Skip to main content

Pathogenomics of Pathogenic Variability

  • Chapter
  • First Online:
Genomics of Crucifer's Host- Pathosystem

Abstract

At different stages of host–pathogen interactions, natural conditions and modern agricultural settings foster the evolution of new and virulent pathogenic races by selection pressure on R genes in crucifer genotypes. Polyploidy in Albugo candida contributes to race diversification and evolution by selection pressure imposed from cultivated Brassica species. Molecular studies have revealed high degree of genetic diversity within Albugo pathogenic to Brassica species with wide host range and six new specialized species along with virulent races. ITS and COX2, molecular approaches of phylogenetic analysis and morphological variations of oospores have divided A. candida into three groups (1, 2, 3) infecting different cruciferous with different races. Several races/pathotypes of A. candida have been identified at global level infecting different crucifers. The virulence of A. candida races varies from very narrow to wide infecting different Brassica species and genotypes. Phylogenetic analysis and nucleotide sequences have distinguished races of A. candida infecting different crucifers in different countries of the world. Albugo candida isolates from different crucifers have been characterized based on virulence genes specificity to their hosts in Australia. A single dominant gene AvrAC1 controls avirulence in race 2 of A. candida infecting B. rapa cv. Torch. The genetic variation among geographically distinct isolates of A. brassicae has been assessed using RAPD-PCR markers. The genetic structure of A. brassicicola population indicates the occurrence of sexual recombination’s with a cryptic sexual stage. Mutation of Amr1 gene in A. brassicicola causes increased virulence. Three pathotypes of A. brassicae viz., RM1, RM2, and V3 have been identified using eight commonly cultivated Brassica species. The isolates of A. brassicae collected from different geographical areas are different in conidial morphology, cultural characteristics, and symptom production on different hosts. A brassicae isolates from different locations show high degree of genetic similarity. There is differential protein expression by the isolates of A. brassicae. The isolates of A. brassicae show variability in biochemical contents, sensitivity to different fungicides and plant extracts. The variation in relative levels of virulence in the form of disease incidence, severity, and defoliation within and between Alternaria spp. causing leaf spot disease on rapeseed-mustard has been recorded. Several pathotypes of Alternaria species have been identified with different designations using differential determinant attributes. The function of effectors/genes, ChELP1, and ChELP2 homologs of Lysm proteins has been characterized in C. higginsianum. In India, powdery mildew pathogen produces both asexual and sexual stages on B. juncea, so there is every possibility for Erysiphe cruciferarum to express pathogenic variability. The isolates of Hyaloperonospora parasitica collected from different countries, locations, and host species have been characterized in the form of pathotypes showing host specificity and differential virulence. The isolates of H. parasitica from different host species and genotypes have been molecularly identified as pathotypes with their virulence potential using DNA (RAPD) finger printing. The isolates of H. parasitica collected and characterized on different crucifers as race and pathotypes cannot be compared in the absence of use of standardized host differentials (isogenic lines) and uniform designation/nomenclature system at international level. Hybridization of Hyaloperonospora isolates has also been observed. The evolution of virulent races in Leptosphaeria has been observed in the areas where crops with major gene resistance coupled with genetic uniformity have been sown. The avirulence genes of L. maculans races have been identified from Europe. Leptosphaeria maculans field populations have high level of gene diversity and genotypic diversity in France. An avirulent mutated AvrLm gene of L. maculans has been identified to detect new R genes for breeding blackleg resistant cultivars of Brassica. The genome-wide DNA variants and SNP haplotypes of L. maculans pathotypes have been identified. Pathotypes of Plasmodiophora brassicae has been identified from various countries using different differential host sets and designating pathotypes in their own way without following any sound uniform system of nomenclature. The genomes of P. brassicae pathotypes Pb2, Pb5, and Pb8 have been sequenced to gain insight into genome variations and its correlation with host specificity. Proteomics of P. brassicae has revealed potential effectors/genes of pathotypes. The isolates of P. brassicae from different countries have been phylogenetically analyzed for similarities and differences of pathotypes. Polymorphism in P. brassicae in case of Korean isolates collected from field has been recorded. The Cr811 gene in P. brassicae pathotypes P5 plays an important role as molecular markers for identification of race P5 and other new virulences. The different geographical isolates of P. brassicae have been identified by rDNA sequence polymorphism. Pathogenic and genetic variations in P. brassicae pathotypes infecting a weed C. flexuosa and crucifers have been analyzed using RAPDs in Japan. The virulence of P. brassicae changes during interaction with CR genes in the host cultivars. The changes in P. brassicae pathotypes structure under field conditions have been analyzed through whole genome DNA similarity sequences. The application of RAPD seq has revealed distinct P. brassicae populations under Canadian conditions. ITS sequencing and phylogenetic analysis of P. capsellae isolates from Brassica hosts clearly differentiated them in to virulence factors/races. High level of genetic diversity and recombination’s in Sclerotinia populations in tropical countries has been identified with the groups of isolates as MCGs and MLHs infecting crucifers. The aggressiveness of Sclerotinia isolates on Brassica has been measured using AUDPC as one of the parameters. The sequence variation of ITS region of S. sclerotiorum isolates revealed higher heterogenecity and genetic variability showing presence of clonal and sexual progenies of the pathogen in B. juncea growing areas of India. The genetic diversity is higher in Sclerotinia populations from Canola and Sunflower in the NCUS. Distribution of microsatellite haplotypes regions is often on multiple crops. The genetic diversity and populations structure of S. sclerotiorum has been analyzed with DNA (RAPD) sequences from different countries of the world. The virulence factors of Sclerotinia has been identified on the basis of pathogenicity as virulent pathotypes (aggressiveness), genomic factors (dsRNA) controlled Hypo virulence, MCGs, cloned variables, haplotypes, genetic diversity of isolates, and population biology studies with markers such as MCGs, DNA finger printing or micro satellites. The TuMV isolates collected from different hosts could not be characterized on Brassica species for virulence. The molecular characterization of isolates from different species of Verticillium indicated that isolates infecting crucifers are long spored (amphihaploids or allodiploids) because of Verticillium interspecific hybridization events. Black rot of crucifers’ bacterium has been characterized into pathovars of X. campestris on different species of crucifers. The X. campestris isolates from oilseed rape are more genetically diverse with specialization to their nonhost than their Brassica hosts. The virulent effectors/genes of pathogens have different evolutionary mechanisms to counteract with the defense mechanisms of the host. The identification, classification, and utilization of crucifer’s pathogen pathotypes from different countries is most challenging task since scientists have not followed standardized uniform system and procedures in selecting host differentials, designation and nomenclature of pathotypes, pure isolates (single spore), and scoring of infection phenotypes. The expression of high genetic diversity by crucifers’ pathogens under natural as well as modern agriculture settings is another challenge of variation in pathogenic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A 95:10306–10311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 9(3):341–356

    Article  CAS  PubMed  Google Scholar 

  • Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Mol Plant Microbe Interact 12(12):1031–1043

    Article  CAS  PubMed  Google Scholar 

  • Adhikari TB, Liu JQ, Mathur S, Wu CX, Rimmer SR (2003) Genetic and molecular analyses in crosses of race 2 and race 7 of Albugo candida. Phytopathology 93:959–965

    Article  CAS  PubMed  Google Scholar 

  • Afrin KS, Rahim MA, Park JI, Natarajan S, Kim H-T, Nou IS (2018) Identification of NBS-encoding genes linked to black rot resistance in cabbage (Brassica oleracea var. capitata). Mol Biol Rep 45:773–785

    Article  CAS  PubMed  Google Scholar 

  • Aldrich-Wolfe L, Travers S, Nelson BDJ (2015) Genetic variation of Sclerotinia sclerotiorum from multiple crops in the North Central United States. PLoS One 10(9):e0139188. https://doi.org/10.1371/journalpone0139188

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-lami HFD, You MP, Barbetti MJ (2019) Incidence, pathogenicity and diversity of Alternaria spp. associated with Alternaria leaf spot of canola (Brassica napus) in Australia. Plant Pathol 68:492–503

    Google Scholar 

  • Almeida NF, Yan S, Cai R, Clarke CR, Morris CE, Schaad NW, Schuenzel EL, Lacy GH, Sun X, Jones JB, Castillo JA, Bull CT, Leman S, Guttman DS, Setubal JC, Vinatzer BA (2010) PAMDB, a multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology 100(3):208–215. https://doi.org/10.1094/PHYTO-100-3-0208

    Article  CAS  PubMed  Google Scholar 

  • Alvarez AM, Benedict AA, Mizumoto CY, Hunter JE, Gabriel DW (1994) Serological, pathological and genetic diversity among strains of Xanthomonas campestris infecting crucifers. Phytopathology 84:1449–1457

    Article  Google Scholar 

  • Andersen B, Sørensen JL, Nielsen KF, van den Ende BG, de Hoog S (2009) A polyphasic approach to the taxonomy of the Alternaria infectoria species–group. Fungal Genet Biol 46:642–656

    Article  CAS  PubMed  Google Scholar 

  • Anderson JB, Kohn LM (1995) Clonality in soil borne plant-pathogenic fungi. Annu Rev Phytopathol 33:369–391

    Article  CAS  PubMed  Google Scholar 

  • Ansan-Melayah D, Balesdent HM, Delourme R, Pilet LM, Tanguy X, Renard M, Rouxel T (1997) Gene-for-gene interactions in the Leptosphaeria maculans-Brassica napus pathosystem. Acta Hortic 459:329–334

    Google Scholar 

  • Ansan-Melayah D, Balesdent MH, Delourme R, Pilet ML, Tanguy X, Renard M, Roulx T (1998) Genes for race-specific resistance against blackleg disease in Brassica napus L. Plant Breed 117:373–378. https://doi.org/10.1111/j.1439-05231998.tb01956.x

    Article  Google Scholar 

  • Apaydin A, Deligoz I, Kar H, Kibar B, Karaagac O (2010) An investigation on clubroot disease (Plasmodiophora brassicae Worn) races in the black sea region of Turkey. GOÜ Ziraat Fakültesi Dergisi 27(2):57–60

    Google Scholar 

  • Atallah ZK, Larget B, Chen X, Johnson DA (2004) High genetic diversity, phenotypic uniformity, and evidence of out crossing in Sclerotinia sclerotiorum in the Columbia basin of Washington state. Phytopathology 94:737–742

    Article  CAS  PubMed  Google Scholar 

  • Atkinson RG (1950) Studies on the parasitism and variation of Alternaria raphani. Can J Res 28:288–317

    Article  Google Scholar 

  • Atkinson RG (1953) Survival and pathogenicity of Alternaria raphani after five years in dried soil cultures. Can J Bot 31:542–547

    Article  Google Scholar 

  • Attanayake RN, Carter PA, Jiang D, del Río-Mendoza L, Chen W (2013) Sclerotinia sclerotiorum populations infecting canola from China and the United States are genetically and phenotypically distinct. Phytopathology 103:750–761. https://doi.org/10.1094/PHYTO-07-12-0159-R

    Article  CAS  PubMed  Google Scholar 

  • Auclair J, Boland GJ, Kohn LM, Rajcan I (2004) Genetic interactions between Glycine max and Sclerotinia sclerotiorum using a straw inoculation method. Plant Dis 88:891–895

    Article  CAS  PubMed  Google Scholar 

  • Australian Plant Pest Database (2019). http://www.appd.ala.org.au. Accessed 12 Aug 2019

  • Badawy HMA, Hoppe HH, Koch E (1991) Differential reactions between the genus Brassica and aggressive single spore isolates of Leptosphaeria maculans. Phytopathology 131:109–119. https://doi.org/10.1111/j.1439-0434.1991.tb04737.x

    Article  Google Scholar 

  • Bains SS, Jhooty JS (1983) Host range and morphology of Peronospora parasitica from different sources. Indian J Mycol Plant Pathol 13:372–375

    Google Scholar 

  • Balesdent MH, Attard A, Ansan-Melayah D, Delourme R, Renard M, Rouxel T (2001) Genetic control and host range of avirulence toward Brassica napus cultivars Quinta and Jet Neuf in Leptosphaeria maculans. Phytopathology 91:70–76. https://doi.org/10.1094/PHYTO.2001.91.1.70

    Article  CAS  PubMed  Google Scholar 

  • Balesdent MH, Attard A, Kuhn ML, Rouxel T (2002) New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology 92:1122–1133. https://doi.org/10.1094/PHYTO.2002.92.10.1122

    Article  CAS  PubMed  Google Scholar 

  • Balesdent MH, Barbetti M, Li H, Sivasithamparam K, Gout L, Rouxel T (2005) Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology 95:1061–1071

    Article  CAS  PubMed  Google Scholar 

  • Balesdent MH, Louvard K, Pinochet X, Rouxel T (2006) A large-scale survey of races of Leptosphaeria maculans occurring on oilseed rape in France. Eur J Plant Pathol 114:53–65

    Article  Google Scholar 

  • Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chèvre AM, Leflon M, Rouxel T (2013) The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol 198:887–898. https://doi.org/10.1111/nph.12178

    Article  CAS  PubMed  Google Scholar 

  • Barbetti MJ, Sivasithamparam K (1981) Pseudocercosporella capsellae and Myrothecium verrucaria on rapeseed in Western Australia. Australas Plant Pathol 10:43–44. https://doi.org/10.1071/APP9810043

    Article  Google Scholar 

  • Barret P, Delourme R, Foisset N, Renard M (1998) Development of a SCAR (sequence characterised amplified region) marker for molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus L. Theor Appl Genet 97:828–833. https://doi.org/10.1007/s001220050962

    Article  CAS  Google Scholar 

  • Bassimba DDM, Mira JL, Vicent A (2013) First report of Alternaria japonica causing black spot of turnip in Spain. Plant Dis 97:1505

    Article  CAS  PubMed  Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265:1856–1860

    Article  CAS  PubMed  Google Scholar 

  • Berg T, Tesoriero L, Hailstones DL (2005) PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathol 54:416–427. https://doi.org/10.1111/j.1365-3059.2005.01186.x

    Article  CAS  Google Scholar 

  • Bhardwaj CL, Sud AK (1988) A study on the variability of Albugo candida from Himachal Pradesh. J Mycol Plant Pathol 18:287–291

    Google Scholar 

  • Bhattacharya I, Dutta S, Mondal S, Mondal B (2014) Clubroot disease on Brassica crops in India. Can J Plant Pathol 36:154–160. https://doi.org/10.1080/07060661.2013.875064

    Article  Google Scholar 

  • Biga MLB (1955) Review of the species of the genus Albugo based on the morphology of the conidia. Sydowia 9:339–358

    Google Scholar 

  • Bock CH, Thrall PH, Brubaker CL, Burdon JJ (2002) Detection of genetic variation in Alternaria brassicicola using AFLP fingerprinting. Mycol Res 106:428–434

    Article  CAS  Google Scholar 

  • Bock CH, Thrall PH, Burdon JJ (2005) Genetic structure of populations of Alternaria brassicicola suggests the occurrence of sexual recombination. Mycol Res 109:227–236

    Article  CAS  PubMed  Google Scholar 

  • Boland GJ (1987) Hypovirulence, debilitation and double-stranded RNA in Sclerotinia sclerotiorum. Phytopathology 77:1613

    Google Scholar 

  • Boland GJ (1988) Hypovirulence in Sclerotinia sclerotiorum associated with double-stranded RNA. Plant Pathol 10:361

    Google Scholar 

  • Boland GJ (1992) Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum. Can J Plant Pathol 14:10–17

    Article  CAS  Google Scholar 

  • Bourras S, McNally KE, Ben-David R, Parlange F, Roffler S, Praz CR, Oberhaensli S, Menardo F, Stirnweis D, Frenkel Z, Schaefer LK, Flückiger S, Treier G, Herren G, Korol AB, Wicker T, Keller B (2015) Multiple avirulence loci and allele-specific effector recognition control the PM3 race-specific resistance of wheat to powdery mildew. Plant Cell 27(10):2991–3012. https://doi.org/10.1105/tpc.15.00171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourras S, McNally KE, Müller MC, Wicker T, Keller B (2016) Avirulence genes in cereal powdery mildews: the gene-for-gene hypothesis 2.0. Plant Biol Interact 7:241

    Google Scholar 

  • Bradbury JF (1986) Guide to plant pathogenic bacteria. CABI, Slough

    Google Scholar 

  • Brun H, Chèvre AM, Fitt BDL, Powers S, Besnard AL, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185:285–299. https://doi.org/10.1111/j.1469-8137.2009.03049.x

    Article  PubMed  Google Scholar 

  • Buck KW (1986) Fungal virology-an overview. In: Buck KW (ed) Fungal virology. CRC Press, Boca Raton, FL. 84 p

    Google Scholar 

  • Buck KW (1987) Viruses of plant pathogenic fungi. In: Day PR, Jellis GJ (eds) Genetics and plant pathogenesis. Blackwell Scientific, Oxford, pp 111–126

    Google Scholar 

  • Buczacki ST, Toxopeus H, Mattusch P, Johnston TD, Dixon GR, Hobolth LA (1975) Study of physiologic specialization in Plasmodiophora brassicae: proposals for attempted rationalization through an international approach. Trans Br Mycol Soc 65:295–303. https://doi.org/10.1016/s0007-1536(75)80013-1

    Article  Google Scholar 

  • Buhariwalla S, Greaves S, Magrath R, Mithen R (1995) Development of specific PCR primers for the amplification of polymorphic DNA from the obligate root pathogen Plasmodiophora brassicae. Physiol Mol Plant Pathol 47:83–94

    Article  CAS  Google Scholar 

  • Burdon JJ, Silk J (1997) Sources and patterns of diversity in plant-pathogenic fungi. Phytopathology 87:664–669

    Article  CAS  PubMed  Google Scholar 

  • Burdon JJ, Thrall PH (1999) Spatial and temporal patterns in coevolving plant and pathogen associations. Am Nat 153:S15–S33

    Article  CAS  PubMed  Google Scholar 

  • Burdon JJ, Wennström A, Elmqvist T, Kirby GC (1996) The role of race specific resistance in natural plant populations. Oikos 76:411–416

    Article  Google Scholar 

  • Burdyukova LI (1980) Albuginacae fungi. Taxonomy, morphology, biology, and specialization. Ukrainskyi Botanichnyi Zhumal 37:65–74

    Google Scholar 

  • Burkholder WH (1957) Genus II. Xanthomonas Dowson 1939. In: Breed RS, Murray EGD, Smith NR (eds) Bergey’s manual of determinative bacteriology, 7th edn. Williams and Wilkins Co., Baltimore, MD, pp 152–183

    Google Scholar 

  • Carbone I, Kohn LM (2001) Multi-locus nested haplo-type networks extended with DNA fingerprints show common origin and fine-scale, ongoing genetic divergence in a wild microbial meta-population. Mol Ecol 10:2409–2422. https://doi.org/10.1046/j.09621083.2001.01380.x

    Article  CAS  PubMed  Google Scholar 

  • Carbone I, Anderson JB, Kohn LM (1999) Patterns of descent in clonal lineages and their multilocus fingerprints are resolved with combined gene genealogies. Evolution 53:11–21

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MA, Frampton C, Stewart A (1999) Genetic variation in New Zealand populations of the plant pathogen Sclerotinia sclerotiorum. N Z J Crop Hortic Sci 27:13–21

    Article  Google Scholar 

  • Chai AL, Xie XW, Shi YX, Li BJ (2014) Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Can J Plant Pathol 36:142–153. https://doi.org/10.1080/07060661.2013.868829

    Article  Google Scholar 

  • Chang IH, Shin NL, Chiu WF (1964) A preliminary study on the physiological differentiation of the downy mildews (Peronospora parasitica (Pers.) Fr.) of Chinese cabbage and other cruciferous vegetables in the vicinity of Peking and Tientsin. Acta Phytopathol Sin 7:33–44

    Google Scholar 

  • Chanyal S, Srivastava S, Meena PD, Taj G (2018) Comparative genetic variation among Alternaria brassicae isolates infecting oilseed Brassica in India. Int J Pure App Biosci 6(4):394–400. https://doi.org/10.18782/2320-7051.6570

    Article  Google Scholar 

  • Chen Q, Peng G, Kutcher R, Yu F (2020) Identification of genome-wide DNA variants and SNP haplotypes associated with avirulence genes of Leptosphaeria maculans in Western Canada. Res Square:1–17. https://doi.org/10.21203/rs.3.rs-24766/v1

  • Chevre AM, Barret P, Eber F, Dupuy P, Brun H, Tanguy X, Renard M (1997) Selection of stable Brassica napus-B. juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theor Appl Genet 95:1104–1111

    Article  Google Scholar 

  • Cho Y, Srivastava A, Ohm RA, Lawrence CB, Wang KH, Grigoriev IV, Marahatta SP (2012) Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola. PLoS Pathog 8:e1002974. https://doi.org/10.1371/journal.ppat.1002974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi D, Priest MJ (1995) A key to the genus Albugo. Mycotaxon 53:261–272

    Google Scholar 

  • Choi YJ, Hong SB, Shin HD (2003) Diversity of the Hyaloperonospora parasitica complex from core Brassicaceous hosts based on ITS rDNA sequences. Mycol Res 107:1314–1322. https://doi.org/10.1017/S0953756203008578

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Hong SB, Shin HD (2006) Genetic diversity within the Albugo candida complex (Peronosporales, Oomycota) inferred from phylogenetic analysis of ITS rDNA and COX2 mtDNA sequences. Mol Phylogenet Evol 40:400–409

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Shin HD, Hong SB, Thines M (2007) Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide. Fungal Divers 27:11–34

    Google Scholar 

  • Choi YJ, Shin HD, Ploch S, Thines M (2008) Evidence for uncharted biodiversity in the A. candida complex, with the description of a new species. Mycol Res 112:1327–1334

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Shin HD, Hong SB, Thines M (2009) The host range of Albugo candida extends from Brassicaceae through Cleomaceae to Capparaceae. Mycol Prog 8:329–335

    Article  Google Scholar 

  • Choi YJ, Shin HD, Ploch S, Thines M (2011a) Three new phylogenetic lineages are the closest relatives of the widespread species Albugo candida. Fungal Biol 115:598–607

    Article  PubMed  Google Scholar 

  • Choi YJ, Thines M, Shin HD (2011b) A new perspective on the evolution of white blister rust: Albugo s.str. (Albugonales; Oomycota) is not restricted to Brassicales but also present on Fabales. Org Divers Evol 11:193–199

    Article  Google Scholar 

  • Ciferri R (1928) Observations on the specialization of A. ipomoeae-panduratae (Schw.). SW Nuovo Giom Bot Ital 35:112–134

    Google Scholar 

  • Clarkson JP, Warmington RJ, Walley PG, Denton-Giles M, Barbetti MJ, Brodal G, Nordskog B (2017) Population structure of Sclerotinia subarctica and Sclerotinia sclerotiorum in England, Scotland and Norway. Front Microbiol 8:490. https://doi.org/10.3389/fmicb.2017.00490

    Article  PubMed  PubMed Central  Google Scholar 

  • Coelho PS, Vicente JG, Monteiro AA, Holub EB (2012) Pathotypic diversity of Hyaloperonospora brassicae collected from Brassica oleracea. Eur J Plant Pathol 134:763–771. https://doi.org/10.1007/s10658-012-0052-z

    Article  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 4256(1):973–977

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846. https://doi.org/10.1038/nrg1711

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Constantinescu O, Fatehi J (2002) Peronospora-like fungi (Chromista, Peronosporales) parasitic on Brassicaceae and related hosts. Nova Hedwigia 74:291–338

    Article  Google Scholar 

  • Constantinescu O, Negrean G (1983) Check-list of Romanian Peronosporales. Mycotaxon 16:537–556

    Google Scholar 

  • Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32

    Article  CAS  PubMed  Google Scholar 

  • Crute IR, Johnson AG (1976) The genetic relationship between races of Bremia lactucae and cultivars of Lactuca sativa. Ann Appl Biol 83:125–137

    Article  Google Scholar 

  • Crute IR, Norwood JM, Gordon DL (1985) Resistance to phenylamide fungicides in lettuce and Brassica downy mildew. In: Proc mixture centenary meeting, Br Crop Prot Council Monograph No. 31, Bordeaux, Croydon, Surrey, pp 311–314

    Google Scholar 

  • Crute I, Beynon J, Dangl J, Holub E, Mauch-Mani B, Slusarenko A, Staskawicz B, Ausubel F (1994) Microbial pathogenesis of Arabidopsis. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 705–747

    Google Scholar 

  • Cruz J, Tenreiro R, Cruz L (2017) Assessment of diversity of Xanthomonas campestris pathovars affecting cruciferous plants in Portugal and disclosure of two novel X. campestris pv. campestris races. J Plant Pathol 99:403–414

    Google Scholar 

  • Cubeta MA, Cody BR, Kohli Y, Kohn LM (1997) Clonality in Sclerotinia sclerotiorum on infected cabbage in Eastern North Carolina. Phytopathology 87:1000–1004

    Article  CAS  PubMed  Google Scholar 

  • Czyzewska S (1969) Alternaria blight of Crambe abyssinica. Acta Mycol 5:175–211

    Google Scholar 

  • Czyzewska S (1970) Wplyw temperatury na wzrost i zarodniowanie grzybow z rodzaju Alternaria wyizolowanych z modraka abisynskiego. Acta Mycol 6(2):261–276

    Google Scholar 

  • Czyżewska S (1971) Pathogenicity of Alternaria species isolated from Crambe abyssinica Hochst. Acta Mycol 7:171–240

    Article  Google Scholar 

  • Dangl JL, Holub EB, Debener T, Lehnackers H, Ritter C, Crute IR (1992) Genetic definition of loci involved in Arabidopsis-pathogen interactions. In: Koncz C, Chua NH, Schell J (eds) Methods in Arabidopsis research. World Scientific Publishing Co, London, pp 393–418

    Chapter  Google Scholar 

  • Daub ME, Ehrenshaft M (2000) The photo activated Cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annu Rev Phytopathol 38:461–490

    Article  CAS  PubMed  Google Scholar 

  • De Bruyn HLG (1937) Heterothallism in Peronospora parasitica. Genetica 19:553–558

    Article  Google Scholar 

  • Delourme R, Pilet-Nayel ML, Archipiano M, Horvais R, Tanguy X, Rouxel T, Brun H, Renard M, Balesdent MH (2004) A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology 94:578–583. https://doi.org/10.1094/PHYTO.2004.94.6.578

    Article  CAS  PubMed  Google Scholar 

  • Delwiche PA, Williams PH (1977) Genetic studies in Brassica nigra (L.) Koch. Crucif Newsl 2:39

    Google Scholar 

  • Denton-Giles M, Derbyshire MC, Khentry Y, Buchwaldt L, Kamphuis LG (2018) Partial stem resistance in Brassica napus to highly aggressive and genetically diverse Sclerotinia sclerotiorum isolates from Australia. Can J Plant Pathol 40(4):551–561. https://doi.org/10.1080/07060661.2018.1516699

    Article  CAS  Google Scholar 

  • Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghy S, Rollins J, van Kan J, Seidl MF, Faino L, Mbengue M, Navaud O, Raffaele S, Hammond-Kosack K, Heard S, Oliver R (2017) The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol 9:593–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson CH, Greenhalgh JR (1977) Host range and taxonomy of Peronospora on crucifers. Trans Br Mycol Soc 69:111–116. https://doi.org/10.1016/S0007-1536(77)80121-6

    Article  Google Scholar 

  • Dickson MH, Petzoldt R (1993) Plant age and isolate source affect expression of downy mildew resistance in Broccoli. Hortic Sci 28:730–731

    Google Scholar 

  • Diederichsen E, Frauen M, Ludwig-Müller J (2014) Clubroot disease management challenges from a German perspective. Can J Plant Pathol 36:85–98. https://doi.org/10.1080/07060661.2013.861871

    Article  CAS  Google Scholar 

  • Diederichsen E, Wagenblatt B, Schallehn V (2016) Production of pure genotype isolates of Plasmodiophora brassicae Wor. -comparison of inoculations with root hairs containing single sporangiosori or with single resting spores. Eur J Plant Pathol 145:621–627

    Article  CAS  Google Scholar 

  • Dilmaghani A, Balesdent MH, Didier JP, Wu C, Davey J, Barbetti MJ, Li H, Moreno-Rico O, Phillips D, Despeghel JP, Vincenot L, Gout L, Rouxel T (2009) The Leptosphaeria maculans – Leptosphaeria biglobosa species complex in the American continent. Plant Pathol 58:1044–1058. https://doi.org/10.1111/j.1365-3059.2009.02149.x

    Article  Google Scholar 

  • Dobson RL, Robak J, Gabrielson RL (1983) Pathotypes of Plasmodiophora brassicae in Washington, Oregon and California. Plant Dis 67:269–271

    Article  Google Scholar 

  • Dzhanuzakov A (1963) Specialization and variability in some Peronosporaceous fungi. Bot Zh 47:862–867

    Google Scholar 

  • Eberhardt A (1904) Contribution attitude de Cystopus candidus Lev. Zentr Bakteriol Parasitenk 12:235–249

    Google Scholar 

  • Elliston JE (1982) Hypovirulence. Adv Plant Pathol 1:1–33

    Google Scholar 

  • Endo RM, Linn MB (1960) The white rust disease of horseradish. IL Agric Exp Stn Bull 655:56

    Google Scholar 

  • Errampolli D, Kohn LM (1996) Electrophoretic karyotypes of Sclerotinia sclerotiorum. Appl Environ Microbiol 62:4247–4251

    Article  Google Scholar 

  • Eshraghi L, You M, Barbetti M (2005) First report of white leaf spot caused by Pseudocercosporella capsellae on Brassica juncea in Australia. Plant Dis 89:1131. https://doi.org/10.1094/PD-89-1131B

    Article  CAS  PubMed  Google Scholar 

  • Eshraghi L, Barbetti MJ, Li H, Danehloueipour N, Sivasithamparam K (2007) Resistance in oilseed rape (Brassica napus) and Indian mustard (Brassica juncea) to a mixture of Pseudocercosporella capsellae isolates from Western Australia. Field Crop Res 101:37–43

    Article  Google Scholar 

  • Fahling M, Graf H, Siemens J (2003) Pathotype separation of Plasmodiophora brassicae by the host plant. J Phytopathol 151(7–8):425–430. https://doi.org/10.1046/j.1439-0434.2003.00744.x

    Article  Google Scholar 

  • Fahling M, Graf H, Siemens J (2004) Characterization of a single-spore isolate population of Plasmodiophora brassicae resulting from a single club. J Phytopathol 152(7):438–444

    Article  Google Scholar 

  • Faino L, Seidi MF, Shi-Kunne X, Pauper M, van den Berg GCM, Wittenberg AHJ, Thomma BPHJ (2016) Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res 26:1091–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Rimmer SR, Stefansson BR (1983) Inheritance of resistance to Albugo candida in rape (Brassica napus L.). Can J Genet Cytol 25:420–424

    Article  Google Scholar 

  • Fargier E, Manceau C (2007) Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol 56:805–818

    Article  Google Scholar 

  • Fargier E, Saux MFL, Manceau C (2011) A multilocus sequence analysis of Xanthomonas campestris reveals a complex structure within crucifer-attacking pathovars of this species. Syst Appl Microbiol 34:156–165

    Article  CAS  PubMed  Google Scholar 

  • Farr DF, Rossman AY (2010) Fungal databases, systematic mycology and microbiology laboratory. ARS, USDA, Washington DC. http://nt.ars-grin.gov/fungaldatabases/

    Google Scholar 

  • Farr D, Rossman A (2019) Fungal databases. US National Fungus Collections. ARS, USDA, Washington DC. https://nt.ars-grin.gov/fungaldatabases. Accessed 12 Aug 2019

    Google Scholar 

  • Felton MW, Walker JC (1946) Environmental factors affecting downy mildew of cabbage. J Agric Res 72:69–81

    Google Scholar 

  • Feng J, Jiang J, Feindel D, Strelkov SE, Hwang S-F (2016) The gene Cr811 is present exclusively in pathotype 5 and new emerged pathotypes of the clubroot pathogen Plasmodiophora brassicae. Eur J Plant Pathol 145:615–620. https://doi.org/10.1007/s10658-016-0903-0

    Article  CAS  Google Scholar 

  • Fernando WGD, Zhang X, Selin C, Zou Z, Liban SH, McLaren DL, Kubinec A, Parks PS, Rashid MH, Padmathilake KRE, Rong K, Yang C, Gnanesh BN, Huang S (2018) A six-year investigation of the dynamics of Avirulence allele profiles, blackleg incidence, and mating type alleles of Leptosphaeria maculans population associated with canola crops in Manitoba, Canada. Plant Dis 12:790–798. https://doi.org/10.1094/PDIS-05-17-0630-RE

    Article  Google Scholar 

  • Ferreira ME, Rimmer SR, Williams PH, Osborn TC (1995) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85:213–217

    Article  CAS  Google Scholar 

  • Ford EJ, Miller RV, Gray H, Sherwood JE (1995) Heterokaryon formation and vegetative compatibility in Sclerotinia sclerotiorum. Mycol Res 99:241–247

    Article  Google Scholar 

  • Förster H, Coffey MD (1990) Mating behavior of Phytophthora parasitica-evidence for sexual recombination in oospores using DNA restriction fragment length polymorphism as genetical markers. Exp Mycol 14:351–359

    Article  Google Scholar 

  • Fraissinet-Tachet L, Reymond-Cotton R, Fèvre M (1995) Characterization of a multigene family encoding an endopolygalacturonase in Sclerotinia sclerotiorum. Curr Microbiol 29:96–100

    CAS  Google Scholar 

  • Fraissinet-Tachet L, Reymond-Cotton P, Fevre M (1996) Molecular karyotype of the phytopathogenic fungus Sclerotinia sclerotiorum. Curr Sci 29:496–501

    CAS  Google Scholar 

  • Francis DM, St Clair DA (1993) Out-crossing in the homothallic oomycete, Pythium ultimum, detected with molecular markers. Curr Genet 24:100–106

    Article  CAS  PubMed  Google Scholar 

  • Fudal I, Ross S, Gout L, Blaise F, Kuhn ML, Eckert MR, Cattolico L, Bernard-Samain S, Balesdent MH, Rouxel T (2007) Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based coning of AvrLm6. Mol Plant-Microbe Interact 20:459–470. https://doi.org/10.1094/MPMI-20-4-0459

    Article  CAS  PubMed  Google Scholar 

  • Gardner MW (1920) Peronospora in turnip roots. Phytopathology 10:321–323

    Google Scholar 

  • Garg H, Atri C, Sandhu PS, Kaur B, Renton M, Banga SK, Singh H, Singh C, Barbetti MJ, Banga SS (2010a) High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species, B. napus and B. juncea. Field Crop Res 117:51–58. https://doi.org/10.1016/j.fcr.2010.01.013

    Article  Google Scholar 

  • Garg H, Kohn LM, Andrew M, Li H, Sivasithamparam K, Barbetti MJ (2010b) Pathogenicity of morphologically different isolates of Sclerotinia sclerotiorum with Brassica napus and B. juncea genotypes. Eur J Plant Pathol 126:305–315. https://doi.org/10.1007/s10658-009-9547-7

    Article  Google Scholar 

  • Garibaldi A, Gilardi G, Bertoldo C, Gullino ML (2011) First report of leaf spot of wild (Diplotaxis tenuifolia) and cultivated (Eruca vesicaria) rocket caused by Alternaria japonica in Italy. Plant Dis 95:1316

    Article  CAS  PubMed  Google Scholar 

  • Garman H (1894) A bacterial disease of cabbage. Kentucky Agr Exp Stn Rep 3:43–46

    Google Scholar 

  • Gaumann E (1926) On the specialization of downy mildew (Peronospora brassicae Gaum.) on cabbage and related species. Landwirtsch Jahrbuch Schweiz 40:463–468

    Google Scholar 

  • Ge XT, Li YP, Wan ZJ, You MP, Finnegan PM, Banga SS, Sandhu PS, Garg H, Salisbury PA, Barbetti MJ (2012) Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes. Field Crop Res 127:248–258. https://doi.org/10.1016/j.fcr.2011.11.022

    Article  Google Scholar 

  • Ge XT, You MP, Barbetti MJ (2015) Virulence differences among Sclerotinia sclerotiorum isolates determines host cotyledon resistance responses in Brassicaceae genotypes. Eur J Plant Pathol 143:527–541. https://doi.org/10.1007/s10658-015-0696-6

    Article  CAS  Google Scholar 

  • Ghabrial SA (1980) Effects of fungal viruses on their hosts. Annu Rev Phytopathol 18:44–61

    Article  Google Scholar 

  • Ghanbarnia K, Fudal I, Larkan NJ, Links MG, Balesdent MH, Profotova B, Fernando WGD, Rouxel T, Borhan MH (2015) Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. Mol Plant Pathol 16:699–709. https://doi.org/10.1111/mpp.12228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasolia RP, Shivpuri A (2007) Morphological and pathogenic variability in rapeseed and mustard isolates of Sclerotinia sclerotiorum. Indian Phytopathol 60:76–81

    Google Scholar 

  • Gibriel HA, Thomma BP, Seidl MF (2016) The age of effectors: genome-based discovery and applications. Phytopathology 106:1206–1212. https://doi.org/10.1094/PHYTO-02-16-0110-FI

    Article  CAS  PubMed  Google Scholar 

  • Gilardi G, Demarchi S, Ortu G, Gullino ML, Garibaldi A (2014) Occurrence of Alternaria japonica on seeds of wild and cultivated rocket. J Phytopathol 163:419–422

    Article  Google Scholar 

  • Goker M, Riethmüller A, Voglmayr H, Weiss M, Oberwinkler F (2004) Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycol Prog 3:83–94

    Article  Google Scholar 

  • Golicz AA, Martinez PA, Zander M, Patel DA, Van De Wouw AP, Visendi P, Fitzgerald T, Edwards D, Batley J (2015) Gene loss in the fungal canola pathogen Leptosphaeria maculans. Funct Integr Genomics 15:189–196. https://doi.org/10.1007/s10142-014-0412-1

    Article  CAS  PubMed  Google Scholar 

  • Göllner K, Schweizer P, Bai Y, Panstruga R (2008) Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol 1776(1):725–742

    Article  Google Scholar 

  • Gomes EV, Nascimento LBD, De Freitas MA, Nasser LCB, Petrofeza S (2011) Microsatellite markers reveal genetic variation within Sclerotinia sclerotiorum populations in irrigated dry bean crops in Brazil. J Phytopathol 159:94–99. https://doi.org/10.1111/j.1439-0434.2010.01724.x

    Article  CAS  Google Scholar 

  • Goodwin SB, Allard RW, Webster RK (1990) A nomenclature for Rhynchosporium secalis pathotypes. Phytopathology 80:1330–1336. https://doi.org/10.1094/Phyto-80-1330

    Article  Google Scholar 

  • Goodwin PH, Annis SL (1991) Rapid identification of genetic variation and pathotype of Leptosphaeria maculans by random amplified polymorphic DNA assay. Appl Environ Microbiol 57:2482–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gout L, Fudal I, Kuhn ML, Blaise F, Eckert M, Cattolico L, Balesdent MH, Rouxel T (2006) Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol Microbiol 60:67–80

    Article  CAS  PubMed  Google Scholar 

  • Goyal P, Chahar M, Mathur AP, Kumar A, Chattopadhyay C (2011) Morphological and cultural variation in different oilseed Brassica isolates of Alternaria brassicae from different geographical regions of India. Indian J Agric Sci 81:1053–1058

    Google Scholar 

  • Goyal P, Chattopadhyay C, Mathur AP, Kumar A, Meena PD, Datta S (2013) Pathogenic and molecular variability among Brassica isolates of Alternaria brassicae from India. Ann Plant Prot Sci 21(2):349–359

    Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Chen M, Huang J, Wei Y, Hsiang T, Zheng L (2017) Multifaced roles of the Ras Guanine-nucleotide exchange factor ChRgf in development, pathogenesis, and stress response of Colletotrichum higginsianum. Phytopathology 107:433–443. https://doi.org/10.1094/PHYTO-03-16-0137-R

    Article  CAS  PubMed  Google Scholar 

  • Gunasinghe N, You MP, Banga SS, Barbetti MJ (2013) High level resistance to Pseudocercosporella capsellae offers new opportunities to deploy host resistance to effectively manage white leaf spot disease across major cruciferous crops. Eur J Plant Pathol 138:873–890

    Article  Google Scholar 

  • Gunasinghe N, You MP, Barbetti MJ (2016) Phenotypic and phylogenetic studies associated with the crucifer white leaf spot pathogen, Pseudocercosporella capsellae, in Western Australia. Plant Pathol 65:205–217. https://doi.org/10.1111/ppa.12402

    Article  Google Scholar 

  • Gupta K, Saharan GS (2002) Identification of pathotypes of Albugo candida with stable characteristic symptoms on Indian mustard. J Mycol Plant Pathol 32:46–51

    Google Scholar 

  • Gupta K, Saharan GS, Mehta N, Sangwan MS (2004) Identification of pathotypes of Alternaria brassicae from Indian mustard [Brassica juncea (L) Czern & Coss.]. J Mycol Plant Pathol 34:15–19

    Google Scholar 

  • Gyawali S, Harrington M, Durkin J, Horner K, Parkin IA, Hegedus DD, Bekkaoui D, Buchwaldt L (2016) Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol Breed 36:72. https://doi.org/10.1007/s11032-016-0496-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hambleton S, Walker C, Kohn LM (2002) Clonal lineages of Sclerotinia sclerotiorum previously known from other crops predominate in 1999–2000 from Ontario and Quebec soybean. Can J Plant Pathol 24:309–315

    Article  Google Scholar 

  • Hancock JG (1966) Degradation of pectic substances associated with pathogenesis by Sclerotinia sclerotiorum in sunflower and tomato stems. Phytopathology 56:975–979

    CAS  Google Scholar 

  • Hancock JG (1967) Hemicellulose degradation in sunflower hypocotyls infected with Sclerotinia sclerotiorum. Phytopathology 57:203–206

    CAS  Google Scholar 

  • Harteveld DOC, Akinsanmi OA, Drenth A (2013) Multiple Alternaria species groups are associated with leaf blotch and fruit spot diseases of apple in Australia. Plant Pathol 62:289–297

    Article  CAS  Google Scholar 

  • Hatakayema K, Fujimura M, Ishida M, Suzuki T, Sato T (2006) Classification of pathogenicity of Plasmodiophora brassicae field isolates in Japan based on resistance of F1 cultivars of Chinese cabbage (Brassica rapa L.) to clubroot. Acta Hortic 706:323–328. https://doi.org/10.17660/ActaHortic.2006.706.38

    Article  Google Scholar 

  • Hayden HL, Cozijnsen AJ, Howlett BJ (2007) Microsatellite and mini-satellite analysis of Leptosphaeria maculans in Australia reveals regional genetic differentiation. Phytopathology 97:879–887. https://doi.org/10.1094/PHYTO-97-7-0879

    Article  CAS  PubMed  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. In: Lam E, Fukuda H, Greenberg J (eds) Programmed cell death in higher plants. Springer, Holland, pp 77–90

    Chapter  Google Scholar 

  • Held YM (1955) Physiological differences between a normal and a degenerate strain of Sclerotinia trifoliorum. Phytopathology 45:39–42

    CAS  Google Scholar 

  • Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, Kumlehn J, Mishra B, Sharma R, Thines M, Hückelhoven R, Doehlemann G (2015) The fungal core effector Pep1 is conserved across smuts of dicots and monocots. New Phytol 206:1116–1126

    Article  CAS  PubMed  Google Scholar 

  • Hill C, Crute I, Sherriff C, Williams PH (1988) Specificity of Albugo candida and Peronospora parasitica pathotypes toward rapid-cycling crucifers. Crucif Newsl 13:112–113

    Google Scholar 

  • Hiura M (1930) Biologic forms of A. candida (Pers.) Kuntze on some cruciferous plants. Jpn J Bot 5:1–20

    Google Scholar 

  • Hiura M, Kanegae H (1934) Studies on the downy mildews of cruciferous vegetables in Japan. Trans Sapporo Nat Hist Soc 13:125–133

    Google Scholar 

  • Holtz MD, Hwang S-F, Strelkov SE (2018) Genotyping of Plasmodiophora brassicae reveals the presence of distinct populations. BMC Genomics 19(1):254

    Article  PubMed  PubMed Central  Google Scholar 

  • Holub EB (1997) Organization of resistance genes in Arabidopsis. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant-parasite interaction. CAB Int, Wallingford, pp 5–26

    Google Scholar 

  • Holub EB, Beynon JL, Crute IR (1994) Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana. Mol Plant-Microbe Interact 7:223–239

    Article  CAS  Google Scholar 

  • Howlett BJ (2004) Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans. Can J Plant Pathol 26(3):245–252. https://doi.org/10.1080/07060660409507141

    Article  Google Scholar 

  • Howlett B, Ballinger D, Barbetti MJ (1999) Diseases. In: Salisbury PA, Potter TD, Mcdonald G (eds) Canola in Australia. Organising Committee of the 10th International Rapeseed Congress, Canberra, Australia, pp 47–52

    Google Scholar 

  • Howlett BJ, Lowe RGT, Marcroft SJ, van de Wouw AP (2015) Evolution of virulence in fungal plant pathogens: exploiting fungal genomics to control plant disease. Mycologia 107(3):441–451. https://doi.org/10.3852/14-317

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Quiros CE (1991) Identification of broccoli and cauliflowers cultivars with RAPD markers. Plant Cell Rep 10:505–511

    Article  CAS  PubMed  Google Scholar 

  • Huang YJ, Balesdent MH, Li Z-Q, Evans N, Rouxel T, Fitt BDL (2010) Fitness cost of virulence differs between the AvrLm1 and AvrLm4 loci in Leptosphaeria maculans (phoma stem canker of oilseed rape). Eur J Plant Pathol 126:279–291

    Article  Google Scholar 

  • Hudspeth DSS, Stenger D, Hudspeth MES (2003) A COX2 phylogenetic hypothesis of the downy mildews and white rusts. Fungal Divers 13:47–57

    Google Scholar 

  • Hulbert SH, Illott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegami H (1992) Proliferation and pathogenicity of Plasmodiophora brassicae in infected callus tissue (studies on the clubroot of cruciferous plant X). Proc Kansai Plant Prot Soc 34:17–28

    Google Scholar 

  • Inman A, Sivanesan A, Fitt B, Evans R (1991) The biology of Mycosphaerella capsellae sp. nov., the teleomorph of Pseudocercosporella capsellae, cause of white leaf spot of oilseed rape. Mycol Res 95:1334–1342. https://doi.org/10.1016/S0953-7562(09)80586-8

    Article  Google Scholar 

  • International Seed Federation (2019) Differential sets Plasmodiophora brassicae (Pb)-Brassica oleracea. Chem Reposoir 7:1260. 1–2

    Google Scholar 

  • Ito S, Tokunaga Y (1935) Notae mycologicae Asiae orientalis. I. Trans Sapporo Nat Hist Soc 14:11–33

    Google Scholar 

  • Ito S, Maehara T, Tanaka S, Kameya-Iwaki M, Yano S, Kishi F (1997) Cloning of a single-copy DNA sequence unique to Plasmodiophora brassicae. Physiol Mol Plant Pathol 50:289–300

    Article  CAS  Google Scholar 

  • Ito S, Nakamura T, Matsumoto T, Maehara T, Tanaka S, Kameya-Iwaki M, Kishi F (1998) Characterization of DNA sequences cloned from resting spores of Plasmodiophora brassicae. J Phytopathol 146(2–3):143–147. https://doi.org/10.1111/j.1439-0434.1998.tb04671.x

    Article  CAS  Google Scholar 

  • Jasalavich CA, Morales VM, Pelcher LE, Seguin-Swartz G (1995) Comparison of nuclear ribosomal DNA sequences from Alternaria species pathogenic to crucifers. Mycol Res 99:604–614

    Article  CAS  Google Scholar 

  • Jat RR (1999) Pathogenic variability and inheritance of resistance to Albugo candida in oilseed Brassica. PhD Thesis, CCSHAU Hisar, 129 p

    Google Scholar 

  • Jeong JY, Robin AHK, Natarajan S, Laila R, Kim HT, Park J-I, Nou I-S (2018) Race- and isolate-specific molecular marker development through genome-realignment enables detection of Korean Plasmodiophora brassicae isolates, causal agents of clubroot disease. Plant Pathol J 34(6):506–513. https://doi.org/10.5423/PPJ.OA.12.2017.0266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleot Acid Res 41e:188. https://doi.org/10.1093/nar/gkt780

    Article  CAS  Google Scholar 

  • Jo SJ, Shim SA, Jang KS, Choi YH, Kim JC, Choi GJ (2011) Resistance of cultivars of Chinese cabbage to Plasmodiophora brassicae isolates of several races collected in Korea. Korean J Hortic Sci Technol 29:610–616

    Google Scholar 

  • Jones DR, Ingram DS, Dixon GR (1982) Factors affecting tests for differential pathogenicity in populations of Plasmodiophora brassicae. Plant Pathol 31:229–238. https://doi.org/10.1111/j.1365-3059.1982.tb01273.x

    Article  Google Scholar 

  • Jonsson R (1981) Breeding for improved resistance to clubroot in oil rape. In: Proc Brassica Conf, pp 44–46

    Google Scholar 

  • Jouet A, Saunders DGO, McMullan M, Ward B, Furzer O, Jupe F, Cevik V, Hein I, Thilliez GJA, Holub E, van Oosterhout C, Jones JDG (2018) Albugo candida race diversity, ploidy and host-associated microbes revealed using DNA sequence capture on diseased plants in the field. New Phytol 221:1529–1543

    Article  PubMed  Google Scholar 

  • Júnior CL, Gomes E, Junior ML, Nasser L, Petrofeza S (2011) Genetic diversity and mycelial compatibility groups of the plant-pathogenic fungus Sclerotinia sclerotiorum in Brazil. Genet Mol Res 10:868–877. https://doi.org/10.4238/vol10-2gmr937

    Article  Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci U S A 93:11746–11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karapapa VK, Bainbridge BW, Heale JB (1997) Morphological and molecular characterization of Verticillium longisporum comb. nov., pathogenic to oilseed rape. Mycol Res 101:1281–1294

    Article  Google Scholar 

  • Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M (2008) The first structure of a glycoside hydrolase family member, Cel61B from Hypocrea jecorina at 1.6 Å resolution. J Mol Biol 383:144–154

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Sivasithamparam K, Barbetti MJ (2008) Pathogenic behaviour of strains of Albugo candida from Brassica juncea (Indian mustard) and Raphanus raphanistrum (wild radish) in Western Australia. Aust J Plant Pathol 37:353–356

    Article  Google Scholar 

  • Kaur P, Jost R, Sivasithamparam K, Barbetti MJ (2011a) Proteome analysis of the A. candida-B. juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis. J Exp Bot 62:1285–1298. https://doi.org/10.1093/jxb/erq365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur P, Sivasithamparam K, Barbetti MJ (2011b) Host range and phylogenetic relationships of Albugo candida from cruciferous hosts in Western Australia, with special reference to Brassica juncea. Plant Dis 95:712–718

    Article  PubMed  Google Scholar 

  • Khurana AK, Mehta N, Sangwan MS (2005) Variation in biochemical contents of Alternaria brassicae (Berk) Sacc. isolates. Indian J Mycol Plant Pathol 35:343–345

    Google Scholar 

  • Kihara J, Moriwaki A, Tanaka N, Tanaka C, Ueno M, Arase S (2008) Characterization of the BMR1gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett 281:221–227

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Jo EJ, Choi YH, Jang KS, Choi GJ (2016) Pathotype classification of Plasmodiophora brassicae isolates using Clubroot-resistant cultivars of Chinese cabbage. Plant Pathol J 32:423. https://doi.org/10.5423/PPJ.OA.04.2016.0081

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein-Lankhorst RM, Rietveld P, Machiels B, Verkerk R, Weide R, Gebhardt C, Koornneef M, Zabel P (1991) RFLP markers linked to the root knot nematode resistance gene Miin tomato. Theor Appl Genet 81:661–667

    Article  CAS  PubMed  Google Scholar 

  • Kluczewski SM, Lucas JA (1983) Host infection and oospore formation by Peronospora parasitica in agricultural and horticultural Brassica species. Trans Br Mycol Soc 81:591–596

    Article  Google Scholar 

  • Kobel F (1921) The problem of host selection by parasitic fungi. Naturwissen Wochenschr 36:113–118

    Google Scholar 

  • Koch E, Song K, Osborn TC, Williams PH (1991) Relationship between pathogenicity and phylogeny based on restriction fragment length polymorphism in Leptosphaeria maculans. Mol Plant-Microbe Interact 4:341–349. https://doi.org/10.1094/MPMI-4-341

    Article  CAS  Google Scholar 

  • Kochman J, Majewski T (1970a) Fungi (Mycota). Vol IV. Phycomycetes, peronosporales. Panstwowe Wydawnictwo Naukowe, Warszawa

    Google Scholar 

  • Kochman J, Majewski T (1970b) Grzyby (Mycota). Glonowce (Phycomycetes). Wroslikowe (Pernosporales), vol 4. Panstwowe Wydawnictwo Naukowe, Warszawa, p 309

    Google Scholar 

  • Köhler C, Mittelsten Scheid O, Erilova A (2010) The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26:142–148

    Article  PubMed  Google Scholar 

  • Kohli Y, Kohn LM (1998) Random association among alleles in clonal populations of Sclerotinia sclerotiorum. Fungal Genet Biol 23:139–149

    Article  CAS  PubMed  Google Scholar 

  • Kohli Y, Morrall RAA, Anderson JB, Kohn LM (1992) Local and trans-Canadian clonal distribution of Sclerotinia sclerotiorum on canola. Phytopathology 82:875–880

    Article  Google Scholar 

  • Kohli Y, Brunner LJ, Yoell H, Milgroom MG, Anderson JB, Morall RAA, Kohn LM (1995) Clonal dispersal and spatial mixing in populations of the plant-pathogenic fungus, Sclerotinia sclerotiorum. Mol Ecol 4:69–77

    Article  Google Scholar 

  • Kohli LM (1992) Developing new characters for fungal systematic: an experimental approach for determining the rank of Sclerotinia. Mycologia 84:139–153

    Google Scholar 

  • Kohn LM (1995) The clonal dynamic in wild and agricultural plant pathogen populations. Can J Bot 73:1231–1240

    Article  Google Scholar 

  • Kohn LM (2001) Integrating our genotypic diversity data: towards a global picture of population subdivision and fine scale structure in Sclerotinia with implications for disease management. In: Young CS, Hughes KJD (eds) Proc of Sclerotinia 2001 of the XI International Sclerotinia Workshop, 8–12 July 2001. Central Science Laboratory, York, pp 17–19

    Google Scholar 

  • Kohn LM, Carbone I, Anderson JB (1990) Mycelial interactions in Sclerotinia sclerotiorum. Exp Mycol 14:255–267

    Article  Google Scholar 

  • Kohn LM, Stasovski E, Carbone I, Royer J, Anderson JB (1991) Mycelial incompatibility and molecular markers identify genetic variability in field populations of Sclerotinia sclerotiorum. Phytopathology 81:480–485. https://doi.org/10.1094/Phyto-81-480

    Article  Google Scholar 

  • Kole C, Teutonico R, Mengistu A, Williams PH, Osborn TC (1996) Molecular mapping of a locus controlling resistance to Albugo candida in Brassica rapa. Phytopathology 86:367–369

    Article  CAS  Google Scholar 

  • Kole C, Williams PH, Rimmer SR, Osborn TC (2002) Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Brassica rapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome 45:22–27

    Article  CAS  PubMed  Google Scholar 

  • Koller B, Lehmann A, McDermott JM, Gessler C (1993) Identification of apple cultivars using RAPD markers. Theor Appl Genet 85:901–904

    Article  CAS  PubMed  Google Scholar 

  • Kolte SJ, Awasthi RP, Vishwanath K (1989) Disease problems in Brassicas and research activities at Pantnagar. In: IDRC (Canada) Oil Crops: Proc three meetings held at Pantnagar and Hyderabad, India, pp 43–48

    Google Scholar 

  • Kolte SJ, Bardoloi DK, Awasthi RP (1991) The search for resistance to major diseases of rapeseed mustard in India. In: McGregor DI (ed) Proc 8th International Rapeseed Congress, 9–11 July 1991. Organizing Committee of 8th International Rapeseed Congress, Saskatoon, SK, pp 216–225

    Google Scholar 

  • Korn M, Schmidpeter J, Dahl M, Müller S, Voll LM, Koch CA (2015) Genetic screen for pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum identifies the plasma membrane proton pump Pma2 required for host penetration. PLoS One 10:e0125960. https://doi.org/10.1371/journal.pone.0125960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kresovich S, Williams JGK, McFerson JR, Routman EJ, Schaal BA (1992) Characterization of genetic identities and relationships of Brassica oIeracea L. via a random amplified polymorphic DNA assay. Theor Appl Genet 85:190–196

    Article  CAS  PubMed  Google Scholar 

  • Krivchenko VI, Boos GV, Surmava ME (1982) Harakteristika genofonda kapusty po ustojcivosti k Plasmodiophora brassicae Woron. Tr Prikl Bot Genet Sel 72:113–120

    Google Scholar 

  • Kuginuki Y, Yoshikawa H, Hirai M (1999) Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot resistant cultivars of Chinese cabbage (Brassica rapa L. spp. pekinensis). Eur J Plant Pathol 105:327–332

    Article  Google Scholar 

  • Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R (2016) Biotrophy at its best: novel findings and unsolved mysteries of the Arabidopsis-powdery mildew pathosystem. Arabidopsis Book 14:e0184. https://doi.org/10.1199/tab.0184

    Article  PubMed  PubMed Central  Google Scholar 

  • Kull LS, Pedersen WL, Palmquist D, Hartman GL (2004) Mycelial compatibility grouping and aggressiveness of Sclerotinia sclerotiorum. Plant Dis 88:325–332

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sangwan MS, Mehta N, Kumar R (2003) Pathogenic diversity in isolates of Alternaria brassicae infecting rapeseed-mustard. J Mycol Plant Pathol 33:59–64

    Google Scholar 

  • Kumar S, Sangwan MS, Mehta N, Kumar R (2004) Relative sensitivity of various isolates of Alternaria brassicae (Berk) Sacc to fungicides. J Mycol Plant Pathol 34:28–32

    Google Scholar 

  • Kumar V, Haldar S, Pandey KK, Singh RP, Singh AK, Singh PC (2008) Cultural, morphological, pathogenic and molecular variability amongst tomato isolates of Alternaria solani in India. World J Microbiol Biotechnol 24:1003–1009

    Article  CAS  Google Scholar 

  • Kuninaga S, Natsuaki T, Takeuchi T, Yokosawa R (1997) Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani. Curr Genet 32:237–243

    Article  CAS  PubMed  Google Scholar 

  • Kunkel BN (1996) A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet 12:63–69

    Article  CAS  PubMed  Google Scholar 

  • Kutcher HR, Van Den Berg CGJ, Rimmer SR (1993) Variation in pathogenicity of Leptosphaeria maculans on Brassica spp. based on cotyledon and stem reactions. Can J Plant Pathol 15:253–258. https://doi.org/10.1080/07060669309501920

    Article  Google Scholar 

  • Laila R, Robin AH, Yang K, Choi GJ, Park JI, Nou IS (2017) Detection of ribosomal DNA sequence polymorphisms in the protist Plasmodiophora brassicae for the identification of geographical isolates. Int J Mol Sci 18:84. https://doi.org/10.3390/ijms18010084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakra BS, Saharan GS (1988a) Morphological and pathological variations in Albugo candida associated with Brassica species. Indian J Mycol Plant Pathol 18:149–156

    Google Scholar 

  • Lakra BS, Saharan GS (1988b) Influence of host resistance on colonization and incubation period of Albugo candida in mustard. Crucif Newsl 13:108–109

    Google Scholar 

  • Lammerink J (1965) Six pathogenic races of Plasmodiophora brassicae Worn. in New Zealand. N Z J Agric Res 8:156–164

    Article  Google Scholar 

  • Lammerink J (1986) Identification of an eighth race of Plasmodiophora brassicae, the cause of clubroot, in New Zealand. N Z J Agric Res 29:101–104

    Article  Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leckie D, Astley D, Crute IR, Ellis PR, Pink DAC, Boukema I, Monteiro AA, Dias S (1996) The location and exploitation of genes for pest and disease resistance in European gene bank collections of horticultural Brassicas. Acta Hortic 407:95–101

    Article  Google Scholar 

  • Lee J, Izzah NK, Choi B-S, Joh HJ, Lee S-C, Perumal S et al (2016) Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (Brassica oleracea L). DNA Res 23:29–41. https://doi.org/10.1093/dnares/dsv034

    Article  CAS  PubMed  Google Scholar 

  • Lehner MS, Júnior TJDP, Del Ponte EM, Mizubuti ESG, Pethybridge SJ (2017) Independently founded populations of Sclerotinia sclerotiorum from a tropical and a temperate region have similar genetic structure. PLoS One 12:e0173915. https://doi.org/10.1371/journal.pone.0173915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Article  CAS  PubMed  Google Scholar 

  • Lemke PA, Nash CH (1974) Fungal viruses. Bact Rev 38:29–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Sivasithamparam K, Barbetti MJ (2003) Breakdown of a Brassica rapa subsp. sylvestris single dominant blackleg resistance gene in B. napus rapeseed by Leptosphaeria maculans field isolates in Australia. Plant Dis 87:752. https://doi.org/10.1094/PDIS.2003.87.6.752A

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Wang H, Li JC, Wang D, Li DR (2005) Infection of Sclerotinia sclerotiorum to rapeseed, soybean and sunflower and its virulence differentiation. Acta Phytopathol Sin 35:486–492

    Article  Google Scholar 

  • Liban SH, Cross DJ, Kutcher HR, Peng G, Fernando WGD (2016) Race structure and frequency of avirulence genes in the western Canadian Leptosphaeria maculans pathogen population, the causal agent of blackleg in Brassica species. Plant Pathol 65:1161–1169. https://doi.org/10.1111/ppa.12489

    Article  CAS  Google Scholar 

  • Li-Guo Q, Huang HC, Laroche A, Acharya SN (2003) Occurrence and characterization of hypovirulence in the tan sclerotial isolate S10 of Sclerotinia sclerotiorum. Mycol Res 107:1350–1360

    Article  Google Scholar 

  • Linnasalmi A, Toiviainen A (1981) Races of Plasmodiophora brassicae Worn. in Finland. In: Proc Brassica Conf, p 24. Prelim Rep

    Google Scholar 

  • Linnasalmi A, Weisaeth G (1978) Om klumprotraser I Trondelag Plasmodiophora rase 1, 7 og 9. Summary: races of clubroot in Trongdelag, Norway. Res Nor Agric 29:223–239

    Google Scholar 

  • Liu Q, Rimmer SR (1992) Inheritance of resistance in Brassica napus to an Ethiopian isolate of Albugo candida from Brassica carinata. Can J Plant Pathol 14:116–120

    Google Scholar 

  • Liu Q, Rimmer SR (1993) Production and germination of oospores of Albugo candida. Can J Plant Pathol 15:265–271

    Article  Google Scholar 

  • Liu JQ, Parks P, Rimmer SR (1996) Development of monogenic lines for resistance to Albugo candida from a Canadian Brassica napus cultivar. Phytopathology 86:1000–1004

    Article  Google Scholar 

  • Liu L, Zhao D, Zheng L, Hsiang T, Wei Y, Fu Y, Huang J (2013) Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis. Microb Pathog 64:6–17

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yan Y, Huang J, Hsiang T, Wei Y, Li Y, Gao J, Zheng L (2017) A novel MFS transporter gene ChMfs1 is important for hyphal morphology, conidiation, and pathogenicity in Colletotrichum higginsianum. Front Microbiol 8:1953. https://doi.org/10.3389/fmicb.2017.01953

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545. https://doi.org/10.1146/annurev-arplant-043014-114623

    Article  CAS  PubMed  Google Scholar 

  • Lowe RG, Cassin A, Grandaubert J, Clark BL, Van De Wouw AP, Rouxel T, Howlett BJ (2014) Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species. PLoS One 9:e103098. https://doi.org/10.1371/journal.pone.0103098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas JA, Hayter JBR, Crute IR (1994) The downy mildews: host specificity and pathogenesis. In: Kohmoto K (ed) Pathogenesis and host specificity in plant diseases, vol 2. Elsevier Science Ltd, Oxford

    Google Scholar 

  • Ludwig-Müller J, Schuller A (2008) What can we learn from clubroots: alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. Eur J Plant Pathol 121:291–302

    Article  Google Scholar 

  • Lumsden RD (1969) Sclerotinia sclerotiorum infection of bean and the production of cellulase. Phytopathology 59:653–657

    CAS  Google Scholar 

  • Lumsden RD (1970) Phosphatidase of Sclerotinia sclerotiorum produced in culture and in infected bean. Phytopathology 60:1106–1110

    Article  CAS  Google Scholar 

  • Lumsden RD (1976) Pectolytic enzymes of Sclerotinia sclerotiorum and their localization in infected bean. Can J Bot 54:2630–2641

    Article  CAS  Google Scholar 

  • Lumsden RD (1979) Histology and physiology of pathogenesis in plant disease caused by Sclerotinia species. Phytopathology 69:890–896

    Article  Google Scholar 

  • Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J (2016) A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants. PLoS Pathog 12:e1005435

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma XL, Kong P, You MP, Li H, Sivasithamparam K, Barbetti MJ (2009) Molecular variation among isolates belonging to eight races of Phytophthora clandestina. Aust Plant Pathol 38:608–616

    Article  CAS  Google Scholar 

  • Madlung A (2012) Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Maggioni L, von Bothmer R, Poulsen G, Branca F (2000) Origin and domestication of cole crops (Brassica oleracea L): linguistic and literary considerations. Econ Bot 64:109–123

    Article  Google Scholar 

  • Mahalingam T, Chen W, Rajapakse CS, Somachandra KP, Attanayake RN (2020) Genetic diversity and recombination in the plant pathogen Sclerotinia sclerotiorum detected in Sri Lanka. Pathogens 9(4):306. https://doi.org/10.3390/pathogens9040306

    Article  PubMed  PubMed Central  Google Scholar 

  • Makinen Y, Hietajarvi L (1965) On Finnish micromycetes. 5. Albugo candida in Finland, with special reference to the variation in the size of the conidia. Ann Bot Fenn 2:33–46

    Google Scholar 

  • Maltby AD, Mihail JD (1997) Competition among Sclerotinia sclerotiorum genotypes within canola stem. Can J Bot 75:462–468

    Article  Google Scholar 

  • Manzanares-Dauleux MJ, Delourme R, Baron F, Thomas G (2000) Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theor Appl Genet 101(5):885–891

    Article  CAS  Google Scholar 

  • Manzanares-Dauleux MJ, Divaret I, Baron F, Thomas G (2001) Assessment of biological and molecular variability between and within field isolates of Plasmodiophora brassicae. Plant Pathol 50:165–173. https://doi.org/10.1046/j.1365-3059.2001.00557.x

    Article  CAS  Google Scholar 

  • Marchal E (1902) De la specialization du parasitisme chez.-I: Erysiphe graminis. Comptes Rendus 135:210–212

    Google Scholar 

  • Marchal E (1903) De la specialization de la parasitism chez.-I: Erysiphe graminis. Compt Rend Acad Sci 136:1280–1281

    Google Scholar 

  • Marciano P, Di Lenna P, Magro P (1983) Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol Plant Pathol 22:339–345

    Article  CAS  Google Scholar 

  • Marcroft SJ, Elliott VL, Cozijnsen AJ, Salisbury PA, Howlett BJ, Van De Wouw AP (2012a) Identifying resistance genes to Leptosphaeria maculans in Australian Brassica napus cultivars based on reactions to isolates with known avirulence genotypes. Crop Past Sci 63:338–350. https://doi.org/10.1071/CP11341

    Article  CAS  Google Scholar 

  • Marcroft SJ, Van De Wouw AP, Salisbury PA, Potter TD, Howlett BJ (2012b) Effect of rotation of canola (Brassica napus) cultivars with different complements of blackleg resistance genes on disease severity. Plant Pathol 61:934–944. https://doi.org/10.1111/j.1365-3059.2011.02580.x

    Article  CAS  Google Scholar 

  • Martin FN (2000) Phylogenetic relationships among some Pythium species inferred from sequence analysis of the mitochondrially encoded cytochrome oxidase II gene. Mycologia 92:711–727

    Article  CAS  Google Scholar 

  • Martin FN, Tooley PW (2003) Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia 95:269–284

    Article  CAS  PubMed  Google Scholar 

  • Marukawa S, Funakawa S, Satomura Y (1975) Some physical and chemical factors on formation of sclerotia in Sclerotinia libertiana Fuckel. Agric Biol Chem 39:463–468

    CAS  Google Scholar 

  • Masheva S, Antonova G, Bahariev D (1996a) Seasonal variability in the Peronospora parasitica (Pers.) Fr. population. Crucif Newsl 18:120

    Google Scholar 

  • Masheva S, Antonova G, Bahariev D (1996b) Pathogenicity of two isolates Peronospora parasitica with different district origin. Crucif Newsl 18:118

    Google Scholar 

  • Mathur S, Wu C, Rimmer SR (1995) Virulence of isolates of Albugo candida from western Canada to Brassica species. In: Proc 9th Int Rapeseed Congr, Cambridge, UK, vol 2, pp 652–654

    Google Scholar 

  • Maxwell DP, Lumsden RD (1970) Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology 60:1395–1398

    Article  CAS  Google Scholar 

  • McCulloch L (1929) A bacterial leaf spot of horse-radish caused by Bacterium campestris var. armoraciae, n. var. J Agric Res 38:269–287

    Google Scholar 

  • Mcdonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    Article  CAS  Google Scholar 

  • McMeekin D (1960) The role of the oospores of Peronospora parasitica from cabbage and radish. Phytopathology 50:93–97

    Google Scholar 

  • McMullan M, Gardiner A, Bailey K, Kemen E, Ward BJ, Cevik V, Robert-Seilaniantz A, Schultz-Larsen T, Balmuth A, Holub EB, van Oosterhout C, Jones JDG (2015) Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. elife 4:e0455

    Article  Google Scholar 

  • McRoberts N, Lennard JH (1996) Pathogen behaviour and plant cell reactions in interactions between Alternaria species and leaves of host and nonhost plants. Plant Pathol 45:742–752

    Article  Google Scholar 

  • Meena PD, Rani A, Meena R, Sharma P, Gupta R, Chowdappa P (2012) Aggressiveness, diversity and distribution of Alternaria brassicae isolates infecting oilseed Brassica in India. Afr J Microbiol Res 6:5249–5258

    Google Scholar 

  • Meena PD, Mehta N, Rai PK, Saharan GS (2018) Geographical distribution of rapeseed- mustard powdery mildew disease in India. J Mycol Plant Pathol 48(3):284–302

    Google Scholar 

  • Mehta N, Saharan GS (1994) Morphological and pathological variations in Peronospora parasitica infecting Brassica species. Indian Phytopathol 47:153–158

    Google Scholar 

  • Mehta N, Sangwan MS, Srivastava MP (2003) Morphological and pathological variations in rapeseed-mustard isolates of Alternaria brassicae. Indian Phytopathol 56:188–190

    Google Scholar 

  • Mehta N, Sangwan MS, Saharan GS (2005) Fungal diseases of rapeseed mustard. In: Saharan GS, Mehta N, Sangwan MS (eds) Diseases of oilseed crops. Indus Publishing Company, New Delhi, pp 1–86

    Google Scholar 

  • Meinhardt LW, Wulff NA, Bellato CM, Tsai SM (2002) Telomere and micro satellite primers reveal diversity among Sclerotinia sclerotiorum isolates from Brazil. Fitopatol Bras 27:211–215

    Article  CAS  Google Scholar 

  • Melhus IE (1911) Experiments on spore germination and infection in certain species of Oomycetes. Wisconsin Agric Expt Stn Res Bull 15:25–91

    Google Scholar 

  • Melzer MS, Boland GJ (1996) Transmissible hypo-virulence in Sclerotinia minor. Can J Plant Pathol 18:19–28

    Article  CAS  Google Scholar 

  • Mendes-Pereira E, Balesdent MH, Brun H, Rouxel T (2003) Molecular phylogeny of the Leptosphaeria maculans L biglobosa species complex. Mycol Res 107:1287–1304. https://doi.org/10.1017/S0953756203008554

    Article  CAS  PubMed  Google Scholar 

  • Mengistu A, Rimmer SR, Koch E, Williams PH (1991) Pathogenicity grouping of isolates of Leptosphaeria maculans on Brassica napus cultivars and their disease reaction profiles on rapid-cycling Brassicas. Plant Dis 75:1279–1282. https://doi.org/10.1094/PD-75-1279

    Article  Google Scholar 

  • Mesarich CH, Griffiths SA, Van der Burgt A, Kmen B, Beenen HG, Etalo DW, Joosten MHA, de Wit PJGM (2014) Transcriptome sequencing uncovers the Avr5 avirulence gene of the tomato leaf mold pathogen Cladosporium fulvum. Mol Plant-Microbe Interact 27:846–857. PMID: 24678832

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Hulbert SH (1987) Molecular markers for genetic analysis of phytopathogenic fungi. Annu Rev Phytopathol 25:383–404

    Article  CAS  Google Scholar 

  • Michelmore RW, Norwood JM, Ingram DS, Crute IR, Nicholson P (1984) The inheritance of virulence in Bremia lactucae to match resistance factors 3, 4, 5, 6, 7, 8, 9, 10, and 11 in lettuce (Lactuca sativa). Plant Pathol 33:301–315

    Article  Google Scholar 

  • Mindrinos M, Katagiri F, Yu GL, Ausubel FM (1994) The Arabidopsis thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089–1099

    Article  CAS  PubMed  Google Scholar 

  • Möller M, Harling R (1996) Randomly amplified polymorphic DNA (RAPD) profiling of Plasmodiophora brassicae. Lett Appl Microbiol 22:70–75

    Article  Google Scholar 

  • Mollier P (2015) One avirulence precludes another (rapeseed). INRA News Portal

    Google Scholar 

  • Morrall RAA, Duczek IJ, Sheard JW (1972) Variation and correlation within and between morphology, pathogenicity and pectolytic enzyme activity in Sclerotinia from Saskatchewan. Can J Bot 50:767–786

    Article  CAS  Google Scholar 

  • Morris MJ, Knox-Davies PS (1980) Raphanus raphanistrum as a weed host of pathogens of cultivated cruciferae in the Western Cape province of South Africa. Phytophylactica 12:53–55

    Google Scholar 

  • Morris PF, Connolly MS, St Clair DA (2000) Genetic diversity of Alternaria alternata isolated from tomato in California assessed using RAPDs. Mycol Res 104:286–292

    Article  CAS  Google Scholar 

  • Moss NA, Crute IR, Lucas JA, Gordon PL (1988) Requirements for analysis of host species specificity in Peronospora parasitica (downy mildew). Crucif Newsl 13:114–116

    Google Scholar 

  • Moss NA, Lucas JA, Crute IR (1991) Evidence for differential response to isolates of Peronospora parasitica (downy mildew) in Brassica rapa. Test Agro Chem cv. 12. Ann Appl Biol 118:96–97

    Google Scholar 

  • Moss NA, Crute IR, Lucas JA (1994) Laboratory production of oospores of Peronospora parasitica (crucifer downy mildew) and the recovery and characterization of sexual progeny from crosses between isolates with different host specificity. Plant Pathol 43:713–725

    Article  Google Scholar 

  • Mridha MAU (1983) Virulence of different isolates of Alternaria brassicae on winter oilseed rape cultivars. In: Proc 6th international rapeseed conference, Paris, France, pp 1025–1029

    Google Scholar 

  • Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT, Pevzner SJ, Donovan SE, Ghamsari L, Santhanam B, Romero V, Poulin MM, Gebreab F, Gutierrez BJ, Tam S, Monachello D, Boxem M, Harbort CJ, McDonald N, Gai L, Chen H, He Y, European Union Effectoromics Consortium, Vandenhaute J, Roth FP, Hill DE, Ecker JR, Vidal M, Beynon J, Braun P, Dangl JL (2012) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601. https://doi.org/10.1126/science.1203659

    Article  CAS  Google Scholar 

  • Munro JM, Lennard JH (1982) Variation in the development of Erysiphe cruciferarum Opiz. Ex.L Junnel on two cultivars of Brassica napus. Crucif Newsl 7:68–69

    Google Scholar 

  • Napper ME (1933) Observations on spore germination and specialization of parasitism in Cystopus candidus. J Pomol Hortic Sci 11:81–100

    Article  Google Scholar 

  • Nashaat NI, Awasthi RP (1995) Evidence for differential resistance to Peronospora parasitica (downy mildew) in accessions of Brassica juncea (mustard) at the cotyledon stage. J Phytopathol 143:157–159

    Article  Google Scholar 

  • Nashaat NI, Rawlinson CJ (1994) The response of oilseed rape (Brassica napus ssp. oleifera) accessions with different glucosinolate and erucic acid contents to four isolates of Peronospora parasitica (downy mildew) and the identification of new sources of resistance. Plant Pathol 43:278–285

    Article  CAS  Google Scholar 

  • Nath MD, Sharma SL, Kant U (2000) Growth of Albugo candida infected mustard callus in culture. Mycopathologia 152:147–153

    Article  Google Scholar 

  • Natti JJ (1958) Resistance of broccoli and other crucifers to downy mildew. Plant Dis Rep 42:656–662

    Google Scholar 

  • Natti JJ, Dickson MH, Aktin JD (1967) Resistance of Brasssica oleracea cultivars to downy mildew. Phytopathology 57:144–147

    Google Scholar 

  • Neger FW (1902) Beitrage zur Biologie der Erysipheen. Flora 90:221–272

    Google Scholar 

  • Neik TX, Barbetti MJ, Batley J (2017) Current status and challenges in identifying disease resistance genes in Brassica napus. Front Plant Sci 8:1788. https://doi.org/10.3389/fpls.2017.01788

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen HD, Tomitaka Y, Ho SYW, Duchêne S, Vetten H-J, Lesemann D, Walsh JA, Gibbs AJ, Ohshima K (2013) Turnip mosaic potyvirus probably first spread to Eurasian Brassica crops from wild orchids about 1000 years ago. PLoS One 8(2):e55336. https://doi.org/10.1371/journal.pone.0055336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa R, Kawahara A, Murakami H, Tanaka S, Ezawa T (2011) Complete structure of nuclear rDNA of the obligate plant parasite Plasmodiophora brassicae: intraspecific polymorphisms in the exon and group I intron of the large subunit rDNA. Protist 162:423–434. https://doi.org/10.1016/j.protis.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  • Noda J, Brito N, Gonzalez C (2010) The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Noonan MP, Glare TR, Harvey IC, Sands DC, Ocallaghan M (1996) Genetic comparison of Sclerotinia sclerotiorum isolates from New Zealand and USA. In: Proc Forty Ninth New Zealand Plant Prot Conference, New Zealand, 13–15 August, 1996, pp 126–131

    Google Scholar 

  • Norwood JM, Michelmore RW, Crute IR, Ingram DS (1983) The inheritance of specific virulence in Bremia lactucae (downy mildew) to match specific resistance factors 1, 2, 4, 6 and 11 in Lactuca sativa (lettuce). Plant Pathol 32:177–186

    Article  Google Scholar 

  • Novotel’Nova NS (1968) Intraspecific taxa of C. candidus (Pers.) Lev. Novosti Sistematiki Nizsh Rast:88–96. (Russian)

    Google Scholar 

  • Novotel’Nova NS, Minasyan MA (1970) Contribution to the biology of Cystopus candidus (Pers.) Lev. and C. tragopogonis (Pers.) Schroet. Trudy Vsesoyuznogo Nauchnoissledovaterskogo Instituta Zashchity rastenii 29:121–128. (Russian)

    Google Scholar 

  • Novotelnova NS, Pystina KA (1985) Ordo Peronosporales (Fam. Pythiaceae, Phytophthoraceae, Peronosporeaceae, Cystopaceae). In: Gorlenko MV (ed) Cryptogamic flora of USSR, Fungi (3), vol 11. USSR: Nauka, Leningrad

    Google Scholar 

  • Nowakowska M, Wrzesińska M, Kamiński P, Szczechura W, Lichocka M, Tartanus M, Kozik EU, Nowicki M (2019) Alternaria brassicicola – Brassicaceae pathosystem: insights into the infection process and resistance mechanisms under optimized artificial bio-assay. Eur J Plant Pathol 153:131–151. https://doi.org/10.1007/s10658-018-1548-y

    Article  CAS  Google Scholar 

  • Nowicki M, Nowakowska M, Niezgoda A, Kozik E (2012) Alternaria black spot of crucifers: symptoms, importance of disease, and perspectives of resistance breeding. Veg Crops Res Bull 76:5–19

    Google Scholar 

  • Noyes RD, Hancock JG (1981) Role of oxalic acid in the Sclerotinia wilt of sunflower. Physiol Plant Pathol 8:123–132

    Article  Google Scholar 

  • Nuss DL, Koltin Y (1990) Significance of dsRNA genetic elements in plant pathogenic fungi. Annu Rev Phytopathol 28:37–58

    Article  CAS  PubMed  Google Scholar 

  • Osaki K (2008) Studies on diversity of pathogenicity within Plasmodiophora brassicae (in Japanese with English summary). PhD dissertation, Tottori University

    Google Scholar 

  • Osaki K, Fujiyama S, Nakayama A, Shimizu Y, Ito S, Tanaka S (2008) Relation between pathogenicity and genetic variation within Plasmodiophora brassicae. J Gen Plant Pathol 74:281–288

    Article  CAS  Google Scholar 

  • Pammel LH (1895a) Bacteriosis of rutabaga (Bacillus campestris n sp.). Am Mon Microsc J 16:145–151

    Google Scholar 

  • Pammel LH (1895b) Bacteriosis of rutabaga (Bacillus campestris n. sp.). Iowa State Coll Agric Exp Stn Bull 27:130–134

    Google Scholar 

  • Pannell JR, Obbard DJ, Buggs RJA (2004) Polyploidy and the sexual system: what can we learn from Mercurialis annua? Biol J Linn Soc 82:547–560

    Article  Google Scholar 

  • Pape H, Rabbas P (1920) Inoculation tests with C. candidus Pers. Mitt Biol R-Anst L and U Forstw U 18:58–59. (German)

    Google Scholar 

  • Park YJ, Lee BM, Ho-Hahn J, Lee GB, Park DS (2004) Sensitive and specific detection of Xanthomonas campestris pv. campestris by PCR using species-specific primers based on hrpF gene sequences. Microbiol Res 159:419–423

    Article  CAS  PubMed  Google Scholar 

  • Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, van der Biezen E, Moores T, Dean C, Daniels MJ, Jones JDG (1997) The Arabidopsis downy mildew resistance gene Rpp5 shares similarity to the Toll and Interleukin-1 receptors with N and L6. Plant Cell 9:879–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parlange F, Daverdin G, Fudal I, Kuhn ML, Balesdent MH, Blaise F, Grezes-Besset B, Rouxel T (2009) Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Mol Microbiol 71:851–863. https://doi.org/10.1111/j.1365-2958.2008.06547.x

    Article  CAS  PubMed  Google Scholar 

  • Patel D, Zander M, Van De Wouw A, Mason A, Edwards D, Batley J (2015) Population diversity of Leptosphaeria maculans in Australia. Int J Biol 7:18–36. https://doi.org/10.5539/ijb.v7n3p18

    Article  CAS  Google Scholar 

  • Petit-Houdenot Y, Degrave A, Meyer M, Blaise F, Ollivier B, Rouxel T, Fudal I, Balesdent MH (2016) A two genes-for-one gene interaction between Leptosphaeria maculans and Brassica napus. In: Proc 11th meeting of phytopatics-mycology (Aussois)

    Google Scholar 

  • Petkowski JE, Cunnington JH, Minchinton EJ, Cahill DM (2010) Molecular phylogenetic relationships between Albugo candida collections on the Brassicaceae in Australia. Plant Pathol 59:282–288

    Article  CAS  Google Scholar 

  • Petrie GA (1988) Races of Albugo candida (white rust and staghead) on cultivated cruciferae in Saskatchewan. Can J Plant Pathol 10:142–150

    Article  Google Scholar 

  • Petrie GA (1994) New races of Albugo candida (white rust) in Saskatchewan and Alberta. Can J Plant Pathol 16:251–252

    Google Scholar 

  • Petrie GA, Vanterpool TC (1978) Pseudocercosporella capsellae, the cause of white leaf spot and grey stem of cruciferae in Western Canada’. Can Plant Dis Surv 58:69–72

    Google Scholar 

  • Pfister R (1927) On the biology of Cystopus tragopogonis. Centralbl Mr Bakt Abt II 71:8–14:312–313

    Google Scholar 

  • Piao ZY, Ramchiary N, Lim YP (2009) Genetics of clubroot resistance in Brassica species. J Plant Growth Regul 28:252–264. https://doi.org/10.1007/s00344-009-9093-8

    Article  CAS  Google Scholar 

  • Pidskalny RS, Rimmer SR (1985) Virulence of Albugo candida from turnip rape (Brassica campestris) and mustard (Brassica juncea) on various crucifers. Can J Plant Pathol 7:283–286

    Article  Google Scholar 

  • Pilet ML, Delourme R, Foisset N, Renard M (1998) Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in winter rapeseed (Brassica napus L.). Theor Appl Genet 96:23–30

    Article  Google Scholar 

  • Plissonneau C, Daverdin G, Ollivier B, Blaise F, Degrave A, Fudal I, Rouxel T, Balesdent MH (2016) A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. New Phytol 209:1613–1624. https://doi.org/10.1111/nph.13736

    Article  CAS  PubMed  Google Scholar 

  • Plissonneau C, Rouxel T, Chèvre AM, Van De Wouw AP, Balesdent MH (2017) One gene-one name: the AvrLmJ1 avirulence gene of Leptosphaeria maculans is AvrLm5. Mol Plant Pathol 19(4):1012–1016. https://doi.org/10.1111/mpp.12574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ploch S, Choi YJ, Rost C, Shin HD, Schilling E, Thines M (2010) Evolution of diversity in Albugo is driven by high host specificity and multiple speciation events on closely related Brassicaceae. Mol Phylogenet Evol 57:812–820

    Article  PubMed  Google Scholar 

  • Plotnikova JM, Reuber TL, Ausubel FM, Pfister DH (1998) Powdery mildew pathogenesis of Arabidopsis thaliana. Mycologia 90(6):1009–1016

    Article  Google Scholar 

  • Popovic T, Mitrovic P, Jelusic A, Dimkic I, Marjanovic-Jeromela A, Nikolic I, Stankovic S (2019) Genetic diversity and virulence of Xanthomonas campestris pv. campestris isolates from Brassica napus and six Brassica oleracea crops in Serbia. Plant Pathol 68:1448–1457

    Article  Google Scholar 

  • Pound GS, Williams PH (1963) Biological races of Albugo candida. Phytopathology 53:1146–1149

    Google Scholar 

  • Pramila PG, Tasleem M, Taj G, Mal R, Kumar A (2014) Morphological, cultural, pathogenic and molecular variability amongst Indian mustard isolates of Alternaria brassicae in Uttarakhand. Afr J Biotechnol 13(3):441–448

    Article  Google Scholar 

  • Price K, Colhoun J (1975) A study of variability of isolates of Sclerotinia sclerotiorum (Lib) de Bary from different hosts. Phytopathol Z 83:159–166

    Article  Google Scholar 

  • Purwantara A, Barrins JM, Cozijnsen AJ, Ades PK, Howle BJ (2000) Genetic diversity of isolates of the Leptosphaeria maculans species complex from Australia, Europe and North America using amplified fragment length polymorphism analysis. Mycol Res 104:772–781. https://doi.org/10.1017/S09537562-9900235X

    Article  CAS  Google Scholar 

  • Rademaker JLW, Louws FJ, De Bruijn FJ (1998) Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting. Mol Microbial Ecol Manual 3:1–27

    Google Scholar 

  • Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10(6):417–430

    Article  CAS  PubMed  Google Scholar 

  • Ralph RK (1969) Double-stranded RNA. Adv Virus Res 15:61–158

    Article  CAS  PubMed  Google Scholar 

  • Rao ANS (1979) New species of white rust and sooty mold fungi. Indian J Mycol Plant Pathol 9:283

    Google Scholar 

  • Redkar A, Bonequi MV, Doehlemann G (2015) Conservation of the Ustilago maydis effector See1 in related smuts. Plant Signal Behav 10:e1086855

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed GM (1905) Infection experiments with Erysiphe graminis DC. Trans Wis Acad Sci Arts Lett 15:135–162

    Google Scholar 

  • Reed GM (1907) Infection experiments with the mildew on cucurbits, Erysiphe cichoracearum DC. Trans Wis Acad Sci Arts Lett 17:527–547

    Google Scholar 

  • Reed GM (1908) Infection experiments with Erysiphe cichoracearum DC. Bull Univ Wisc Sci Ser 3:337–416

    Google Scholar 

  • Reed GM (1909) The mildews of the cereals. Bull Torrey Bot Club 36:353–388

    Article  Google Scholar 

  • Reed GM (1912) Infection experiments with the powdery mildew of wheat. Phytopathology 2:81–87

    Google Scholar 

  • Rehmany AP, Lynn JR, Tor M, Holub EB, Beynon JL (2000) A comparison of Peronospora parasitica (Downy mildew) isolates from Arabidopsis thaliana and Brassica oleracea using amplified fragment length polymorphism and internal transcribed spacer 1 sequence analyses. Fungal Genet Biol 30(2):95–103. https://doi.org/10.1006/fgbi.2000.1216

    Article  CAS  PubMed  Google Scholar 

  • Reiter RS, Williams JGK, Feldmann KA, Rafalski JA, Tingey SV, Scolnik PA (1992) Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad Sci U S A 89:1477–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ríčarová V, Kazda J, Singh K, Ryšánek P (2016) Clubroot caused by Plasmodiophora brassicae Worn.: a review of emerging serious disease of oilseed rape in the Czech Republic. Plant Prot Sci 52:71–86. https://doi.org/10.17221/87/2015-PPS

    Article  Google Scholar 

  • Rimmer SR, Mathur S, Wu CR (2000) Virulence of isolates of Albugo candida from western Canada to Brassica species. Can J Plant Pathol 22:229–235

    Article  Google Scholar 

  • Rolfe SA, Strelkov SE, Links MG, Clarke WE, Robinson SJ, Djavaheri M, Malinowski R, Haddadi P, Kagale S, Parkin IAP, Taheri A, Borhan MH (2016) The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genomics 17:272. https://doi.org/10.1186/s12864-016-2597-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rommens CMT, Salmeron JM, Oldroyd GED, Staskawicz BJ (1995) Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7:1537–1544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourme R et al (2003) A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. Eur J Plant Pathol 109:871–881. https://doi.org/10.1023/A.1026189225466

    Article  CAS  Google Scholar 

  • Rouxel T, Grandaubert J, Hane JK, Hoede C, Van De Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin SB, Gout L, Glaser N, Linglin J, Kema GHJ, Lapalu N, Lawrence CB, May K, Meyer M, Ollivier B, Poulain J, Schoch CL, Simon A, Spatafora JW, Anna Stachowiak B, Turgeon G, Tyler BM, Vincent D, Weissenbach J, Amselem J, Quesneville H, Oliver RP, Wincker P, Balesdent M-H, Howlett BJ (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat Commun 2:202. https://doi.org/10.1038/ncomms1189

    Article  CAS  PubMed  Google Scholar 

  • Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai NM, Powers SJ, Hooper J, Ambroso L, Bharti A, Farmer A, Hammond-Kosack KE, Dietrich RA, Courbot M (2015) Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol 167:1158–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell HL (1898) A bacterial rot of cabbage and allied plants. Wisc Agric Exp Stn Bull 65:1–39

    Google Scholar 

  • Saharan GS (1992a) Disease resistance. In: Labana KS, Banga SS, Banga SK (eds) Breeding oilseed Brassicas, vol 12. Narosa Publ. House, New Delhi, pp 181–205

    Google Scholar 

  • Saharan GS (1992b) Management of rapeseed and mustard diseases. In: Kumar D, Rai M (eds) Advances in oilseeds research. Scientific Publ, Jodhpur, pp 152–188

    Google Scholar 

  • Saharan GS (1995) Nature and mechanism of resistance in rapeseed-mustard. In: Proc global conference on advances in research on plant diseases and their management. RCA, Udaipur, pp 35–36. (Abstr.)

    Google Scholar 

  • Saharan GS (2010) Analysis of genetic diversity in Albugo-crucifer system. J Mycol Plant Pathol 40:1–13

    Google Scholar 

  • Saharan GS, Kadian AK (1983) Physiologic specialization in Alternaria brassicae. Crucif Newsl 8:32–33

    Google Scholar 

  • Saharan GS, Kaushik JC (1981) Occurrence and epidemiology of powdery mildew of Brassica. Indian Phytopathol 35:17–21

    Google Scholar 

  • Saharan GS, Verma PR (1992) White rusts: a review of economically important species. IDRC-MR315e, vol IV. International Development Research Centre, Ottawa, ON. 65 p

    Google Scholar 

  • Saharan GS, Verma PR, Meena PD, Kumar A (2014) White rust of crucifers: biology, ecology and management. Springer Nature, Singapore

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2016) Alternaria diseases of crucifers: biology, ecology and disease management. Springer, Singapore. 244 p

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2017) Downy mildew disease of crucifers: biology, ecology and disease management. Springer Nature, Singapore. 357 p

    Book  Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2021) Clubroot disease of crucifers: biology, ecology and disease management. Springer Nature, Singapore. 757 p

    Book  Google Scholar 

  • Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim H-S, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133

    Article  CAS  PubMed  Google Scholar 

  • Salmon ES (1903a) Infection powers of ascospores in Erysipheae. Aust J Bot 41(159):204–212

    Google Scholar 

  • Salmon ES (1903b) On specialization of parasitism in the Erysiphaceae. Beih Bot Centralbl 14:261–315

    Google Scholar 

  • Salmon ES (1904a) On specialization of parasitism in the Erysiphaceae. New Phytol 3:109

    Article  Google Scholar 

  • Salmon ES (1904b) Mycological notes. Aust J Bot 42:182–186

    Google Scholar 

  • Salmon ES (1904c) On Erysiphe graminis DC. and its adaptive parasitism within the genus Bromus. Ann Mycol 2:255–267

    Google Scholar 

  • Salmon ES (1905a) Cultural experiments with an Oidium on Euonymus japonicas Linn. f. Ann Mycol 3:1–15

    Google Scholar 

  • Salmon ES (1905b) On the variation shown by the conidial stage of Phyllactinia corylea (Pers.) Karst. Ann Mycol 3:493–505

    Google Scholar 

  • Sampson PJ, Walker J (1982) An annotated list of plant diseases in Tasmania. Department of Agriculture Tasmania, Hobart, TAS

    Google Scholar 

  • Sangwan MS, Mehta N (2006) Categorization of Alternaria brassicae isolates on the basis of differential sensitivity to fungicides. Plant Dis Res 21:114–117

    Google Scholar 

  • Sangwan MS, Mehta N (2007) Pathogenic variability in isolates of Alternaria brassicae (Berk) Sacc. from different agro-climatic zones of India. Plant Dis Res 22:101–107

    Google Scholar 

  • Sanz-Martín JM, Pacheco-Arjona JR, Bello-Rico V, Vargas WA, Monod M, Díaz-Mínguez JM, Thon MR, Sukno SA (2016) A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola. Mol Plant Pathol 17(7):1048–1062. https://doi.org/10.1111/mpp.12347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savulescu O (1946) A study on the European species of the genus Cystopus Lev. with special reference to the species found in Rumania. Thesis, University of Bucarest, Rumania, p 213. (Abstract in Rev Appl Mycol, 27: 542, 1948)

    Google Scholar 

  • Savulescu T, Rayss T (1930) Contribution to the knowledge of the Peronsoporaceae of Romania. Ann Mycol 28:297–320

    Google Scholar 

  • Schafer C, Wostemeyer J (1992) Random primer dependent PCR differentiates aggressive from non-aggressive isolates of the oilseed rape pathogen Phoma lingam (Leptosphaeria maculans). J Phytopathol 136:124–136

    Article  Google Scholar 

  • Scheffer RP (1989) Ecological consequences of toxin production by Cochliobolus and related fungi. In: Graniti A, Durbin RD, Ballio A (eds) Phytotoxins and plant pathogenesis. Springer, Berlin, pp 285–300

    Chapter  Google Scholar 

  • Schlaich NL, Slusarenko A (2009) Downy mildew of Arabidopsis caused by Hyaloperonospora arabidopsidis (formerly Hyaloperonospora parasitica). In: Kurt L, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions and research tools. Wiley, Hoboken, NJ, pp 263–285. Chapter 13

    Chapter  Google Scholar 

  • Schmidpeter J, Dahl M, Hofmann J, Koch C (2017) ChMob2 binds to ChCbk1 and promotes virulence and conidiation of the fungal pathogen Colletotrichum higginsianum. BMC Microbiol 17:22. https://doi.org/10.1186/s12866-017-0932-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz EM (2017) Evolution: a parthenogenetic nematode shows how animals become sexless. Curr Biol 27:R1064–R1066

    Article  CAS  PubMed  Google Scholar 

  • Schwelm A, Fogelqvist J, Knaust A, Jülke S, Lilja T, Bonilla-Rosso G, Karlsson M, Shevchenko A, Dhandapani V, Choi SR, Kim HG (2015) The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci Rep 5:11153. https://doi.org/10.1038/srep11153

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwelm A, Berney C, Dixelius C, Bassc D, Neuhauser S (2016) The large subunit rDNA sequence of Plasmodiophora brassicae does not contain intra-species polymorphism. Protist 167:544–554. https://doi.org/10.1016/j.protis.2016.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedaghatkish A, Gossen BD, Yu F, Torkamaneh D, McDonald MR (2019) Whole-genome DNA similarity and population structure of Plasmodiophora brassicae strains from Canada. BMC Genomics 20:744. https://doi.org/10.1186/s12864-019-6118-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semb L (1969) Cabbage downy mildew. Jord Avling 12:32–35

    Google Scholar 

  • Sequeira P, Monteiro A (1996) Heterothallism and homothallism in Portuguese isolates of Peronospora parasitica (Pers. ex Fr.) Fr. Crucif Newsl 18:126–127

    Google Scholar 

  • Sexton AC, Howlett BJ (2004) Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Curr Genet 46:357–365

    Article  CAS  PubMed  Google Scholar 

  • Sexton AC, Whitten AR, Howlett BJ (2006) Population structure of Sclerotinia sclerotiorum in an Australian canola field at flowering and stem-infection stages of the disease cycle. Genome 49:1408–1415

    Article  PubMed  Google Scholar 

  • Sharma TR, Tewari JP (1995) Detection of genetic variation in Alternaria brassicae by RAPD fingerprints. J Plant Biochem Biotechnol 4:105–107

    Article  CAS  Google Scholar 

  • Sharma TR, Tewari JP (1998) RAPD analysis of three Alternaria species pathogenic to crucifers. Mycol Res 102:807–814

    Article  CAS  Google Scholar 

  • Sharma S, Singh J, Munshi GD, Munshi SK (2010) Biochemical changes associated with application of biocontrol agents on Indian mustard leaves from plants infected with Alternaria Blight. Arch Phytopathol Plant Protect 43:315–323

    Article  CAS  Google Scholar 

  • Sharma M, Deep S, Bhati DS, Chowdappa P, Selvamani R, Sharma P (2013a) Morphological, cultural, pathogenic and molecular studies of Alternaria brassicae infecting cauliflower and mustard in India. Afr J Microbiol Res 7:3351–3363

    Article  Google Scholar 

  • Sharma K, Gossen BD, Greenshields D, Selvaraj G, Strelkov SE, McDonald MR (2013b) Reaction of lines of the rapid cycling Brassica collection and Arabidopsis thaliana to selected pathotypes of Plasmodiophora brassicae. Plant Dis 97(6):720–727. https://doi.org/10.1094/PDIS-08-12-0752-RE

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Samkumar A, Rao M, Singh VV, Prasad L, Mishra DC, Bhattacharya R, Gupta NC (2018) Genetic diversity studies based on morphological variability, pathogenicity and molecular phylogeny of the Sclerotinia sclerotiorum population from Indian mustard (Brassica juncea). Front Microbiol 9:1169. https://doi.org/10.3389/fmicb.2018.01169

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw DS (1991) Genetics. In: Ingram DS, Williams PH (eds) Phytophthora infestans. Advances in plant pathology, vol 7. Academic Press, New York, NY, pp 131–170

    Google Scholar 

  • Sherriff C, Lucas JA (1989) Heterothallism and homothallism in Peronospora parasitica. Mycol Res 92:311–316

    Article  Google Scholar 

  • Sherriff C, Lucas JA (1990) The host range of isolates of downy mildew, Peronospora parasitica from Brassica crop species. Plant Pathol 39:77–91

    Article  Google Scholar 

  • Shivas RG (1989) Fungal and bacterial diseases of plants in Western Australia. J R Soc WA 72:1–62

    Google Scholar 

  • Siciliano I, Gilardi G, Ortu G, Gisi U, Gullino ML, Garibaldi A (2017) Identification and characterization of Alternaria species causing leaf spot on cabbage, cauliflower, wild and cultivated rocket by using molecular and morphological features and mycotoxin production. Eur J Plant Pathol 149:1–13

    Article  Google Scholar 

  • Silue D, Nashaat NI, Tirilly Y (1996) Differential responses of Brassica oleracea and B. rapa accessions to seven isolates of Peronospora parasitica at the cotyledon stage. Plant Dis 80:142–144

    Article  Google Scholar 

  • Singh K (1994) Studies on the ecofriendly management of powdery mildew (Erysiphe cruciferarum Opiz ex. Junell) of mustard [Brassica juncea (L) Czern & Coss]. MSc Thesis, Department of Plant Pathology, CCS HAU, Hisar, p 106, xvii

    Google Scholar 

  • Singh BM, Bhardwaj CL (1984) Physiologic races of Albugo candida on crucifers in Himachal Pradesh. Indian J Mycol Plant Pathol 14:25. (Abstr)

    Google Scholar 

  • Singh BM, Chand JN (1983) Identification of physiologic races-general consideration. In: Chand JN, Saharan GS (eds) Phytopathological techniques. HAU, Press, Hisar, pp 109–115

    Google Scholar 

  • Singh S, Singh RP, Singh HK, Kumar K (2008) Screening of Brassica genotypes for quality traits and reaction to Alternaria blight and white rust. Crucif Newsl 27:35–36

    CAS  Google Scholar 

  • Singh R, Singh D, Singh H (2013) Variability in Alternaria brassicae incitant of Alternaria blight of oilseed Brassica. Res Crops 14(4):1082–1088

    Google Scholar 

  • Singh D, Rathaur PS, Vicente JG (2016) Characterization, genetic diversity and distribution of Xanthomonas campestris pv. campestris races causing black rot disease in cruciferous crops of India. Plant Pathol 65:1411–1418

    Article  CAS  Google Scholar 

  • Sirjusingh C, Kohn LM (2001) Characterization of microsatellites in the fungal plant pathogen Sclerotinia sclerotiorum. Mol Ecol Notes 1:267–269

    Article  CAS  Google Scholar 

  • Slusarenko AJ, Schlaich NL (2003) Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol Plant Pathol 4:159–170

    Article  PubMed  Google Scholar 

  • Smilde WD, Linders EGA, Veenstra RM (2012) Characterization of clubroot resistance in Brassica oleracea. In: Program and abstract book 10th Conference of the European foundation of plant pathology, 1–5 October 2012. Poster abstract 46. http://www.efpp.net/ipm2/Program_and_abstract_book/posters.html

    Google Scholar 

  • Smith EF (1898) The black rot of the cabbage. US Dep Agric Farm Bull 68:1–21

    Google Scholar 

  • Smith IM, Dunez J, Lelliott RA, Phillips DH, Archer SA (1988) European handbook of plant diseases. Blackwell Scientific Publications, Oxford

    Book  Google Scholar 

  • Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M (2012) Centromeres of filamentous fungi. Chromosom Res 20:635–656

    Article  CAS  Google Scholar 

  • Some A, Manzanares MJ, Laurens F, Baron F, Thomas G, Rouxel F (1996) Variation for virulence on Brassica napus L. amongst Plasmodiophora brassicae collections from France and derived single-spore isolates. Plant Pathol 45(3):432–439

    Article  Google Scholar 

  • Sperschneider J, Dodds PN, Gardiner DM, Manners JM, Singh KB, Taylor JM (2015) Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathog 11(5):e1004806. https://doi.org/10.1371/journal.ppat.1004806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprague SJ, Marcroft SJ, Hayden HL, Howlett BJ (2006) Major gene resistance to blackleg in Brassica napus overcome within three years of commercial production in Southeastern Australia. Plant Dis 90:190–198. https://doi.org/10.1094/PD-90-0190

    Article  CAS  PubMed  Google Scholar 

  • Spring O, Bachofer M, Thines M, Göker M, Oberwinkler F (2006) Intraspecific relationship of Plasmopara halstedii isolates differing in pathogenicity and geographic origin based on ITS sequence data. Eur J Plant Pathol 114:309–315

    Article  Google Scholar 

  • Stachowiak A, Olechnowicz J, Jedryczka M, Rouxel T, Balesdent MH, Happstadius I, Gladders P, Latunde-Dada A, Evans N (2006) Frequency of avirulence alleles in field populations of Leptosphaeria maculans in Europe. Eur J Plant Pathol 114:67–75. https://doi.org/10.1007/s10658-005-2931-z

    Article  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JDG (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  CAS  PubMed  Google Scholar 

  • Steadman JR, Jung G, Adams MS, Powers K, Higgins B, Nelson BD, Gulya TJ (1998) Random amplified polymorphic DNA (RAPD) distinguishes three species of Sclerotinia but not pathogenic variability in S. sclerotiorum isolates from diverse host and geographic origin. In: Proc 1998 International Sclerotinia Workshop, Fargo, ND, 9–12 September, 1998, pp 10–13

    Google Scholar 

  • Steiner JA (1908) Die Specialisation der Alchemillenbewohnenden Sphaerotheca humuli (DC.) Burr. Centrall blatt fur Bakt. Parasit Infext Krankheit Abstr II 21:677–736

    Google Scholar 

  • Stiles JI, Lemme C, Sondur S, Morshidi MB, Manshardt R (1993) Using randomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars. Theor Appl Genet 85:697–701

    Article  CAS  PubMed  Google Scholar 

  • Stoll K (1952) The organ, injurious effect and control of Brassica blackening. Nachrichten Deutsch Pflanzensch 6:81–85

    Google Scholar 

  • Strehlow B, De Mol F, Struck C (2014) History of oilseed rape cropping and geographic origin affect the genetic structure of Plasmodiophora brassicae populations. Phytopathology 104(5):532

    Article  PubMed  Google Scholar 

  • Strelkov SE, Hwang SF (2014) Clubroot in the Canadian canola crop: 10 years into the outbreak. Can J Plant Pathol 36:27–36. https://doi.org/10.1080/07060661.2013.863807

    Article  CAS  Google Scholar 

  • Strelkov SE, Tewari JP, Smith-Degenhardt E (2006) Characterization of Plasmodiophora brassicae populations form Alberta, Canada. Can J Plant Pathol 28:467–474

    Article  Google Scholar 

  • Strelkov SE, Manolii VP, Cao TS, Xue SM, Hwang SF (2007) Pathotype classification of Plasmodiophora brassicae and its occurrence in Brassica napus in Alberta. Can J Phytopathol 155:706–712. https://doi.org/10.1111/j.1439-0434.2007.01303.x

    Article  Google Scholar 

  • Strelkov SE, Hwang SF, Manolii VP, Cao TS, Feindel D (2016) Emergence of new virulence phenotypes of Plasmodiophora brassicae on canola (Brassica napus) in Alberta, Canada. Eur J Plant Pathol 145:517–529. https://doi.org/10.1007/s10658-016-0888-8

    Article  Google Scholar 

  • Strelkov SE, Hwang SF, Manolii VP, Cao TS, Fredua-Agyeman R, Harding MW, Peng G, Gossen BD, McDonald MR, Feindel D (2018) Virulence and pathotype classification of Plasmodiophora brassicae populations collected from clubroot resistant canola (Brassica napus) in Canada. Can J Plant Pathol 40:284–298. https://doi.org/10.1080/07060661.2018.1459851

    Article  Google Scholar 

  • Sun JM, Irzykowski W, Jedryczka M, Xia HF (2005) Analysis of the genetic structure of Sclerotinia sclerotiorum (Lib.) de Bary populations from different regions and host plants by random amplified polymorphic DNA markers. J Integr Plant Biol 47:385–395

    Article  CAS  Google Scholar 

  • Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M (2012) Drift-barrier hypothesis and mutation-rate evolution. PNAS 109(45):18488–18499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahara H, Huser A, O’Connell R (2012) Two arginine biosynthesis genes are essential for pathogenicity of Colletotrichum higginsianum on Arabidopsis. Mycology 3(2012):54–64

    CAS  Google Scholar 

  • Takahara H, Hacquard S, Kombrink A, Hughes HB, Halder V, Robin GP, Hiruma K, Neumann U, Shinya T, Kombrink E, Shibuya N, Thomma BPHJ, O’Connell RJ (2016) Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity. New Phytol 211:1323–1337. https://doi.org/10.1111/nph.13994

    Article  CAS  PubMed  Google Scholar 

  • Takematsu T, Ichizen N (1993) Sekai no Zassou II. Zenkoku Noson Kyoiku Kyokai, Tokyo, pp 415–417

    Google Scholar 

  • Tamura K, Takikawa Y, Tsuyumu S, Goto M (1994) Bacterial spot of crucifers caused by Xanthomonas campestris pv. raphani. Ann Phytopathol Soc Jpn 60:281–287

    Article  CAS  Google Scholar 

  • Tanaka S, Ito SI (2013) Pathogenic and genetic diversity in Plasmodiophora brassicae (clubroot) from Japan. J Gen Plant Pathol 79:297–306. https://doi.org/10.1007/s10327-013-0456-4

    Article  Google Scholar 

  • Tanaka S, Sakamoto Y, Kajima K, Fujieda K, Katumoto K, Nishi Y (1991) Pathogenicity of three isolates of clubroot fungus attacking clubroot-resistant cultivars of Chinese cabbage (in Japanese wih English summary). Bull Fac Agric Yamaguchi Univ 39:113–122

    Google Scholar 

  • Tanaka S, Ito S, Kameya-Iwaki M, Katumoto K, Nishi Y (1993) Occurrence and distribution of clubroot disease on two cruciferous weeds, Cardamine flexuosa and C. scutata, in Japan. Trans Mycol Soc 34:381–388

    Google Scholar 

  • Tanaka S, Yoshihara S, Ito S, Kameya-Iwaki M (1997) The influence of virulence of Plasmodiophora brassicae populations on epidemiology of Chinese cabbage clubroot and efficacy of fungicides (in Japanese with English summary). Ann Phytopathol Soc Jpn 63:183–187

    Article  CAS  Google Scholar 

  • Tanaka S, Fujiyama S, Shigemori S, Nakayama A, Ito S, Kameya-Iwaki M (1998) Pathogenesis of isolates of Plasmodiophora brassicae from Japan (1) Race and pathogenesis in clubroot resistant cultivars (in Japanese with English summary). Kyushu Plant Prot Res 44:15–19

    Article  Google Scholar 

  • Tanaka S, Mizui Y, Terasaki H, Ito S (2006) Distribution of clubroot disease of a cruciferous weed, Cardamine flexuosa, in major isolated islands, Hokkaido and Okinawa in Japan. Mycoscience 47(2):72–77

    Article  Google Scholar 

  • Taubenhaus T (1923) The culture and diseases of the sweet potato. 120–123

    Google Scholar 

  • Taylor JW, Jacobson DJ, Fisher MC (1999) The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37:197–246

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    Article  CAS  PubMed  Google Scholar 

  • Tewari JP, Skoropad WP (1977) Ultrastructure of oospore development in Albugo candida on rapeseed. Can J Bot 55:2348–2357

    Article  Google Scholar 

  • Tham FY, Lucas JA, Wilson ZA (1994) DNA fingerprinting of Peronospora parasitica, a biotrophic fungal pathogen of crucifers. Theor Appl Genet 88:490–496

    Article  CAS  PubMed  Google Scholar 

  • Thilmony RL, Chen Z, Bressan RA, Martin GB (1995) Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv tabaci expressing avr Pto. Plant Cell 7:1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thines A, Spring O (2005) A revision of Albugo (Chromista, Peronosporomycetes). Mycotaxon 92:443–458

    Google Scholar 

  • Thines M, Voglmayr H (2009) An introduction to the white blister rusts (Albuginales). In: Lamour K, Sophien K (eds) Oomycete genetics and genomics: diversity, interactions and research tools. John Wiley & Sons, Inc, Hoboken, NJ, pp 77–92. Chapter 4

    Chapter  Google Scholar 

  • Thines M, Choi YJ, Kemen E, Ploch S, Holub EB, Shin HD, Jones JDG (2009) A new species of Albugo parasitic to Arabidopsis thaliana reveals new evolutionary patterns in white blister rusts (Albuginaceae). Persoonia 22:123–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BP (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4:225–236

    Article  CAS  PubMed  Google Scholar 

  • Thung TH (1926) Peronospora parasitica (Pers.) De Bary attacking cabbage heads. Phytopathology 16:365–366

    Google Scholar 

  • Togashi K, Shibasaki Y, Sugana Y (1931) Morphological studies of white rust fungi in cruciferous plants. Jpn J Bot 5:82–83

    Google Scholar 

  • Togashi G, Togashi K, Shibasaki Y (1934) Biometrical and biological studies of Albugo candida (Pers.) O. Kuntze in connection with its specialization, vol 18. Bull Impl College Agri Forestry, Morioka, p 88

    Google Scholar 

  • Tomimura K, Gibbs AJ, Jenner CE, Walsh JA, Ohshima K (2003) The phylogeny of Turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Mol Ecol 12:2099–2111

    Article  CAS  PubMed  Google Scholar 

  • Tomimura K, Špak J, Katis N, Jenner CE, Walsh JA et al (2004) Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. Virology 330:408–423

    Article  CAS  PubMed  Google Scholar 

  • Travadon R, Sache I, Dutech C, Stachowiak A, Marquer B, Bousset L (2011) Absence of isolation by distance patterns at the regional scale in the fungal plant pathogen Leptosphaeria maculans. Fungal Biol 115:649–659. https://doi.org/10.1016/j.funbio.2011.03.009

    Article  PubMed  Google Scholar 

  • Tyler BM, Forster H, Coffey MD (1995) Inheritance of avirulence factors and RFLP markers in outcrosses of the oomycete Phytophthora sojae. Mol Plant-Microbe Interact 8:515–523

    Article  CAS  Google Scholar 

  • Ul’yanishchev VI, Osipian LL, Kanchaveli LA, Akhundov TM (1985) Peronosporovye Griby (Peronosporaceous Fungi). In: Ul’yanishchev VI (ed) Opredelitel’ Gribov Zakavkaz’ya. Erevan University, Erevan

    Google Scholar 

  • Uloth MB, You MP, Barbetti MJ (2017) Plant age and ambient temperature: significant drivers for powdery mildew (Erysiphe cruciferarum) epidemics on oilseed rape (Brassica napus). Plant Pathol 67(2):445–456. https://doi.org/10.1111/ppa.12740

    Article  Google Scholar 

  • Van Alfen NK (1982) Biology and potential for disease control of hypovirulence of Endothia parasitica. Annu Rev Phytopathol 20:349–362

    Article  Google Scholar 

  • Van de Wouw AP, Marcroft SJ, Barbetti MJ, Hua L, Salisbury PA, Rouxel T, Howlett BJ, Balesdent MH (2009) Dual control of avirulence in Leptosphaeria maculans towards a Brassica napus cultivar with “sylvestris -derived” resistance suggests involvement of two resistance genes. Plant Pathol 58:305–313. https://doi.org/10.1111/j.1365-3059.2008.01982.x

    Article  Google Scholar 

  • Van de Wouw AP, Idnurm A, Davidson JA, Sprague SJ, Khangura RK, Ware AH et al (2016) Fungal diseases of canola in Australia: identification of trends, threats and potential therapies. Aust Plant Pathol 45:415–423

    Article  Google Scholar 

  • Van de Wouw AP, Howlett BJ, Idnurm A (2017) Changes in allele frequencies of avirulence genes in the blackleg fungus, Leptosphaeria maculans, over two decades in Australia. Crop Past Sci 69:CP16411. https://doi.org/10.1071/CP16411

    Article  CAS  Google Scholar 

  • Van Den Mooter M, Swings J (1990) Numerical analysis of phenotypic features of Xanthomonas strains and related strains and an improved taxonomy of the genus. Int J Syst Bacteriol 40:348–369

    Article  PubMed  Google Scholar 

  • Van Schreven DA (1953) Alternaria, Stemphylium en Botrytis aantasting bij Koolzaad (Brassica napus). Tijdschr Plantenziekt 59:105–136

    Google Scholar 

  • Vanev SG, Dimitrova EG, Ilieva EI (1993) Gybite v Bylgariya. 2 tom. Razred Peronosporales [Fungi Bulgaricae, vol. 2. Ordo Peronosporales]. Bulgarian Academy of Sciences, Sofia

    Google Scholar 

  • Vauterin L, Hoste B, Kersters K, Swings J (1995) Re-classification of Xanthomonas. Int J Syst Bacteriol 45:472–489

    Article  CAS  Google Scholar 

  • Verma U, Bhowmik TP (1989) Inheritance of resistance to a Brassica juncea pathotype of Albugo candida in B. napus. Can J Plant Pathol 11:443–444

    Article  Google Scholar 

  • Verma PR, Saharan GS (1994) Monograph on Alternaria diseases of crucifers, Technical Bulletin 1994–6E. Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK. 162 p

    Google Scholar 

  • Verma PR, Harding H, Petrie GA, Williams PH (1975) Infection and temporal development of mycelium of Albugo candida in cotyledons of four Brassica spp. Can J Bot 53:1016–1020

    Article  Google Scholar 

  • Verma PR, Saharan GS, Bartaria AM, Shivpuri A (1999) Biological races of Albugo candida on Brassica juncea and Brassica rapa var. Toria in India. J Mycol Plant Pathol 29:75–82

    Google Scholar 

  • Vicente JG, Conway J, Roberts SJ, Taylor JD (2001) Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492–499

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Everett B, Roberts SJ (2006) Identification of isolates that cause a leaf spot disease of brassicas as Xanthomonas campestris pv. raphani and pathogenic and genetic comparison with related pathovars. Phytopathology 96:735–745

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to Brassica crops. Mol Plant Pathol 14:2–18. https://doi.org/10.1111/j.1364-3703.2012.00833.x

    Article  CAS  PubMed  Google Scholar 

  • Vishwanath K, Kolte SJ (1997) Variability in Alternaria brassicae: response to host genotypes, toxin production and fungicides. Indian Phytopathol 50:373–381

    CAS  Google Scholar 

  • Voglino P (1905) Contribuzione allo studio della Phyllactinia corylea. Nuovo Giornale Bot Ital 12:313–327

    Google Scholar 

  • Voglmayr H (2003) Phylogenetic relationships of Peronospora and related genera based on nuclear ribosomal ITS sequences. Mycol Res 107:1132–1142

    Article  CAS  PubMed  Google Scholar 

  • Voglmayr H, Riethmüller A (2006) Phylogenetic relationships of Albugo species (white blister rusts) based on LSU rDNA sequence and oospore data. Mycol Res 110:75–85

    Article  CAS  PubMed  Google Scholar 

  • Voigt K, Cozijnsen AJ, Kroymann J, Pöggeler S, Howlett BJ (2005) Phylogenetic relationships between members of the crucifer pathogenic Leptosphaeria maculans species complex as shown by mating type (MAT1-2), actin, and β-tubulin sequences. Mol Phylogenet Evol 37:541–557. https://doi.org/10.1016/j.ympev.2005.07.006

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Paulo M, Voorrips R, Visser R, Eck H, Eeuwijk F (2017) Evaluation of LD decay and various LD- decay estimators in simulated and SNP- array data of tetraploid potato. Theor Appl Genet 130(1):123–135. https://doi.org/10.1007/s00122-016-2798-8

    Article  PubMed  Google Scholar 

  • Wang CM (1944) Physiological specialization in Peronospora parasitica and reaction of hosts. China J Sci Agric 1:249–257

    Google Scholar 

  • Wang M, Farnham MW, Thomas CE (2000) Phenotypic variation for downy mildew resistance among inbred broccoli. Hortic Sci 35:925–929

    Google Scholar 

  • Wei C, Chen J, Kuang H (2016) Dramatic number variation of R genes in solanaceae species accounted for by a few R gene subfamilies. PLoS One 11(2):e0148708. https://doi.org/10.1371/journal.pone.0148708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh J, McClelland M (1990) Finger printing genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whisson SC, Drenth A, Maclean DJ, Irwin JAG (1994) Evidence for out crossing in Phytophthora sojae and linkage of a DNA marker to avirulence genes. Curr Genet 27:77–82

    Article  CAS  PubMed  Google Scholar 

  • Whisson SC, Drenth A, Maclean DJ, Irwin JAG (1995) Phytophthora sojae avirulence genes, RAPD and RFLP markers used to construct a detailed genetic linkage map. Mol Plant-Microbe Interact 8:988–995

    Article  CAS  PubMed  Google Scholar 

  • White HE (1930) Bacterial spot of radish and turnip. Phytopathology 20:653–662

    Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Williams PH (1966) A system for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga. Phytopathology 56:624–626

    Google Scholar 

  • Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742. https://doi.org/10.1094/PD-64-736

    Article  Google Scholar 

  • Williams PH (1985) Crucifer genetics cooperative (GrGc). Crucif Newsl 10:1–2

    Google Scholar 

  • Williams PH, Seidel D (1968) Zum vorkommen von Plasmodiophora brassicae-rassen in der Deutschen Demokratischen Republik. Arch Pflanzensch 4:31–36

    Article  Google Scholar 

  • Williams PH, Walker JC (1963) Races of clubroot in North America. Plant Dis Rep 47:608–611

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson GW (1907) Studies in North American Peronasporales. I. The genus Albugo. Bull Torrey Bot Club 34:61–84

    Article  Google Scholar 

  • Winter M, Koopmann B (2016) Race spectra of Leptosphaeria maculans, the causal agent of blackleg disease of oilseed rape, in different geographic regions in northern Germany. Eur J Plant Pathol 145:629–641. https://doi.org/10.1007/s10658-016-0932-8

    Article  Google Scholar 

  • Wu CR, Mathur S, Rimmer SR (1995) Differentiation of races and isolates of Albugo candida by random amplification of polymorphic DNA. In: Proc. 9th Intl Rapeseed Congr. GCIRC, Cambridge, pp 655–657

    Google Scholar 

  • Xiao S, Ellwood S, Findlay K, Oliver RP, Turner JG (1997) Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. Plant J 12(4):757–768

    Article  CAS  PubMed  Google Scholar 

  • Xue SM, Cao TS, Howard RJ, Hwang SF, Strelkov SE (2008) Isolation and variation in virulence of single-spore isolates of Plasmodiophora brassicae from Canada. Plant Dis 92:456–462. https://doi.org/10.1094/pdis-92-3-0456

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L (2018) Colletotrichum higginsianum as a model for understanding host-pathogen interactions: a review. Int J Mol Sci 19(7):2142. https://doi.org/10.3390/ijms19072142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano S, Tanaka S, Ito S, Kameya-Iwaki M (1996) Variations of isozyme and soluble proteins among field populations of Plasmodiophora brassicae. Ann Phytopathol Soc 62:365–371

    Article  CAS  Google Scholar 

  • Yano S, Tanaka S, Ito S, Kameya-Iwaki M (1997) Variations of random amplified polymorphic DNA (RAPD) patterns among field populations of Plasmodiophora brassicae. Ann Phytopathol Soc Jpn 63:179–182

    Article  CAS  Google Scholar 

  • Yoshida K, Ohguchi T (1998) Suppression of haustorium formation of Peronospora parasitica in heat-treated Japanese radish [Raphanus sativus] root tissues. Ann Phytopathol Soc Jpn 64:307–314

    Article  Google Scholar 

  • You MP, Simoneau P, Dongo A, Barbetti MJ, Li H, Sivasithamparam K (2005) First report of an Alternaria leaf spot caused by Alternaria brassicae on Crambe abyssinicia in Australia. Plant Dis 89:430

    Article  CAS  PubMed  Google Scholar 

  • You MP, Lanoiselet V, Wang CP, Barbetti MJ (2014) First report of Alternaria leaf spot caused by Alternaria tenuissima on Blueberry (Vaccinium corymbosum) in Western Australia. Plant Dis 98(3):423. https://doi.org/10.1094/PDIS-07-13-0737-PDN

    Article  CAS  PubMed  Google Scholar 

  • Young JM, Park DC, Shearman HM, Fargier E (2008) A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol 31:366–377

    Article  CAS  PubMed  Google Scholar 

  • Yu YG, Buss GR, Maroof MAS (1996) Isolation of a super family of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci U S A 93:11751–11756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Q, Chen M, Yan Y, Gu Q, Huang J, Zheng L (2016) ChSte7 is required for vegetative growth and various plant infection processes in Colletotrichum higginsianum. Biomed Res Int 2016(5):1–11

    Google Scholar 

  • Zander M, Patel DA, Van De Wouw A, Lai K, Lorenc MT, Campbell E, Hayward A, Edwards D, Raman H, Batley J (2013) Identifying genetic diversity of avirulence genes in Leptosphaeria maculans using whole genome sequencing. Funct Integr Genomics 13:295–308. https://doi.org/10.1007/s10142-013-0324-5

    Article  CAS  PubMed  Google Scholar 

  • Zandoki E, Szodi S, Turoczi G (2005) Mycelial compatibility of Sclerotinia sclerotiorum strains of different areas. Acta Phytopathol Entomol Hungarica 40:295–301

    Article  Google Scholar 

  • Zhan J, McDonald BA (2013) Experimental measures of pathogen competition and relative fitness. Annu Rev Phytopathol 51:131–153. https://doi.org/10.1146/annurev-phyto-082712-102302

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Feng J, Zhang S, Zhang S, Li F, Strelkov SE, Sun R, Hwang SF (2015) Resistance to Plasmodiophora brassicae in Brassica rapa and Brassica juncea genotypes from China. Plant Dis 99:776–779. https://doi.org/10.1094/PDIS-08-14-0863-RE

    Article  PubMed  Google Scholar 

  • Zhang X, Peng G, Kutcher HR, Balesdent MH, Delourme R, Fernando WGD (2016) Breakdown of Rlm3 resistance in the Brassica napus–Leptosphaeria maculans pathosystem in western Canada. Eur J Plant Pathol 145:659–674. https://doi.org/10.1007/s10658-015-0819-0

    Article  CAS  Google Scholar 

  • Zheng J, Wang X, Li Q, Yuan S, Wei S, Tian X, Huang Y, Wang W, Yang H (2018) Characterization of five molecular markers for pathotype identification of the clubroot pathogen Plasmodiophora brassicae. Phytopathology 103(3):495–503

    Google Scholar 

  • Zou Z, Liu F, Selin C, Fernando WGD (2020) Generation and characterization of a virulent Leptosphaeria maculans isolate carrying a mutated AvrLm7 gene using the CRISPR/Cas9 system. Front Microbiol 11:1969. https://doi.org/10.3389/fmicb.2020.01969

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh Saharan, G., Mehta, N.K., Meena, P.D. (2023). Pathogenomics of Pathogenic Variability. In: Genomics of Crucifer's Host- Pathosystem . Springer, Singapore. https://doi.org/10.1007/978-981-19-3812-2_5

Download citation

Publish with us

Policies and ethics