.org/10.1007/s11032-012-9735-6

    Article  CAS  Google Scholar 

  • Yu Y, Xiao J, Yang Y, Bi C, Qing L, Tan W (2015) Physiological and molecular plant pathology Ss-Bi1 encodes a putative BAX Inhibitor-1 protein that is required for full virulence of Sclerotinia sclerotiorum. Physiol Mol Plant Pathol 90:115–122. https://doi.org/10.1016/j.pmpp.2015.04.005

    Article  CAS  Google Scholar 

  • Yu F, Zhang X, Huang Z, Chu M, Song T, Falk KC, Deora A, Chen Q, Zhang Y, McGregor L, Gossen BD, McDonald MR, Peng G (2016) Identification of genome–wide variants and discovery of variants associated with Brassica rapa clubroot resistance gene Rcr1 through bulked segregant RNA sequencing. PLoS One 11:e0153218. https://doi.org/10.1371/journal.pone.0153218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Xiao J, Zhu W, Yang Y, Mei J, Bi C, Qian WEI, Qing L, Tan W (2017) Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum. Mol Plant Pathol 18:1052–1061. https://doi.org/10.1111/mpp.12459

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Du J, Wang Y, Zhang M, Huang Z, Cai J, Fang A, Yang Y, Qing L, Bi C, Cheng J (2019) Survival factor 1 contributes to the oxidative stress response and is required for full virulence of Sclerotinia sclerotiorum. Mol Plant Pathol 20:895–906. https://doi.org/10.1111/mpp.12801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Ayhan DH, Diener AC, Ma LJ (2020) Genome sequence of Fusarium oxysporum f. sp. matthiolae, a Brassicaceae pathogen. Mol Plant-Microbe Interact 33(4):569–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun MH, Torres PS, El Oirdi M, Rigano LA, Gonzalez-Lamothe R, Marano MR, Castagnaro AP, Dankert MA, Bouarab K, Vojnov A (2006) Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol 141:178–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zampounis A, Pigne S, Dallery JF, Wittenberg AH, Zhou S, Schwartz DC, Thon MR, O’Connell RJ (2016) Genome sequence and annotation of Colletotrichum higginsianum, a causal agent of crucifer anthracnose disease. Genome Announc 4:e00821–e00816. https://doi.org/10.1128/genomeA.00821-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Zander M, Patel DA, Van de Wouw A, Lai K, Lorenc MT, Campbell E, Hayward A, Edwards D, Raman H, Batley J (2013) Identifying genetic diversity of avirulence genes in Leptosphaeria maculans using whole genome sequencing. Funct Integr Genomics 13:295–308. https://doi.org/10.1007/s10142-013-0324-5

    Article  CAS  PubMed  Google Scholar 

  • Zang N, Tang DJ, Wei ML, He YQ, Chen BS, Feng JX, Xu J, Gan YQ, Jiang BL, Tang JL (2007) Requirement of a mip-like gene for virulence in the phytopathogenic bacterium Xanthomonas campestris pv. campestris. Mol Plant-Microbe Interact 20:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zeiner CA, Purvine SO, Zink EM, Paša-Tolić L, Chaput DL, Haridas S, Wu S, LaButti K, Grigoriev IV, Henrissat B, Santelli CM, Hansel CM (2016) Comparative analysis of secretome profiles of manganese(II)-oxidizing ascomycete fungi. PLoS ONE 1:e0157844

    Article  Google Scholar 

  • Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR (2002) Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl Environ Microbiol 68:532–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu B, Zou F, Shen D, Yin Z, Wang R, He F, Wang Y, Tyler BM, Fan W, Qian W, Dou D (2019) Whole genome re-sequencing reveals natural variation and adaptive evolution of Phytophthora sojae. Front Microbiol 10:2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JW, Meng JL (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106:759–764

    Article  PubMed  Google Scholar 

  • Zhao J, Udall JA, Quijada PA, Grau CR, Meng J, Osborn TC (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516

    Article  CAS  PubMed  Google Scholar 

  • Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF, Jiang S, Ramachandran S, Liu CM, Jing HC (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114. https://doi.org/10.1186/gb-2011-12-11-r114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X (2013) A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One 8:e53901. https://doi.org/10.1371/journal.pone.0053901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu GL, Yu G, Zhang YH, Rollins JA, Li J, Pan H (2019) The formaldehyde dehydrogenase SsFdh1 is regulated by and functionally cooperates with the GATA transcription. MSystems 4:1–19. https://doi.org/10.1128/mSystems.00397-19

    Article  Google Scholar 

  • Zou Z, Zhang X, Parks P, du Toit LJ, van de Wouw AP, Fernando WGD (2019) A new subclade of Leptosphaeria biglobosa identified from Brassica rapa. Int J Mol Sci 20:1668. https://doi.org/10.3390/ijms20071668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh Saharan, G., Mehta, N.K., Meena, P.D. (2023). Crucifer’s Pathogens Genome. In: Genomics of Crucifer's Host- Pathosystem . Springer, Singapore. https://doi.org/10.1007/978-981-19-3812-2_2

Download citation

Publish with us

Policies and ethics