Skip to main content

Bacterial Inoculants for Control of Fungal Diseases in Solanum lycopersicum L. (Tomatoes): A Comprehensive Overview

  • Chapter
  • First Online:
Rhizosphere Microbes

Abstract

Globally, Solanum lycopersicum L. (tomatoes) is the second most widely grown vegetable. This crop is sensitive to over 200 diseases caused by a variety of phytopathogenic microorganisms, specifically, soil-borne fungi. The major fungal pathogen causing diseases in tomatoes are Fusarium oxysporum f. sp. lycopersici, Botrytis cinerea, Verticillium dahliae, Sclerotium rolfsii, Colletotrichum sp., Alternaria sp. Rhizoctonia solani, etc. Even though a wide range of chemical fungicides is now available to combat fungal diseases, the overuse of these chemicals has been shown to leave negative/adverse influences on the texture, yield and nutritive value of the fruits. In this regard, to manage the fungus-induced tomato diseases, plant growth-promoting (PGP) bacteria are one of the most environmentally friendly, effective, safe and economically sound solutions. A variety of beneficial soil microorganisms (BSMs) are currently being employed as soil or plant inoculants in several crop plants, including tomatoes, as biocontrol agents (BCAs). These BCAs also work as growth regulators, in addition to preventing fungal diseases. The current chapter discusses the application of beneficial and antagonistic BCAs, their effectiveness as well as bacterial-mediated mechanisms involved in the management of diseases in tomatoes. The specific mechanisms are antibiosis, competition, production of cellulolytic enzymes, cyanogenic compounds (HCN) and siderophore and induced systemic resistance (ISR). The ability of PGP rhizobacteria to antagonize a pathogen and suppress the disease through multiple pathways has been intensively studied to use them as effective BCAs. As a result, this chapter highlights a full explanation of various bacterial-mediated biocontrol mechanisms used by BCA. As environmental and health issues highlight the need to transition to a more sustainable agriculture system, the use of indigenous PGP rhizobacteria in plant disease prevention is gaining attraction. It’s also recommended that using a bacterial consortium guarantees that BCA performs consistently in field settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Elyousr KA, Bagy HM, Hashem M, Alamri SA, Mostafa YS (2019) Biological control of the tomato wilt caused by Clavibacter michiganensis subsp. michiganensis using formulated plant growth-promoting bacteria. Egypt J Biological Pest Control 29:1–8

    Article  Google Scholar 

  • Ahmad T, Bashir A, Farooq S, Riyaz-Ul-Hassan S (2022) Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm-rot caused by Fusarium oxysporum. J Appl Microbiol 132:495–508

    Article  CAS  PubMed  Google Scholar 

  • Ahmed HE, Zienat KM, Mohamed EE, Mohamed GF, Zienat K (2011) Induced systemic protection against tomato leaf spot (early leaf blight) and bacterial speck by rhizobacterial isolates. J Exp Biol 20:49–57

    Google Scholar 

  • Ahmed B, Shahid M, Syed A, Rajput VD, Elgorban AM, Minkina T, Bahkali AH, Lee J (2021) Drought tolerant Enterobacter sp./Leclercia adecarboxylata secretes indole-3-acetic acid and other biomolecules and enhances the biological attributes of Vigna radiata (L.) R. Wilczek in water deficit conditions. Biology 10:1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MY, Sina AA, Khandker SS, Neesa L, Tanvir EM, Kabir A, Khalil MI, Gan SH (2020) Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: a review. Foods 10(1):45

    Article  PubMed Central  Google Scholar 

  • Al-Kassim MY, Monawar MN (2000) Seed-borne fungi of some vegetable seeds in Jazan province and their chemical control. Saudi J Biol Sci 7(2):179–184

    Google Scholar 

  • Al-Shwaiman HA, Shahid M, Elgorban AM, Siddique KH, Syed A (2022) Beijerinckia fluminensis BFC-33, a novel multi-stress-tolerant soil bacterium: deciphering the stress amelioration, phytopathogenic inhibition and growth promotion in Triticum aestivum (L.). Chemosphere 295:133843

    Article  CAS  PubMed  Google Scholar 

  • Alsudani AA (2022) Biocontrol of Rhizoctonia solani (Kühn) and Fusarium solani (Marti) causing damping-off disease in tomato with Azotobacter chroococcum and Pseudomonas fluorescens. Pak J Biol Sci 23:1456–1461

    Article  Google Scholar 

  • Amaya-Gómez CV, Porcel M, Mesa-Garriga L, Gómez-Álvarez MI (2020) A framework for the selection of plant growth-promoting rhizobacteria based on bacterial competence mechanisms. Appl Environ Microbiol 86(14):e00760–e00720

    Article  PubMed  PubMed Central  Google Scholar 

  • Amini J, Sidovich D (2010) The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. J Plant Protect Res 50(2):172–178

    CAS  Google Scholar 

  • Amza J (2018) Seed borne fungi; food spoilage, negative impact and their management: a review. FSQM 81:70–79

    Google Scholar 

  • Arora DK (1986) Chemotaxis of Actinoplanes missouriensis zoospores to fungal conidia, chlamydospores and sclerotia. Microbiology 132:1657–1663

    Article  Google Scholar 

  • Arunakumara KT, Kulkarni MS, Thammaiah N, Yashoda H (2010) Fungicidal management of early blight of tomato. Indian Phytopathol 63:96–97

    Google Scholar 

  • Arya N, Rana A, Rajwar A, Sahgal M, Sharma AK (2018) Biocontrol efficacy of siderophore producing indigenous Pseudomonas strains against Fusarium wilt in tomato. Nat Acad Sci Lett 41:133–136

    Article  CAS  Google Scholar 

  • Atkinson NJ, Dew TP, Orfila C, Urwin PE (2011) Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). J Agric Food Chem 59:9673–9682

    Article  CAS  PubMed  Google Scholar 

  • Attia MS, El-Sayyad GS, Abd Elkodous M, El-Batal AI (2020) The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Sci Hortic 10(266):109289

    Article  Google Scholar 

  • Babalola OO, Emmanuel OC, Adeleke BS, Odelade KA, Nwachukwu BC, Ayiti OE, Adegboyega TT, Igiehon NO (2021) Rhizosphere microbiome cooperations: strategies for sustainable crop production. Curr Microbiol 78:1069–1085

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Basco MJ, Bisen K, Keswani C, Singh HB (2017) Biological management of fusarium wilt of tomato using biofortified vermicompost. Mycosphere 8:467–483

    Article  Google Scholar 

  • Bhatti FJ, Ghazal H, Irshad G, Begum N, Bhutta AR (2010) Study on seed-borne fungi of vegetable seeds. Pak J Seed Tech 2:96–106

    Google Scholar 

  • Bu S, Munir S, He P, Li Y, Wu Y, Li X, Kong B, He P, He Y (2021) Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea. Biol Control 157:104568

    Article  CAS  Google Scholar 

  • Chacon-Lopez A, Guardado-Valdivia L, Banuelos-Gonzalez M, Lopez-Garcia U, Montalvo-González E, Arvizu-Gomez J, Stoll A, Aguilera S (2021) Effect of metabolites produced by Bacillus atrophaeus and Brevibacterium frigoritolerans strains on postharvest biocontrol of Alternaria alternata in tomato (Solanum lycopersicum L.). Biocontrol Sci 26:67–74

    Article  CAS  PubMed  Google Scholar 

  • Chaouachi M, Marzouk T, Jallouli S, Elkahoui S, Gentzbittel L, Ben C, Djébali N (2021) Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea. Postharvest Biol Tech 172:111389

    Article  CAS  Google Scholar 

  • Chavan SB, Deshpande MV (2013) Chitinolytic enzymes: an appraisal as a product of commercial potential. Biotechnol Prog 29:833–846

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15(3):848–864

    Article  PubMed  Google Scholar 

  • Chohan S, Perveen R, Abid M, Naqvi AH, Naz S (2017) Management of seed borne fungal diseases of tomato: a review. Pak J Phytopathol 29:193–200

    Article  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P, Kumar SM, Lakshmi MJ, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65:109–117

    Article  Google Scholar 

  • Chunyu LI, Weicong HU, Bin PA, Yan LI, Saifei YU, Yuanyuan DI, Rong LI, Zheng X, Biao SH, Qirong SH (2017) Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato. Pedosphere 27:1135–1146

    Article  Google Scholar 

  • Cohen Y, Rubin AE, Galperin M (2018) Oxathiapiprolin-based fungicides provide enhanced control of tomato late blight induced by mefenoxam-insensitive Phytophthora infestans. PLoS One 13:e0204523

    Article  PubMed  PubMed Central  Google Scholar 

  • Çolak NG, Eken NT, Ülger M, Frary A, Doğanlar S (2020) Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: carotenoids, vitamins C and E, glutathione and phenolic acids. Plant Sci 292:110393

    Article  Google Scholar 

  • Colombo C, Palumbo G, He JZ, Pinton R, Cesco S (2014) Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments 14:538–548

    Article  CAS  Google Scholar 

  • Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40:533–539

    Article  CAS  PubMed  Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Heuvelink EP (2018) The global tomato industry. In: Tomatoes, vol 1. CABI, Boston, pp 1–26

    Google Scholar 

  • Cuppels DA, Higham J, Traquair JA (2013) Efficacy of selected streptomycetes and a streptomycete+ pseudomonad combination in the management of selected bacterial and fungal diseases of field tomatoes. Biol Control 67:361–372

    Article  Google Scholar 

  • Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev 28:97–125

    Article  Google Scholar 

  • Dhekle NM, Bodke SS (2013) Studies on fungal diversity associated with cauliflower, tomato and bhendi. Rev Res J 2:1–7

    Google Scholar 

  • Divya Rani V, Sudini H (2013) Management of soil-borne diseases in crop plants: an overview. Int J Plant Anim Environ Sci 3:156–164

    Google Scholar 

  • Dorjey S, Dolkar D, Sharma R (2017) Plant growth promoting rhizobacteria Pseudomonas: a review. Int J Curr Microbiol App Sci 6:1335–1344

    Article  CAS  Google Scholar 

  • Droby S, Gonzalez-Estrada RR, Avila-Quezada G, Durán P, Manzo-Sánchez G, Hernandez-Montiel LG (2022) Microbial antagonists from different environments used in the biocontrol of plant pathogens. In: Microbial biocontrol: food security and post harvest management. Springer, Cham, pp 227–244

    Chapter  Google Scholar 

  • Essalimi B, Esserti S, Rifai LA, Koussa T, Makroum K, Belfaiza M, Rifai S, Venisse JS, Faize L, Alburquerque N, Burgos L (2022) Enhancement of plant growth, acclimatization, salt stress tolerance and verticillium wilt disease resistance using plant growth-promoting rhizobacteria (PGPR) associated with plum trees (Prunus domestica). Sci Hortic 291:110621

    Article  CAS  Google Scholar 

  • Etesami H, Adl SM (2020) Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. In: Phyto-microbiome in stress regulation, pp 147–203

    Chapter  Google Scholar 

  • Fatima I, Hakim S, Imran A, Ahmad N, Imtiaz M, Ali H, Islam EU, Yousaf S, Mirza MS, Mubeen F (2022) Exploring biocontrol and growth-promoting potential of multifaceted PGPR isolated from natural suppressive soil against the causal agent of chickpea wilt. Microbiol Res 260:127015

    Article  CAS  PubMed  Google Scholar 

  • Ferraz HG, Resende RS, Moreira PC, Silveira PR, Milagres EA, Oliveira JR, Rodrigues FA (2015) Antagonistic rhizobacteria and jasmonic acid induce resistance against tomato bacterial spot. Bragantia 74:417–427

    Article  CAS  Google Scholar 

  • Freitas CS, Maciel LF, Corrêa dos Santos RA, Costa OM, Maia FC, Rabelo RS, Franco HC, Alves E, Consonni SR, Freitas RO, Persinoti GF (2022) Bacterial volatile organic compounds induce adverse ultrastructural changes and DNA damage to the sugarcane pathogenic fungus Thielaviopsis ethacetica. Environ Microbiol 24(3):1430–1453. https://doi.org/10.1111/1462-2920.15876

    Article  CAS  PubMed  Google Scholar 

  • Fry WE (2020) Phytophthora infestans: the itinerant invader; “late blight”: the persistent disease. Phytoparasitica 48:87–94

    Article  Google Scholar 

  • Gaur I, Sharma PD, Paul PK (2017) Effect of Klebsiella pneumoniae on speck disease development in Solanum lycopersicum. Indian J Agr Res 51(5):431–436

    Google Scholar 

  • Ghazy N, El-Nahrawy S (2021) Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Arch Microbiol 203:1195–1209

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Ramirez LF, Uribe-Velez D (2021) Phosphorus solubilizing and mineralizing bacillus spp. contribute to rice growth promotion using soil amended with rice straw. Curr Microbiol 78:932–943

    Article  CAS  PubMed  Google Scholar 

  • Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65

    Article  CAS  PubMed  Google Scholar 

  • Goudjal Y, Zamoum M, Sabaou N, Mathieu F, Zitouni A (2016) Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedlings. Biocontrol Sci Tech 26:1691–1705

    Article  Google Scholar 

  • Govindasamy V, Senthilkumar M, Upendra-Kumar AK (2008) PGPR-biotechnology for management of abiotic and biotic stresses in crop plants. In: Potential microorganisms for sustainable agriculture, pp 26–48

    Google Scholar 

  • Gowtham HG, Hariprasad P, Nayak SC, Niranjana SR (2016) Application of rhizobacteria antagonistic to Fusarium oxysporum f. sp. lycopersici for the management of Fusarium wilt in tomato. Rhizosphere 2:72–74

    Article  Google Scholar 

  • Gupta SK, Bharat NK (2008) Management of buckeye rot and late blight of tomato through combi fungicides. Pestology 32:17–19

    CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  • Haddoudi I, Cabrefiga J, Mora I, Mhadhbi H, Montesinos E, Mrabet M (2021) Biological control of Fusarium wilt caused by Fusarium equiseti in Vicia faba with broad spectrum antifungal plant-associated Bacillus spp. Biol Control 160:104671

    Article  CAS  Google Scholar 

  • Hamid S, Lone R, Mohamed HI (2021) Production of antibiotics from PGPR and their role in biocontrol of plant diseases. In: Plant growth-promoting microbes for sustainable biotic and abiotic stress management. Springer, Cham, pp 441–461

    Chapter  Google Scholar 

  • Hassan MN, Osborn AM, Hafeez FY (2010) Molecular and biochemical characterization of surfactin producing Bacillus species antagonistic to Colletotrichum falcatum Went causing sugarcane red rot. Afr J Microbiol Res 4:2137–2142

    CAS  Google Scholar 

  • Hassan MK, McInroy JA, Kloepper JW (2019) The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: a review. Agriculture 9:142

    Article  CAS  Google Scholar 

  • Heidarzadeh N, Baghaee-Ravari S (2015) Application of Bacillus pumilus as a potential biocontrol agent of Fusarium wilt of tomato. Arch Phytopathol Plant Protect 48:841–849

    Article  CAS  Google Scholar 

  • Heo AY, Koo YM, Choi HW (2022) Biological control activity of plant growth promoting rhizobacteria Burkholderia contaminans AY001 against tomato Fusarium wilt and bacterial speck diseases. Biology 11:619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-León R, Rojas-Solís D, Contreras-Pérez M, del Carmen Orozco-Mosqueda M, Macías-Rodríguez LI, Reyes-de la Cruz H, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92

    Article  Google Scholar 

  • Hussain T, Khan AA, Khan MA (2021) Biocontrol of soil borne pathogen of potato tuber caused by Rhizoctonia solani through Biosurfactant based Bacillus strain. J Nepal Agril Res Council 7:54–66

    Article  Google Scholar 

  • Jadhav HP, Sayyed RZ (2016) Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Sci Rep 3:135–136

    Google Scholar 

  • Jangir M, Pathak R, Sharma S, Sharma S (2018) Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol Control 123:60–70

    Article  CAS  Google Scholar 

  • Jisha MS, Linu MS, Sreekumar J (2019) Induction of systemic resistance in chilli (Capsicum annuum L.) by Pseudomonas aeruginosa against anthracnose pathogen Colletotrichum capsici. J Tropical Agriculture 56(2):153–166

    Google Scholar 

  • Jnr L (2000) Sclerotinia rot losses in processing tomatoes grown under Centre pivot irrigation in Central Brazil. Plant Pathol 49:51–56

    Article  Google Scholar 

  • Johnson I, Sreenayana B, Suruthi VP, Manikandan R, Ramjegathesh R, Karthikeyan M (2022) Rhizosphere population dynamics and biocontrol potential of Pseudomonas fluorescens Pf1 against Wilt and collar rot pathogens in tomato. Pharma Innovat 11(5):1042–1051

    CAS  Google Scholar 

  • Kabdwal BC, Sharma R, Tewari R, Tewari AK, Singh RP, Dandona JK (2019) Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egypt J Biol Pest Control 29:1. https://doi.org/10.1186/s41938-018-0103-7

    Article  Google Scholar 

  • Kamali M, Guo D, Naeimi S, Ahmadi J (2022) Perception of biocontrol potential of Bacillusinaquosorum KR2-7 against tomato fusarium wilt through merging genome mining with chemical analysis. Biology 11:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamilova F, Leveau JH, Lugtenberg B (2007) Collimonasfungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Environ Microbiol 9:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Kaur J (2015) Potential role of lycopene as antioxidant and implications for human health and disease. In: Bailey JR (ed) Lycopene food sources, potential role in human health and antioxidant effects. Nova Science, pp 1–38

    Google Scholar 

  • Kaya HK, Koppenhöfer AM (1996) Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Sci Tech 1:357–372

    Article  Google Scholar 

  • Keerthana U, Prabhukarthikeyan SR, Baite MS, Yadav MK, Kumar RN, Kumar AM, Raghu S, Aravindan S, Rath PC (2022) Fluorescent pseudomonads: a multifaceted biocontrol agent for sustainable agriculture. In: New and future developments in microbial biotechnology and bioengineering, pp 83–92

    Chapter  Google Scholar 

  • Keinath AP, DuBose VB (2017) Management of southern blight on tomato with SDHI fungicides. Crop Prot 101:29–34

    Article  CAS  Google Scholar 

  • Kilani-Feki O, Khedher SB, Dammak M, Kamoun A, Jabnoun-Khiareddine H, Daami-Remadi M, Tounsi S (2016) Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biol Control 95:73–82

    Article  CAS  Google Scholar 

  • Kim PI, Ryu JW, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    Article  CAS  PubMed  Google Scholar 

  • Koley S, Mahapatra SS, Kole PC (2015) In vitro efficacy of bio-control agents and botanicals on the growth inhibition of Alternaria solani causing early leaf blight of tomato. Int J Bio-res Env Agril Sci 1:114–118

    Google Scholar 

  • Kuiper I, Bloemberg GV, Noreen S, Thomas-Oates JE, Lugtenberg BJ (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Int 14:1096–1104

    Article  CAS  Google Scholar 

  • Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJ (2002) Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. Mol Plant Microbe Int 15:734–741

    Article  CAS  Google Scholar 

  • Kumar KH, Jagadeesh KS (2016) Microbial consortia-mediated plant defence against phytopathogens and growth benefits. South Indian J Biol Sci 2:395–403

    Article  Google Scholar 

  • Kumar DP, Anupama PD, Singh RK, Thenmozhi R, Nagasathya A, Thajuddin N, Paneerselvam A (2012) Evaluation of extracellular lytic enzymes from indigenous Bacillus isolates. J Microbiol Biotechnol Res 2:129–137

    Google Scholar 

  • Kumari P, Bishnoi SK, Chandra S (2021) Assessment of antibiosis potential of Bacillus sp. against the soil-borne fungal pathogen Sclerotium rolfsii Sacc.(Atheliarolfsii (Curzi) Tu & Kimbrough). Egyptian J Biol Pest Control 31:1

    Article  Google Scholar 

  • Lee JP, Lee SW, Kim CS, Son JH, Song JH, Lee KY, Kim HJ, Jung SJ, Moon BJ (2006) Evaluation of formulations of Bacillus licheniformis for the biological control of tomato graymold caused by Botrytis cinerea. Biol Control 37:329–337

    Article  Google Scholar 

  • Lian Q, Zhang J, Gan L, Ma Q, Zong Z, Wang Y (2017) The biocontrol efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in tomato. Biomed Res Int 28:2017

    Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladusorientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B (2015) Life of microbes in the rhizosphere. In: Principles of plant-microbe interactions. Springer, Cham, pp 7–15

    Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. In: Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 37–44

    Chapter  Google Scholar 

  • Malik MS, Haider S, Rehman A, Rehman SU, Jamil M, Naz I, Anees M (2022) Biological control of fungal pathogens of tomato (Lycopersicon esculentum) by chitinolytic bacterial strains. J Basic Microbiol 62:48–62

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Ray RC (2011) Induced systemic resistance in biocontrol of plant diseases. In: Bioaugmentation, bio stimulation and biocontrol. Springer, Berlin, Heidelberg, pp 241–260

    Chapter  Google Scholar 

  • Marinho MD, Diogo BS, Lage OM, Antunes SC (2020) Ecotoxicological evaluation of fungicides used in viticulture in non-target organisms. Environ Sci Pollut Res 27:43958–43969

    Article  CAS  Google Scholar 

  • Mazzotta E, Muzzalupo R, Chiappetta A, Muzzalupo I (2022) Control of the verticillium wilt on tomato plants by means of olive leaf extracts loaded on chitosan nanoparticles. Microorganism 10:136

    Article  CAS  Google Scholar 

  • Miljaković D, Marinković J, Balešević-Tubić S (2020) The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8:1037

    Article  PubMed Central  Google Scholar 

  • Moataza MS (2006) Destruction of Rhizoctonia solani and Phytophthora capsici causing tomato root-rot by Pseudomonas fluorescences lytic enzymes. Res J Agri Biol Sci 2:274–281

    Google Scholar 

  • Monteiro FP, Ogoshi C, Cardoso DA, Perazzoli V, Maindra LC, Pinto FA, Mallmann G (2021) Fungicides in the control of septoriose in tomato plant. Plant Pathol Quarantine 11(1):173–190

    Article  Google Scholar 

  • Morganelli A (2007) The biography of tomatoes. Crabtree Publishing Company

    Google Scholar 

  • Myo EM, Liu B, Ma J, Shi L, Jiang M, Zhang K, Ge B (2019) Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biol Control 134:23–31

    Article  Google Scholar 

  • Narayanasamy P (2013) Mechanisms of action of bacterial biological control agents. InBiological management of diseases of crops. Springer, Dordrecht, pp 295–429

    Google Scholar 

  • Neergard P (1997) Seed pathology. The Macmillan Press Limited, Danist Govt. Institute of Seed Pathology for Developing Countries, Copenhagen, p 1

    Google Scholar 

  • Ni L, Punja ZK (2019) Management of fungal diseases on cucumber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) crops in greenhouses using Bacillus subtilis. In: Bacilli and agrobiotechnology: phytostimulation and biocontrol. Springer, Cham, pp 1–28

    Google Scholar 

  • Nicola S, Tibaldi G, Fontana E, Crops AV, Plants A (2009) Tomato production systems and their application to the tropics. Acta Hort 821:27–34

    Article  Google Scholar 

  • Nishikawa J, Kobayashi T, Shirata K, Chibana T, Natsuaki KT (2006) Seedborne fungi detected on stored solanaceous berry seeds and their biological activities. J General Plant Pathol 72:305–313

    Article  Google Scholar 

  • Noori MS, Saud HM (2012) Potential plant growth-promoting activity of Pseudomonas sp. isolated from paddy soil in Malaysia as biocontrol agent. J Plant Pathol Microbiol 3:1–4

    Google Scholar 

  • Oves M, Khan MS, Qari HA (2019) Chromium-reducing and phosphate-solubilizing Achromobacter xylosoxidans bacteria from the heavy metal-contaminated soil of the Brass city, Moradabad, India. Int J Environ Sci Tech 16:6967–6984

    Article  CAS  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02

  • Pandya U, Saraf M (2014) In vitro evaluation of PGPR strains for their biocontrol potential against fungal pathogens. In: Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 293–305

    Google Scholar 

  • Pane C, Zaccardelli M (2015) Evaluation of Bacillus strains isolated from solanaceous phylloplane for biocontrol of Alternaria early blight of tomato. Biol Control 84:11–18

    Article  CAS  Google Scholar 

  • Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genomics 11:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parasuraman P, Pattnaik SS, Busi S, Marraiki N, Elgorban AM, Syed A (2022) Isolation and characterization of plant growth promoting rhizobacteria and their biocontrol efficacy against phytopathogens of tomato (Solanum lycopersicum L.). Plant Biosyst 156:164–170

    Article  Google Scholar 

  • Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35:877–902

    Article  CAS  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2018) Modified chrome azurol S method for detection and estimation of siderophores having affinity for metal ions other than iron. Environ Sustain 1:81–87

    Article  Google Scholar 

  • Phichai K (2014) Biological control of tomato leaf blight disease by high cell density culture of antagonistic Bacillus subtilis. Khon Kaen Agric J 42(4):106–112

    Google Scholar 

  • Pieterse CM, Van Pelt JA, Van Wees S, Ton J, Léon-Kloosterziel KM, Keurentjes JJ, Verhagen BW, Knoester M, Van der Sluis I, Bakker PA, Van Loon LC (2001) Rhizobacteria-mediated induced systemic resistance: triggering, signalling and expression. Eur J Plant Pathol 107:51–61

    Article  Google Scholar 

  • Pineda A, Dicke M, Pieterse CM, Pozo MJ (2013) Beneficial microbes in a changing environment: are they always helping plants to deal with insects? Funct Ecol 27:574–586

    Article  Google Scholar 

  • Poiroux-Gonord F, Bidel LP, Fanciullino AL, Gautier H, Lauri-Lopez F, Urban L (2010) Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J Agric Food Chem 58:12065–12082

    Article  CAS  PubMed  Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2013) Isolation and characterization of Bacillus sp. with in-vitro antagonistic activity against Fusarium oxysporum from rhizosphere of tomato. J Agric Sci Technol 15:1501–1512

    Google Scholar 

  • Radzki W, Gutierrez Mañero FJ, Algar E, Lucas García JA, García-Villaraco A, Ramos Solano B (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Islam T, Jett L, Kotcon J (2021) Biocontrol agent, bio fumigation, and grafting with resistant rootstock suppress soil-borne disease and improve yield of tomato in West Virginia. Crop Prot 145:105630

    Article  CAS  Google Scholar 

  • Ramyabharathi SA, Raguchander T (2014) Mode of action of Bacillus subtilis EPCO16 against tomato fusarium wilt. Biochem Cell Arch 14:47–50

    Google Scholar 

  • Rennie WJ, Cokerell V (2006) Seedborne diseases. In: The epidemiology of plant diseases, pp 357–372

    Chapter  Google Scholar 

  • Roy C, Akter N, Sarkar MK, PK Uddin M, Begum N, Zenat E (2019) Control of early blight of tomato caused by Alternaria solani and screening of tomato varieties against the pathogen. Open Microbiol J 13:41–50

    Article  CAS  Google Scholar 

  • Saad OA, Moharram TM, Aly ME, Muqlad RR (2016) Biological control of fungal wilt of tomato by plant growth promoting rhizobacteria and Trichoderma harzianum. J Phytopathol Pest Manag 3(3):1–10

    Google Scholar 

  • Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M (2021) Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. Int J Molecular Sci 22:10529

    Article  CAS  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MD, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Tech 22:855–872

    Article  Google Scholar 

  • Saxena A, Sarma BK, Singh HB (2016) Effect of azoxystrobin based fungicides in management of chilli and tomato diseases. Proc Nat Acad Sci India Sect B Biol Sci 86:283–289

    Article  CAS  Google Scholar 

  • Sehrawat A, Sindhu SS, Glick BR (2022) Hydrogen cyanide production by soil bacteria: biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere 32:15–38

    Article  Google Scholar 

  • Shahid M, Khan M (2018) Glyphosate induced toxicity to chickpea plants and stress alleviation by herbicide tolerant phosphate solubilizing Burkholderia cepacia PSBB1 carrying multifarious plant growth promoting activities. 3 Biotech 8:1–7

    Article  Google Scholar 

  • Shahid M, Zaidi A, Khan M, Rizvi A, Saif S, Ahmed B (2017) Recent advances in management strategies of vegetable diseases. In: Microbial strategies for vegetable production, pp 197–226

    Chapter  Google Scholar 

  • Shahid M, Zaidi A, Ehtram A, Khan MS (2019) In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. Pesticide Biochem Physiol 157:33–44

    Article  CAS  Google Scholar 

  • Shaikh SS, Sayyed RZ (2015) Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In: Plantmicrobes’ symbiosis: applied facets. Springer, New Delhi, pp 337–351

    Google Scholar 

  • Shanmugam V, Kanoujia N (2011) Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biol Control 57:85–93

    Article  Google Scholar 

  • Shuping DS, Eloff JN (2017) The use of plants to protect plants and food against fungal pathogens: a review. Afr J Tradit Complement Altern Med 14:120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS One 20:e0155026

    Article  Google Scholar 

  • Singh VK, Singh AK, Kumar A (2017) Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7:1

    Article  Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. African J Agric Res 9:1265–1277

    Google Scholar 

  • Srikhong P, Lertmongkonthum K, Sowanpreecha R, Rerngsamran P (2018) Bacillus sp. strain M10 as a potential biocontrol agent protecting chili pepper and tomato fruits from anthracnose disease caused by Colletotrichum capsici. BioControl 63:833–842

    Article  CAS  Google Scholar 

  • Sultana S, Alam S, Karim MM (2021) Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. J Agric Food Res 4:100150

    Article  CAS  Google Scholar 

  • Suresh P, Shanmugaiah V, Rajagopal R, Muthusamy K, Ramamoorthy V (2022) Pseudomonas fluorescens VSMKU3054 mediated induced systemic resistance in tomato against Ralstonia solanacearum. Physiol Mol Plant Pathol 119:101836

    Article  CAS  Google Scholar 

  • TariqJaveed M, Farooq T, Al-Hazmi AS, Hussain MD, Rehman AU (2021) Role of Trichoderma as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer. J Inverteb Pathol 183:107626

    Article  CAS  Google Scholar 

  • Telang SM (2010) Effect of extracts of various plant parts on seed mycoflora and seed germination of tomato. Asian Sci 5:15–18

    Google Scholar 

  • Thenmozhi P, Dinakar S (2014) Exopolysaccharides (EPS) mediated induction of systemic resistance (ISR) in Bacillus-Fusarium oxysporum f. sp. Lycopersici pathosystem in tomato (var. PKM-1). Int J Curr Microbiol Appl Sci 3:839–846

    Google Scholar 

  • Verma PP, Shelake RM, Das S, Sharma P, Kim JY (2019) Plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF): potential biological control agents of diseases and pests. In: Microbial interventions in agriculture and environment. Springer, Singapore, pp 281–311

    Chapter  Google Scholar 

  • Vignesh M, Shankar SR, MubarakAli D, Hari BN (2022) A novel rhizospheric bacterium: Bacillus velezensis NKMV-3 as a biocontrol agent against Alternaria leaf blight in tomato. Appl Biochem Biotechnol 194:1–7

    Article  CAS  PubMed  Google Scholar 

  • Villareal RL (2019) Tomatoes in the tropics. CRC Press

    Book  Google Scholar 

  • Wang HL, Yang GG, zhang Y, Bao YD, Yong HE (2017) Detection of fungal disease on tomato leaves with competitive adaptive reweighted sampling and correlation analysis methods. Spectrosc Spectr Anal 37:2115

    Google Scholar 

  • Wang Y, Han X, Chen X, Deng Y (2021) Potential harmful of extracellular proteases secreted by Pseudomonas fluorescens W3 on milk quality. J Food Proc Preserv 45(3):e15192

    Article  CAS  Google Scholar 

  • Watterson JC (1986) Diseases, the tomato crops. Atherton and Rudich. Champan and Hall Ltd, New York, pp 461–462

    Google Scholar 

  • Weert SD, Bloemberg GV (2007) Rhizosphere competence and the role of root colonization in biocontrol. In: Plant-associated bacteria. Springer, Dordrecht, pp 317–333

    Chapter  Google Scholar 

  • Xue QY, Chen Y, Li SM, Chen LF, Ding GC, Guo DW, Guo JH (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48:252–258

    Article  Google Scholar 

  • Yezli W, Hamini-Kadar N, Zebboudj N, Blondin L, Tharreau D, Kihal M (2019) First report of crown and root rot of tomato caused by Fusarium equiseti in Algeria. J Plant Pathol 101:1249

    Article  Google Scholar 

  • Youssef SA, Tartoura KA, Abdelraouf GA (2016) Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol Control 100:79–86

    Article  CAS  Google Scholar 

  • Zhang D, Yu S, Yang Y, Zhang J, Zhao D, Pan Y, Fan S, Yang Z, Zhu J (2020) Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato. Front Microbiol 11:1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, de Jong A, Kuipers OP (2021) Characterization of the interaction between Priestia endophytica FH5 and Rhizoctonia solani: biocontrol potential against tomato damping-off. In: Discovery of natural products from bacilli and pseudomonas for biocontrol of plant diseases, p 159

    Google Scholar 

  • Zuparov MA, Khakimov AA, Mamiev MS, Allayarov AN (2020) In vitro efficacy testing of fungicides on Botrytis cinerea causing graymold of tomato. Int J Emerging Technol 11:50

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Director Mau, ICAR-NBAIM, for providing scientific and technical support during preparation of the manuscript. The authors gratefully acknowledge the Network Project on Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), ICAR-NBAIM and Indian Council of Agricultural Research, Ministry of Agriculture and Farmers Welfare, Government of India for providing financial support for the study.

Funding

This research was supported by Network Project on Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), ICAR-NBAIM and Indian Council of Agricultural Research, New Delhi (India).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no known competing financial interest or personal relationship that could have appeared to influence the content reported in this manuscript. The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahid, M. et al. (2022). Bacterial Inoculants for Control of Fungal Diseases in Solanum lycopersicum L. (Tomatoes): A Comprehensive Overview. In: Singh, U.B., Sahu, P.K., Singh, H.V., Sharma, P.K., Sharma, S.K. (eds) Rhizosphere Microbes. Microorganisms for Sustainability, vol 40. Springer, Singapore. https://doi.org/10.1007/978-981-19-5872-4_15

Download citation

Publish with us

Policies and ethics