Skip to main content

Diagnosis and Detection of Soil-Borne Fungal Phytopathogens in Major Crops

  • Chapter
  • First Online:
Detection, Diagnosis and Management of Soil-borne Phytopathogens

Abstract

Phytopathogenic soil-borne fungal species can inflict huge economic disturbances in the global agricultural sector. Soil-borne diseases, incited by fungal pathogens, e.g. root rot, stem rot, crown rot, damping-off, blights, vascular wilts, etc., inflict significant economic losses in agricultural and horticultural crops’ yields and quality, globally. To achieve effective disease control, precise and quick detection or identification of plant infecting fungi is required. For accurate plant disease diagnosis, DNA-based approaches have become widespread. Recent breakthroughs in the field of fungal detection and differentiation; various polymerase chain reaction (PCR) assays such as nested, multiplex, quantitative, bio, and magnetic-capture hybridisation PCR techniques; post and isothermal amplification methods; DNA and RNA-based probe development; and next-generation sequencing have resulted in novel molecular diagnostic tools. Symptomatic and asymptomatic diseases caused by culturable and non-culturable fungal pathogens can be detected using these molecular-based detection approaches in both single-infection and co-infection conditions. Plant disease diagnostics require molecular techniques that are more reliable, quicker, and easier to use than traditional procedures. The present chapter highlights molecular diagnostic tools that have come a long way including rapid developments in recent past. However, it requires further firming up before becoming integral part of efficient plant disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah AS, Turo C, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A (2018) Real-time PCR for diagnosing and quantifying co-infection by two globally distributed fungal pathogens of wheat. Front Plant Sci 9:1086

    Article  PubMed Central  PubMed  Google Scholar 

  • Aglietti C, Luchi N, Pepori AL, Bartolini P, Pecori F, Raio A et al (2019) Real-time loop-mediated isothermal amplification: an early-warning tool for quarantine plant pathogen detection. AMB Exp 9:50

    Article  Google Scholar 

  • Aguilar-Hawod KGI, de la Cueva FM, Cumagun CJR (2020) Genetic diversity of Fusarium oxysporum f. sp. cubense causing Panama wilt of banana in the Philippines. Pathogens 9(1):32

    Article  Google Scholar 

  • Ahmed FA, Larrea-Sarmiento A, Alvarez AM, Arif M (2018) Genome-informed diagnostics for specific and rapid detection of Pectobacterium species using recombinase polymerase amplification coupled with a lateral flow device. Sci Rep 8:15972

    Article  PubMed Central  PubMed  Google Scholar 

  • Alemu K (2014) Real-time PCR and its application in plant disease diagnostics. Adv Life Sci Technol 27:39–49

    Google Scholar 

  • Ammour MS, Bilodeau GJ, Tremblay DM, Van der Heyden H, Yaseen T, Varvaro L et al (2017) Development of real-time isothermal amplification assays for on-site detection of Phytophthora infestans in potato leaves. Plant Dis 101:1269–1277

    Article  CAS  Google Scholar 

  • Arif M, Fletcher J, Marek SM, Melcher U, Ochoa-Corona FM (2013) Development of a rapid, sensitive, and field-deployable razor ex biodetection system and quantitative PCR assay for detection of Phymatotrichopsis omnivora using multiple gene targets. Appl Environ Microbiol 79:2312–2320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arif M, Dobhal S, Garrido PA, Orquera GK, Espíndola AS, Young CA, Ochoa-Corona FM, Marek SM, Garzón CD (2014) Highly sensitive end-point PCR and SYBR green qPCR detection of Phymatotrichopsis omnivora, causal fungus of cotton root rot. Plant Dis 98:1205–1212

    Article  CAS  PubMed  Google Scholar 

  • Asif M, Atiq M, Sahi ST, Ali S, Nawaz A, Ali Y, Subhani A, Saleem A (2017) Effective management of white rust (Albugo candida) of rapeseed through commercially available fungicides. Pak J Phytopathol 29(2):233–237

    Article  Google Scholar 

  • Aslam S, Tahir A, Aslam MF, Alam MW, Shedayi AA, Sadia S (2017) Recent advances in molecular techniques for the identification of phytopathogenic fungi—a mini review. J Plant Interact 12(1):493–504

    Article  Google Scholar 

  • Atkins SD, Clark IM (2004) Fungal molecular diagnostics: a mini review. J Appl Genet 45(1):3–15

    PubMed  Google Scholar 

  • Badali H, Nabili M (2012) Molecular tools in medical mycology; where we are! Jundishapur J Microbiol 6(1):1–3

    Article  Google Scholar 

  • Balodi R, Bisht S, Ghatak A, Rao KH (2017) Plant disease diagnosis: technological advancements and challenges. Indian Phytopathol 70(3):275–281

    Google Scholar 

  • Ball SFL, Reeves JC (1991) The application of new techniques in the rapid testing for seed-borne pathogens. Plant Var Seeds 4:169–176

    Google Scholar 

  • Barba M, Hadidi A (2008) DNA microarrays: technology, applications, and potential applications for the detection of plant viruses and virus-like pathogens. In: Rao GP (ed) Techniques in diagnosis of plant viruses. Stadium Press LLC, Houston, pp 227–247

    Google Scholar 

  • Bhat RG, Browne GT (2010) Specific detection of Phytophthora cactorum in diseased strawberry plants using nested polymerase chain reaction. Plant Pathol 59:121–129

    Article  CAS  Google Scholar 

  • Bhatia S, Dahiya R (2015) Concepts and techniques of plant tissue culture science. In: Bhatia S, Sharma K, Dahiya R, Bera T (eds) Modern applications of plant biotechnology in pharmaceutical sciences. Academic Press, Boston, pp 121–156

    Chapter  Google Scholar 

  • Black J (2009) Quantitative real-time polymerase chain reaction (qPCR) of filamentous fungi in carpet. RTI Press, Research Triangle Park

    Book  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2005) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7(1):1–16

    Article  Google Scholar 

  • Borah M, Gogoi S (2020) Bioefficacy of plant extracts on collar rot disease (Sclerotium rolfsii Sacc.) of soybean. Int J Econ Plants 7(1):185–189

    Article  Google Scholar 

  • Bozorg-Ghalati F, Mohammadpour I, Ranjbaran R (2019) Applications of fluorescence in situ hybridization in detection of disease biomarkers and personalized medicine. Comp Clin Pathol 28:3–10

    Article  CAS  Google Scholar 

  • Bradley CA, Río LED (2003) First report of charcoal rot on soybean caused by Macrophomina phaseolina in North Dakota. Plant Dis 87(5):601

    Article  CAS  PubMed  Google Scholar 

  • Bu R, Sathiapalan RK, Ibrahim MM, Al-Mohsen I, Almodavar E, Gutierrez MI, Bhatia K (2005) Monochrome LightCycler PCR assay for detection and quantification of five common species of Candida and Aspergillus. J Med Microbiol 54(3):243–248

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt A, Henry PM, Koike ST, Gordon TR, Martin F (2019) Detection of Fusarium oxysporum f. sp. fragariae from infected strawberry plants. Plant Dis 103:1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anolles D (2013) Polymerase chain reaction. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics. Academic, San Diego, pp 392–395

    Chapter  Google Scholar 

  • Çakır E, Ertek TS, Katırcıoğlu YZ, Maden S (2020) Occurrence of potato pink rot caused by Phytophthora erythroseptica in Turkey, with special reference to Phytophthora cryptogea. Australas Plant Dis Notes 15:14

    Article  Google Scholar 

  • Chandelier A, Massot M, Fabreguettes O, Gischer F, Teng F, Robin C (2019) Early detection of Cryphonectria parasitica by real-time PCR. Eur J Plant Pathol 153:29–46

    Article  CAS  Google Scholar 

  • Cho HJ, Hong SW, Kim HJ, Kwak YS (2016) Development of a multiplex PCR method to detect fungal pathogens for quarantine on exported cacti. Plant Pathol J 32(1):53–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark M, Panopoulou G, Cahill D, Büssow K, Lehrach H (1999) Construction and analysis of arrayed cDNA libraries. Methods Enzymol 303:205–233

    Article  CAS  PubMed  Google Scholar 

  • Compton J (1991) Nucleic acid sequence-based amplification. Nature 350:91–92

    Article  CAS  PubMed  Google Scholar 

  • Conti M, Cinget B, Vivancos J, Oudemans P, Bélanger RR (2019) A molecular assay allows the simultaneous detection of 12 fungi causing fruit rot in Cranberry. Plant Dis 103(11):2843–2850

    Article  CAS  PubMed  Google Scholar 

  • Cortés-Maldonado L, Marcial-Quino J, Gómez-Manzo S, Fierro F, Tomasini A (2020) A method for the extraction of high-quality fungal RNA suitable for RNA-seq. J Microbiol Methods 170:105855

    Article  PubMed  Google Scholar 

  • Corthell JT (2014) In situ hybridization. In: Basic molecular protocols in neuroscience: tips, tricks, and pitfalls. Academic, San Diego, pp 105–111

    Chapter  Google Scholar 

  • Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. Front Cell Dev Biol 4:89

    Article  PubMed Central  PubMed  Google Scholar 

  • Cullen DW, Lees AK, Toth IK, Duncan JM (2001) Conventional PCR and real-time quantitative PCR detection of Helminthosporium solani in soil and potato tubers. Eur J Plant Pathol 107:387–398

    Article  CAS  Google Scholar 

  • Dasmahapatra K, Mallet J (2006) DNA barcodes: recent successes and future prospects. Heredity 97(4):254–255

    Article  CAS  PubMed  Google Scholar 

  • Davari M, Van Diepeningen AD, Babai-Ahari A, Arzanlou M, Najafzadeh MJ, Van Der Lee TAJ, Sybrende Hoog G (2012) Rapid identification of Fusarium graminearum species complex using rolling circle amplification (RCA). J Microbiol Methods 89:63–70

    Article  CAS  PubMed  Google Scholar 

  • Deiman B, van Aarle P, Sillekens P (2002) Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol Biotechnol 20:163–179

    Article  CAS  PubMed  Google Scholar 

  • Depotter JRL, Rodriguez-Moreno L, Thomma BPHA, Wood TA (2017) The emerging British Verticillium longisporum population consists of aggressive brassica pathogens. Phytopathology 107(11):1399–1405

    Article  PubMed  Google Scholar 

  • Díaz-Díaz M, Bernal-Cabrera A, Trapero A, Medina-Marrero R, Sifontes-Rodríguez S, Cupull-Santana RD, García-Bernal M, Agustí-Brisach C (2022) Characterization of actinobacterial strains as potential biocontrol agents against Macrophomina phaseolina and Rhizoctonia solani, the main soil-borne pathogens of Phaseolus vulgaris in Cuba. Plants (Basel) 11(5):645

    Article  PubMed  Google Scholar 

  • Dobnik D, Morisset D, Lenarcic R, Ravnikar M (2014) Simultaneous detection of RNA and DNA targets based on multiplex isothermal amplification. J Agric Food Chem 62:2989–2996

    Article  CAS  PubMed  Google Scholar 

  • Edwards SG, Seddon B (2001) Selective media for the specific isolation and enumeration of Botrytis cinerea conidia. Lett Appl Microbiol 32:63–66

    Article  CAS  PubMed  Google Scholar 

  • Egel DS, Martyn RD (2007) Fusarium wilt of watermelon and other cucurbits. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2007-0122-01 Updated 2013

  • Elad Y, Chet I, Katan J (1980) Trichoderma harzianum: a biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology 70(2):119–121

    Article  Google Scholar 

  • Ellison MA, McMahon MB, Bonde MR, Palmer CL, Luster DG (2016) In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections. Plant Methods 12:37

    Article  PubMed Central  PubMed  Google Scholar 

  • Elverson TR, Kontz BJ, Markell SG, Harveson RM, Mathew FM (2020) Quantitative PCR assays developed for Diaporthe helianthi and Diaporthe gulyae for Phomopsis stem canker diagnosis and germplasm screening in sunflower (Helianthus annuus). Plant Dis 104(3):793–800

    Article  CAS  PubMed  Google Scholar 

  • Epstein L, Kaur S, Chang PL, Carrasquilla-Garcia N, Lyu G, Cook DR, Subbarao KV, O’Donnell K (2017) Races of the celery pathogen Fusarium oxysporum f. sp. apii are polyphyletic. Phytopathology 107(4):463–473

    Article  CAS  PubMed  Google Scholar 

  • Ereku LT, Mackay RE, Craw P, Naveenathayalan A, Stead T, Branavan M, Balachandran W (2018) RPA using a multiplexed cartridge for low-cost point of care diagnostics in the field. Anal Biochem 547:84–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erper I, Alkan M, Zholdoshbekova S, Turkkan M, Yildirim E, Özer G (2022) First report of dry rot of potato caused by Fusarium sambucinum in Kyrgyzstan. J Plant Dis Prot 129:189–191

    Article  CAS  Google Scholar 

  • Espindola A, Schneider W, Hoyt PR, Marek SM, Garzon C (2015) A new approach for detecting fungal and oomycete plant pathogens in next generation sequencing metagenome data utilizing electronic probes. Int J Data Min Bioinform 12(2):115–128

    Article  PubMed  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5:537–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faraghati M, Abrinbana M, Ghosta Y (2022) Genetic structure of Sclerotinia sclerotiorum populations from sunflower and cabbage in West Azerbaijan province of Iran. Sci Rep 12:9263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, Poppert S (2017) Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 43(3):263–293

    Article  CAS  PubMed  Google Scholar 

  • Fukuta S, Takahashi R, Kuroyanagi S, Miyake N, Nagai H, Suzuki H, Hashizume F, Tsuji T, Taguchi H, Watanabe H (2013) Detection of Pythium aphanidermatum in tomato using loop-mediated isothermal amplification (LAMP) with species-specific primers. Eur J Plant Pathol 136:689–701

    Article  CAS  Google Scholar 

  • Gaige AR, Dung JKS, Weiland JE (2018) A rapid, sensitive and field-deployable isothermal assay for the detection of Verticillium alfalfae. Can J Plant Pathol 40:408–416

    Article  Google Scholar 

  • Garrido C, Carbu M, Acreo FJ, Boonham N, Coyler A, Cantoral JM, Budge G (2009) Development of protocols for detection of Colletotrichum acutatum and monitoring of strawberry anthracnose using real-time PCR. Plant Pathol 58:43–51

    Article  CAS  Google Scholar 

  • Ghosh R, Nagavardhini A, Sengupta A, Sharma M (2015) Development of loop-mediated isothermal amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris-wilt pathogen of chickpea. BMC Res Notes 8:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghosh R, Tarafdar A, Sharma M (2016) Rapid detection of Fusarium oxysporum f. sp. ciceris from disease infested chickpea fields by loop-mediated isothermal amplification. Indian Phytopathol 69:47–50

    Google Scholar 

  • Ghosh R, Tarafdar A, Sharma M (2017) Rapid and sensitive diagnoses of dry root rot pathogen of chickpea (Rhizoctonia bataticola (Taub.) Butler) using loop-mediated isothermal amplification assay. Sci Rep 7:42737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh R, Tarafdar A, Chobe DR, Chandran US, Rani S, Sharma M (2019) Diagnostic techniques of soil borne plant diseases: recent advances and next generation evolutionary trends. Biol Forum 11(2):1–13

    Google Scholar 

  • Ghosh T, Pradhan C, Das AB (2020) Control of stem-rot disease of rice caused by Sclerotium oryzae catt and its cellular defense mechanism—a review. Physiol Mol Plant Pathol 112:101536. https://doi.org/10.1016/j.pmpp.2020.101536

    Article  CAS  Google Scholar 

  • Griffiths MW (2014) Nucleic acid–based assays: overview. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology. Academic, Oxford, pp 990–998

    Chapter  Google Scholar 

  • Guigó R (2013) The coding and the non-coding transcriptome. In: AJM W, Vidal M, Dekker J (eds) Handbook of systems biology. Academic, San Diego, pp 27–41

    Chapter  Google Scholar 

  • Gupta A, Kumar R (2020a) Integrated management of Bakanae disease in Basmati rice. In: Arya A (ed) Environment at crossroads-challenges and green solutions. Scientific Publishers, Jodhpur, pp 55–70

    Google Scholar 

  • Gupta A, Kumar R (2020b) Management of seed-borne diseases: an integrated approach. In: Kumar R, Gupta A (eds) Seed-borne diseases of agricultural crops: detection, diagnosis & management. Springer, Singapore, pp 717–745

    Chapter  Google Scholar 

  • Gupta A, Kumar R, Maheshwari VK (2015) Integration of seed treatments, seedling dip treatments and soil amendments for the management of Bakanae disease in paddy variety Pusa Basmati 1121. Plant Pathol J 14(4):207–211. https://doi.org/10.3923/ppj.2015.207.211

    Article  CAS  Google Scholar 

  • Gurjar MS, Aggarwal R, Sharma S, Kulshreshtha D, Gupta A, Gogoi R, Thirumalaisamy PP, Saini A (2017) Development of real time PCR assay for the detection and quantification of teliospores of Tilletia indica causing Wheat Karnal bunt in soil. Indian J Exp Biol 55(6):549–554

    CAS  Google Scholar 

  • Hadidi A, Czosnek H, Barba M (2004) DNA microarrays and their potential applications for the detection of plant viruses, viroids, and phytoplasmas. J Plant Pathol 86:97–104

    CAS  Google Scholar 

  • Hadidi A, Flores R, Candresse T, Barba M (2016) Next-generation sequencing and genome editing in plant virology. Front Microbiol 7:1325

    Article  PubMed Central  PubMed  Google Scholar 

  • Havis ND, Gorniak K, Carmona MA, Formento AN, Luque AG, Scandiani MM (2014) First molecular detection of Ramularia leaf spot (Ramularia collo-cygni) in seeds and leaves of barley in Argentina. Plant Dis 98(2):277–277

    Article  CAS  PubMed  Google Scholar 

  • Havis ND, Brown JKM, Clemente G, Frei P, Jedryczka M, Kaczmarek J, Kaczmarek M, Matusinsky P, McGrann GRD, Pereyra S, Piotrowska M, Sghyer H, Tellier A, Hess M (2015) Ramularia collo-cygni—an emerging pathogen of barley crops. Phytopathology 105(7):895–904

    Article  PubMed  Google Scholar 

  • Hijri M (2009) The use of fluorescent in situ hybridization in plant fungal identification and genotyping. Methods Mol Biol 508:131–145

    Article  CAS  PubMed  Google Scholar 

  • Honsvall BK, Robertson LJ (2017) From research to lab to standard environmental analysis tool. Will NASBA make keep? Water Res 109:389–397

    Article  PubMed  Google Scholar 

  • Horner LJ, Wilcox WF (1995) SADAMCAP, a technique for quantifying populations of Phytophthora cactorum in apple orchard soils. Phytopathology 85:1400–1408

    Article  Google Scholar 

  • Horner LJ, Wilcox WF (1996) Spatial distribution of Phytophthora cactorum in New York apple orchard soils. Phytopathology 86:1122–1132

    Article  Google Scholar 

  • Houston BR, Kendrick JB (1949) A crater spot of celery petioles caused by Rhizoctonia solani. Phytopathology 39:470–474

    Google Scholar 

  • Ippolito A, Schena L, Nigro F, Salerno M (2000) PCR-based detection of Phytophthora spp. and P. nicotianae from roots and soil of citrus plants. In: Proceeding 5th congress of the European Foundation for Plant Pathology Taormina-Giardini Naxos, Catania, Italy, pp 158–160

    Google Scholar 

  • Ippolito A, Schena L, Nigro F (2002) Detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soils by nested PCR. Eur J Plant Pathol 108:855–868

    Article  CAS  Google Scholar 

  • Iseki H, Alhassan A, Ohta N, Thekisoe OM, Yokoyama N, Inoue N, Nambota A, Yasuda J, Igarashi I (2007) Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J Microbiol Methods 71:281–287

    Article  CAS  PubMed  Google Scholar 

  • Jacob S, Sajjalaguddam RR, Sudinia HK (2018) Streptomyces sp. RP1A-12 mediated control of peanut stem rot caused by Sclerotium rolfsii. J Integr Agric 17(4):892–900

    Article  Google Scholar 

  • Jadon KS (2009) Eco-friendly management of brinjal collar rot caused by Sclerotium rolfsii Sacc. Indian Phytopathol 62(3):345–347

    Google Scholar 

  • Jain A, Sarsaiya S, Wu Q, Lu Y, Shi J (2019) A review of plant leaf fungal diseases and its environment speciation. Bioengineered 10(1):409–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Javaid A, Khan IH (2016) Management of collar rot disease of chickpea by extracts and soil amendment with dry leaf biomass of Melia azedarach L. Philipp Agric Sci 99(2):150–155

    Google Scholar 

  • Jensen E (2014) Technical review: in situ hybridization. Anat Rec 297(8):1349–1353

    Article  Google Scholar 

  • Jiang H, Wu N, Jin S, Ahmed T, Wang H, Li B, Wu X, Bao Y, Liu F, Zhang JZ (2021) Identification of rice seed-derived Fusarium spp. and development of LAMP assay against Fusarium fujikuroi. Pathogens 10(1):1

    Article  CAS  Google Scholar 

  • Jin L, Lloyd RV (1997) In situ hybridization: methods and applications. J Clin Lab Anal 11(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Jiskani AM, Nizamani ZA, Abro MA, Wagan KH, Nizamani GM, Hussain M, Nahiyoon RA (2021) Evaluation of different fungicides against stalk rot of Maize caused by Fusarium moniliforme. Abasyn J Life Sci 4(2):75–82

    Article  Google Scholar 

  • Kalu NN, Sutton JC, Vaartaja O (1976) Pythium spp. associated with root dieback of carrot in Ontario. Can J Plant Sci 56:555–561

    Article  Google Scholar 

  • Katyayani KKS, Bindal S, Yaddanapudi S, Kumar V, Rana M, Srivastava S (2019) Evaluation of bio-agents, essential oils and chemicals against Fusarium wilt of tomato. Int J Curr Microbiol Appl Sci 8:1913–1922

    Article  CAS  Google Scholar 

  • Keinath AP (2019) Identifying and managing wirestem on vegetable brassica (Cole) crops: Clemson Cooperative Extension, Land-Grant Press by Clemson Extension, Clemson, LGP 1029. https://lgpress.clemson.edu/publication/identifying-and-managing-wirestem-on-vegetable-brassica-cole-crops/

  • Khalequzzaman KM (2016) Control of foot and root rot of lentil by using different management tools. ABC J Adv Res 5(1):35–42

    Article  Google Scholar 

  • Kong H, Vincent M, Xu Y (2007) Helicase dependent amplification of nucleic acids. Patent US 7282328: B2

    Google Scholar 

  • Kora C, McDonald MR, Boland GJ (2003) Sclerotinia rot of carrot: an example of phenological adaptation and bicyclic development by Sclerotinia sclerotiorum. Plant Dis 87(5):456–470

    Article  PubMed  Google Scholar 

  • Kowalska B (2021) Management of the soil-borne fungal pathogen—Verticillium dahliae Kleb. causing vascular wilt diseases. J Plant Pathol 103:1185–1194

    Article  Google Scholar 

  • Krawczyk K, Uszczyńska-Ratajczak B, Majewska A, Borodynko-Filas N (2017) DNA microarray-based detection and identification of bacterial and viral pathogens of maize. J Plant Dis Prot 124:577–583

    Article  Google Scholar 

  • Kumar R, Gupta A (eds) (2020) Seed-borne diseases of agricultural crops: detection, diagnosis & management. Springer, Singapore, p 871

    Google Scholar 

  • Kumar R, Sinha A, Kamil D (2008) Recent methods for detection for plant pathogens. J Sci Res 52:151–161

    Google Scholar 

  • Kumar R, Gupta A, Srivastava S, Devi G, Singh VK, Goswami SK, Gurjar MS, Aggarwal R (2020) Diagnosis and detection of seed-borne fungal phytopathogens. In: Kumar R, Gupta A (eds) Seed-borne diseases of agricultural crops: detection, diagnosis & management. Springer, Singapore, pp 107–142

    Chapter  Google Scholar 

  • Lamichhane JR, Dürr C, Schwanck AA, Robin MH, Sarthou JP, Cellier V, Messéan A, Aubertot JN (2017) Integrated management of damping-off diseases. A review. Agron Sustain Dev 37:10

    Article  Google Scholar 

  • Le D, Audenaert K, Haesaert G (2021) Fusarium basal rot: profile of an increasingly important disease in Allium spp. Trop Plant Pathol 46:241–253

    Article  Google Scholar 

  • Lees AK, Hilton AJ (2003) Black dot (Colletotrichum coccodes): an increasingly important disease of potato. Plant Pathol 52(1):3–12

    Article  Google Scholar 

  • Lees AK, Cullen DW, Sullivan L, Nicolson MJ (2002) Development of conventional and quantitative real-time PCR assays for the detection and identification of Rhizoctonia solani AG-3 in potato and soil. Plant Pathol 51:293–302

    Article  CAS  Google Scholar 

  • Liebe S, Daniela S, Christ DS, Ehricht R, Varrelmann M (2016) Development of a DNA microarray-based assay for the detection of sugar beet root rot pathogens. Phytopathology 106(1):76–86

    Article  CAS  PubMed  Google Scholar 

  • Lobato IM, O’Sullivan CK (2018) Recombinase polymerase amplification: basics, applications and recent advances. Trends Anal Chem 98:19–35

    Article  CAS  Google Scholar 

  • Loens K, Goossens H, de Laat C, Foolen H, Oudshoorn P, Pattyn S, Sillekens P, Ieven M (2006) Detection of rhinoviruses by tissue culture and two independent amplification techniques, nucleic acid sequence-based amplification and reverse transcription-PCR, in children with acute respiratory infections during a winter season. J. Clin Microbiol 44:166–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lozada DN, Nunez G, Lujan P, Dura S, Coon D, Barchenger DW, Sanogo S, Bosland PW (2021) Genomic regions and candidate genes linked with Phytophthora capsici root rot resistance in chile pepper (Capsicum annuum L.). BMC Plant Biol 21:601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lukumbuzya M, Schmid M, Pjevac P, Daims H (2019) A multicolor fluorescence in situ hybridization approach using an extended set of fluorophores to visualize microorganisms. Front. Microbiol 10:1383

    Article  PubMed Central  PubMed  Google Scholar 

  • Lyons NF, White JG (2008) Detection of Pythium violae and Pythium sulcatum in carrots with cavity spot using competition ELISA. Ann Appl Biol 120(2):235–244

    Article  Google Scholar 

  • Ma Z, Michailides TJ (2007) Approaches for eliminating PCR inhibitors and designing PCR primers for the detection of phytopathogenic fungi. Crop Prot 26:145–161

    Article  CAS  Google Scholar 

  • Mackay IM (2004) Real-time PCR in the microbiology laboratory. Clin Microbiol Infect 10(3):190–212

    Article  CAS  PubMed  Google Scholar 

  • Malapi-Wight M, Salgado-Salazar C, Demers JE, Clement DL, Rane KK, Crouch JA (2016) Sarcococca blight: use of whole-genome sequencing for fungal plant disease diagnosis. Plant Dis 100:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Manda RR, Addank VA, Srivastava S (2021) Biochemistry of wilted tomato plants. Int Res J Chem 33:14–22

    Google Scholar 

  • Manu TG, Nagaraja A, Chetan, Janawad S, Hosamani V (2012) efficacy of fungicides and biocontrol agents against Sclerotium rolfsii causing foot rot disease of finger millet, under in vitro conditions. Global J Biol Agric Health Sci 1(2):46–50

    Google Scholar 

  • Marcou S, Wikström M, Ragnarsson S, Persson L, Höfte M (2021) Occurrence and anastomosis grouping of Rhizoctonia spp. inducing black scurf and greyish-white felt-like mycelium on carrot in Sweden. J Fungi 7(5):396

    Article  CAS  Google Scholar 

  • Marquez N, Giachero ML, Declerck S, Ducasse DA (2021) Macrophomina phaseolina: general characteristics of pathogenicity and methods of control. Front Plant Sci 12:634397

    Article  PubMed Central  PubMed  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S et al (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35(1):1–25

    Article  Google Scholar 

  • Mazzotta E, Muzzalupo R, Chiappetta A, Muzzalupo I (2022) Control of the Verticillium wilt on tomato plants by means of olive leaf extracts loaded on chitosan nanoparticles. Microorganisms 10:136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCartney HA, Foster SJ, Fraaije BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59(2):129–142

    Article  CAS  PubMed  Google Scholar 

  • Mertely J, Seijo T, Peres N (2005) First report of Macrophomina phaseolina causing a crown rot of strawberry in Florida. Plant Dis 89(4):434

    Article  CAS  PubMed  Google Scholar 

  • Mihajlović M, Hrustić J, Grahovac M, Tanovic B (2022) First report of Sclerotinia minor on lettuce in Serbia. Plant Dis. https://doi.org/10.1094/PDIS-12-21-2735-PDN. PMID: 35306853

  • Milner H, Ji P, Sabula M, Wu T (2019) Quantitative polymerase chain reaction (Q-PCR) and fluorescent in situ hybridization (FISH) detection of soilborne pathogen Sclerotium rolfsii. Appl Soil Ecol 136:86–92

    Article  Google Scholar 

  • Mirmajlessi SM, Destefanis M, Gottsberger RA, Mänd M, Loit E (2015) PCR-based specific techniques used for detecting the most important pathogens on strawberry: a systematic review. Syst Rev 4:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Mishra RK, Sharma P, Srivastava DK, Gupta RP (2012) First report of Phoma terrestris causing pink root rot of onion in India. Vegetos 25(2):306–307

    Google Scholar 

  • Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    Article  CAS  PubMed  Google Scholar 

  • Murolo S, De Miccolis Angelini RM, Faretra F, Romanazzi G (2018) Phenotypic and molecular investigations on hypovirulent Cryphonectria parasitica in Italy. Plant Dis 102(3):540–545

    Article  CAS  PubMed  Google Scholar 

  • Musser RO, Hum-Musser SM, Gallucci M, DesRochers B, Brown JK (2014) Microarray analysis of tomato plants exposed to the nonviruliferous or viruliferous whitefly vector harboring pepper golden mosaic virus. J Insect Sci 14(1):230

    Article  PubMed Central  PubMed  Google Scholar 

  • Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16:223–229

    Article  CAS  PubMed  Google Scholar 

  • Najafzadeh MJ, Sun J, Vicente VA, De Hoog GS (2011) Rapid identification of fungal pathogens by rolling circle amplification using Fonsecaea as a model. Mycoses 54:E577–E582

    Article  CAS  PubMed  Google Scholar 

  • Nam M, Kim JS, Lim S, Park CY, Kim JG, Choi HS, Lim HS, Moon JS, Lee SH (2014) Development of the large-scale oligonucleotide chip for the diagnosis of plant viruses and its practical use. Plant Pathol J 30:51–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nigro F, Schena L, Gallone P (2002) Diagnosi in temporealedellaverticilliosidell’olivomediante Scorpion-PCR. In Proceeding ‘ConvegnoInternazionale di Olivicoltura’ Spoleto, Italy, pp 454–461

    Google Scholar 

  • Nikitin M, Deych K, Grevtseva I, Girsova N, Kuznetsova M, Pridannikov M, Dzhavakhiya V, Statsyuk N, Golikov A (2018) Preserved microarrays for simultaneous detection and identification of six fungal potato pathogens with the use of real-time PCR in matrix format. Biosensors 8:129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nonomura T, Toyoda H, Matsuda Y, Ouchi S (1996) Application of different fluorochrome-labeled probes to simultaneous in situ hybridization detection of formae speciales of Fusarium oxysporum. Ann Phytopathol Soc Jpn 62:576–579

    Article  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ojaghian S (2018) First report of potato white mold caused by Sclerotinia sclerotiorum in China. Potato J 45(2):159–162

    Google Scholar 

  • Ophel-Keller K, McKay A, Hartley D, Curren J (2008) Development of a routine DNA-based testing service for soilborne diseases in Australia. Plant Pathol 37:243–253

    CAS  Google Scholar 

  • Pallás V, Sánchez-Navarro JA, Delano J (2018) Recent advances on the multiplex molecular detection of plant viruses and viroids. Front Microbiol 9:2087

    Article  PubMed Central  PubMed  Google Scholar 

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:Article e204

    Article  PubMed  Google Scholar 

  • Pryor BM, Davis RM, Gilbertson RL (1998) Detection of soilborne Alternaria radicina and its occurrence in California carrot fields. Plant Dis 82:891–895

    Article  CAS  PubMed  Google Scholar 

  • Qiao TM, Zhang J, Li SJ, Han S, Zhu TH (2016) Development of nested PCR, multiplex PCR, and loop-mediated isothermal amplification assays for rapid detection of Cylindrocladium scoparium on Eucalyptus. Plant Pathol J 32(5):414–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raj M, Jeeva M, Nath V, Sankar S, Vidhyadharan P, Archana P, Hegde V (2013) A highly sensitive nested-PCR method using a single closed tube for the detection of Colletotrichum gloeosporioides causing greater yam anthracnose. J Root Crops 39(2):163–167

    Google Scholar 

  • Rasu T, Sevugapperumal N, Thiruvengadam R, Ramasamy S (2013) Biological control of sugarbeet root rot caused by Sclerotium rolfsii. Int J Biol Ecol Environ Sci 2(1):7–10

    Google Scholar 

  • Rezk AA, Sattar MN, Alhudaib KA, Soliman AM (2019) Identification of watermelon chlorotic stunt virus from watermelon and zucchini in Saudi Arabia. Can J Plant Pathol 41:285–290

    Article  CAS  Google Scholar 

  • Ribeiro JA, Albuquerque A, Materatski P, Patanita M, Varanda CMR, do Rosário Félix M, Maria Doroteia Campos MD (2022) Tomato response to Fusarium spp. infection under field conditions: study of potential genes involved. Horticulturae 8:433

    Article  Google Scholar 

  • Rolando JC, Jue E, Barlow JT, Ismagilov RF (2020) Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification. Nucleic Acids Res 48:e42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubayet MT, Prodhan F, Hossain MS, Ahmed M, Mamun MAA, Bhuiyan MKA (2020) Use of non-chemical methods for the management of southern blight disease of carrot incited by Sclerotium rolfsii. J Agric Appl Biol 1(2):74–85

    Article  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240

    Article  CAS  PubMed  Google Scholar 

  • Schena L, Ippolito A (2003) Rapid and sensitive detection of Rosellinia necatrix in roots and soils by real time Scorpion-PCR. J Plant Pathol 85:15–25

    CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Schena L, Nigro F, Ippolito A (2002) Identification and detection of Rosellinia necatrix by conventional and real-time Scorpion-PCR. Eur J Plant Pathol 108:355–366

    Article  CAS  Google Scholar 

  • Schena L, Nigro F, Ippolito A, Gallitelli D (2004) Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. Eur J Plant Pathol 110:893–908

    Article  CAS  Google Scholar 

  • Schena L, Li Destri Nicosia MG, Sanzani SM, Faedda R, Ippolito A, Cacciola SO (2013) Development of quantitative PCR detection methods for phytopathogenic fungi and oomycetes. J Plant Pathol 95:7–24

    Google Scholar 

  • Schwenkbier L, Pollok S, Konig S, Urban M, Werres S, Cialla-May D, Weber K, Popp J (2015a) Towards on-site testing of Phytophthora species. Anal Methods 7:211–217

    Article  CAS  Google Scholar 

  • Schwenkbier L, Pollok S, Rudloff A, Sailer S, Cialla-May D, Weber K, Popp J (2015b) Non-instrumented DNA isolation, amplification and microarray-based hybridization for a rapid on-site detection of devastating Phytophthora kernoviae. Analyst 140:6610–6618

    Article  CAS  PubMed  Google Scholar 

  • Senapati M, Tiwari A, Sharma N, Chandra P, Bashyal BM, Ellur RK, Bhowmick PK, Bollinedi H, Vinod KK, Singh AK, Krishnan SG (2022) Rhizoctonia solani Kühn pathophysiology: status and prospects of sheath blight disease management in rice. Front Plant Sci 13:881116. https://doi.org/10.3389/fpls.2022.881116

    Article  PubMed Central  PubMed  Google Scholar 

  • Shakoori AR (2017) Fluorescence in situ hybridization (FISH) and its applications. In: Bhat TA, Wani AA (eds) Chromosome structure and aberrations. Springer, New Delhi, pp 343–367

    Chapter  Google Scholar 

  • Sharf W, Javaid A, Shoaib A, Khan IH (2021) Induction of resistance in chili against Sclerotium rolfsii by plant-growth-promoting rhizobacteria and Anagallis arvensis. Egypt J Biol Pest Control 31:16

    Article  Google Scholar 

  • Sharma M, Ghosh R, Tarafdar A, Telangre R (2015) An efficient method for zoospore production, infection and real-time quantification of Phytophthora cajani causing Phytophthora blight disease in pigeonpea under elevated atmospheric CO2. BMC Plant Biol 15:9

    Article  Google Scholar 

  • Sharma LK, Sharma N, Dhungana B, Adhikari A, Shrestha SM, Yadav D (2022) Comparative efficacy of biological, botanical and chemical treatments against damping off disease of tomato in Chitwan. Int J Social Sci Manage 9(2):67–74

    Google Scholar 

  • Sholberg P, O’Gorman D, Bedford K, Lévesque CA (2005) Development of a DNA macroarray for detection and monitoring of economically important apple diseases. Plant Dis 89:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Shuey MM, Drees KP, Lindner DL, Keim P, Foster JT (2014) Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species. Appl Environ Microbiol 80:1726–1731

    Article  PubMed Central  PubMed  Google Scholar 

  • Sikdar P, Okubara P, Mazzola M, Xiao CL (2014) Development of PCR assays for diagnosis and detection of the pathogens Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens in apple fruit. Plant Dis 98(2):241–246

    Article  CAS  PubMed  Google Scholar 

  • Silvar C, Duncan JM, Cooke DEL, Willians NA, Diaz J, Merino F (2005) Development of specific PCR primers for identification and detection of Phytophthora capsici Leon. Eur J Plant Pathol 112:43–52

    Article  CAS  Google Scholar 

  • Singh M, Avtar R, Pal A, Punia R, Singh VK, Bishnoi M, Singh A, Choudhary RR, Mandhania S (2020) Genotype-specific antioxidant responses and assessment of resistance against Sclerotinia sclerotiorum causing sclerotinia rot in Indian mustard. Pathogens 9(11):892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh VP, Singh DK, Rana M, Nawale RY, Shete PP, Manda RR, Srivastava S (2021) Detection and management strategies of guava wilt pathogen. Agrica 10:100–110

    Article  Google Scholar 

  • Sint D, Raso L, Traugott M (2012) Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods Ecol Evol 3(5):898–905

    Article  PubMed Central  PubMed  Google Scholar 

  • Song JZ, Liu CC, Mauk MG, Peng J, Schoenfeld T, Bau HH (2018) A multifunctional reactor with dry-stored reagents for enzymatic amplification of nucleic acids. Anal Chem 90:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Soytong K (1991) Species of Chaetomium in Thailand and screening for their biocontrol properties against plant pathogens. In: Proceedings of the XII international plant protection congress, 11-16 August, Rio de Janeiro, Brazil

    Google Scholar 

  • Srivastava S, Singh VP, Kumar R, Srivastava M, Sinha A, Simon S (2011) In vitro evaluation of carbendazim 50% WP, antagonists and botanicals against Fusarium oxysporum f. sp. psidii associated with rhizosphere soil of Guava. Asian J Plant Pathol 5:46–53

    Article  Google Scholar 

  • Srivastava S, Kumar R, Bindal S, Singh VP, Rana M, Singh JP, Sinha A (2020a) Ancient, mid-time, and recent history of seed pathology. In: Kumar R, Gupta A (eds) Seed-borne diseases of agricultural crops: detection, diagnosis & management. Springer, Singapore, pp 81–103

    Chapter  Google Scholar 

  • Srivastava S, Pavithra G, Rana M (2020b) Estimation of biochemical changes in sugarcane due to Pokkahboeng disease. Plant Arch 20(2):3407–3411

    Google Scholar 

  • Sultana JN, Pervez Z, Rahman H, Islam MS (2012) Integrated management for mitigating root rot of chilli caused by Sclerotium rolfsii. Bangladesh Res Publ J 6(3):270–280

    Google Scholar 

  • Tambong JT, De Cock AWAM, Tinker NA, Lévesque CA (2006) Oligonucleotide array for identification and detection of Pythium species. Appl Environ Microbiol 72:7429

    Article  CAS  PubMed Central  Google Scholar 

  • Tanner NA, Zhang Y, Evans TC Jr (2012) Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. Biotechniques 53:81–89

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Liu D, Zhao Y, Wu J, Hu B, Walcott RR (2017a) Visual detection of Didymella bryoniae in cucurbit seeds using a loop-mediated isothermal amplification assay. Eur J Plant Pathol 147:255–263

    Article  Google Scholar 

  • Tian Q, Lu C, Wang S, Xiong Q, Zhang H, Wang Y, Zheng X (2017b) Rapid diagnosis of soybean anthracnose caused by Colletotrichum truncatum using a loop-mediated isothermal amplification (LAMP) assay. Eur J Plant Pathol 148:785–793

    Article  CAS  Google Scholar 

  • Tiberini A, Barba M (2012) Optimization and improvement of oligonucleotide microarray-based detection of tomato viruses and pospiviroids. J Virol Methods 185:43–51

    Article  CAS  PubMed  Google Scholar 

  • Tiwari RK, Kumar R, Sharma S, Naga KC, Subhash S, Sagar V (2022) Continuous and emerging challenges of silver scurf disease in potato. Int J Pest Manage 68(1):89–101

    Article  Google Scholar 

  • Tjimune R, Mangwende E, Lekota M, Muzhinji N (2021) First report of Rhizoctonia solani AG 3-PT causing black scurf on potato tubers in Namibia. New Dis Rep 45:e12066

    Google Scholar 

  • Tsaloglou MN, Bahi MM, Waugh EM, Morgan H, Mowlem M (2011) On-chip real-time nucleic acid sequence-based amplification for RNA detection and amplification. Anal Methods 3:2127–2133

    Article  CAS  Google Scholar 

  • Tsang CC, Teng JLL, Lau SKP, Woo PCY (2021) Rapid genomic diagnosis of fungal infections in the age of next-generation sequencing. J Fungi 7:636

    Article  CAS  Google Scholar 

  • Tsror L, Lebiush S, Hazanovsky M, Erlich O (2020) Control of potato powdery scab caused by Spongospora subterranea by foliage cover and soil application of chemicals under field conditions with naturally infested soil. Plant Pathol 69(6):1070–1082

    Article  CAS  Google Scholar 

  • Tsugunori N, Hiroto O, Harumi M, Keiko W, Nobuyuki A, Tetsu H (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63

    Article  Google Scholar 

  • Úrbez-Torres JR, Haag P, Bowen P, Lowery T, O’Gorman DT (2015) Development of a DNA macroarray for the detection and identification of fungal pathogens causing decline of young grapevines. Phytopathology 105(10):1373–1388

    Article  PubMed  Google Scholar 

  • Venzac B, Diakite ML, Herthnek D, Cisse I, Bockelmann U, Descroix S, Malaquin L, Viovy JL (2018) On-chip conductometric detection of short DNA sequences via electro-hydrodynamic aggregation. Analyst 143:190–199

    Article  CAS  Google Scholar 

  • Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5(8):795–800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallon T, Sauvageau A, Van der Heyden H (2021) Detection and quantification of Rhizoctonia solani and Rhizoctonia solani AG1-IB causing the bottom rot of lettuce in tissues and soils by multiplex qPCR. Plants 10:57

    Article  CAS  Google Scholar 

  • Weems JD, Ebelhar SA, Chapara V, Pedersen DK, Zhang GR, Bradley CA (2011) First report of charcoal rot caused by Macrophomina phaseolina on sunflower in Illinois. Plant Dis 95(10):1318

    Article  CAS  PubMed  Google Scholar 

  • Wilisiani F, Tomiyama A, Katoh H, Hartono S, Neriya Y, Nishigawa H et al (2019) Development of a LAMP assay with a portable device for real-time detection of begomoviruses under field conditions. J Virol Methods 265:71–76

    Article  CAS  PubMed  Google Scholar 

  • Williamson-Benavides BA, Dhingra A (2021) Understanding root rot disease in agricultural crops. Horticulturae 7(2):33

    Article  Google Scholar 

  • Wöhrle J, Krämer SD, Meyer PA, Rath C, Hügle M, Urban GA, Roth G (2020) Digital DNA microarray generation on glass substrates. Sci Rep 10(1):5770

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu XH, Chen CF, Xiao XZ, Deng MJ (2016) Development of reverse transcription thermostable helicase-dependent DNA amplification for the detection of tomato spotted wilt virus. J AOAC Int 99:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Fredua-Agyeman R, Strelkov SE, Chang KF, Hwang SF (2022) Identification of quantitative trait loci associated with partial resistance to fusarium root rot and wilt caused by Fusarium graminearum in field pea. Front Plant Sci 12:784593

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang K, Lee I, Nam S (2017) Development of a rapid detection method for Peronospora destructor using loop-mediated isothermal amplification (LAMP). HortScience 52(9):S413

    Google Scholar 

  • Yang X, Sun L, Sun H, Hong Y, Xia Z, Pang W, Piao Z, Feng J, Liang Y (2021) A loop-mediated isothermal DNA amplification (LAMP) assay for detection of the clubroot pathogen Plasmodiophora brassicae. Plant Dis 106(6):1730–1735. https://doi.org/10.1094/PDIS-11-21-2430-RE

    Article  Google Scholar 

  • Yates S, Penning M, Goudsmit J, Frantzen I, van de Weijer B, van Strijp D, van Gemen B (2001) Quantitative detection of hepatitis B virus DNA by real-time nucleic acid sequence-based amplification with molecular beacon detection. J Clin Microbiol 39:3656–3665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu F, Zhang W, Wang S, Wang H, Yu L, Zeng X, Fei Z, Li J (2020) Genome sequence of Fusarium oxysporum f. sp. conglutinans, the etiological agent of cabbage fusarium wilt. Mol Plant Microbe Interact 34(2):210–213

    Article  PubMed  Google Scholar 

  • Yu F, Zhang Y, Wang J, Chen Q, Karim Md M, Gossen BD, Peng G (2022) Identification of two major QTLs in Brassica napus lines with introgressed clubroot resistance from turnip cultivar ECD01. Front Plant Sci 12:785989

    Article  PubMed Central  PubMed  Google Scholar 

  • Yuan Q, Nian S, Yin Y, Li M, Cai J, Wang Z (2009) Development of a PCR-based diagnostic tool specific to wheat dwarf bunt caused by Tilletia controversa. Eur J Plant Pathol 124:585–594

    Article  CAS  Google Scholar 

  • Zewide T, Fininsa C, Sakhuja PK (2007) Management of white rot (Sclerotium cepivorum) of garlic using fungicides in Ethiopia. Crop Protect 26(6):856–866

    Article  CAS  Google Scholar 

  • Zhang N, Geiser DM, Smart CD (2007) Macroarray detection of solanaceous plant pathogens in the Fusarium solani species complex. Plant Dis 91:1612–1620

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, McCarthy MC, Smart CD (2008) A macroarray system for the detection of fungal and oomycete pathogens of Solanaceous crops. Plant Dis 92(6):953–960

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Lin CW, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24:297–312

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Chi YK, Mdi Y, Wang T, Xu AM, Rde Q (2021) Development and application of recombinase polymerase amplification assay for detection of Bipolaris sorokiniana. Crop Protect 145:105619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R. et al. (2023). Diagnosis and Detection of Soil-Borne Fungal Phytopathogens in Major Crops. In: Singh, U.B., Kumar, R., Singh, H.B. (eds) Detection, Diagnosis and Management of Soil-borne Phytopathogens. Springer, Singapore. https://doi.org/10.1007/978-981-19-8307-8_4

Download citation

Publish with us

Policies and ethics