Skip to main content

Diseases of Temperate Nuts

  • Chapter
  • First Online:
Temperate Nuts

Abstract

Plant disease can significantly reduce the market size of edible nuts in the regions where these nut trees are growing. This chapter covers economically essential diseases of almond, pistachio, pecan nut, hazelnut, walnut, and chestnut crops. Here, we address the biotic agents limiting the cultivation of nut fruits worldwide and imposing huge economic yield losses in the nut industry. We summarise some important diseases in terms of developed symptoms on the infected tree, pathogen description, epidemiology, and recommended measures in managing nut disease. We discuss the environmental conditions, facilitating disease development, and, eventually, suggest appropriate measures to control nut diseases. Nut crops are common snacks and come in many fruit crops, which include almond, pistachio, hazelnut, walnut, chestnut, pecannut, and chilgoza. In 2020, the edible nuts market size in the U.S. was calculated at US$24 billion, and this country accounts for a 27.06% share in the global market (Anonymous, Edible nuts-global market trajectory and analytics, Global Industry Analysts, Inc., San Jose, 2021). A plethora of biotic and abiotic agents account for imposing significant economic losses on the nut industry. In this chapter, we aim to address the investigation of epidemiology and biology of the phytopathogens infecting nut crops and imposing economic losses on growers. Additionally, we summarise the remaining nut crops disease in a separate table.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adaskaveg JE, Hartin RJ (1997) Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology 87(9):979–987

    CAS  PubMed  Google Scholar 

  • Adaskaveg JE, Ogawa JM, Butler EE (1990) Morphology and ontogeny of conidia in Wilsonomyces carpophilus, gen. nov. and comb. nov., causal pathogen of shot hole disease of Prunus species. Mycotaxon 37:275–290

    Google Scholar 

  • Ahmadpour A, Ghosta Y, Javan-Nikkhah M, Ghazanfari K, Fatahi R (2012) Study on morphology, pathogenicity and genetic diversity of Wilsonomyces carpophilus isolates, the causal agent of shot hole of stone fruit trees based on RAPD-PCR in Iran. Arch Phytopathol Plant Protect 45(17):2076–2086

    CAS  Google Scholar 

  • Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79(1):23–37

    Google Scholar 

  • Anagnostakis SL, Aylor DE (1984) The effect of temperature on growth of Endothia (Cryphonectria) parasitica in vitro and in vivo. Mycologia 76(3):387–397

    Google Scholar 

  • Anonymous (2021) Edible nuts-global market trajectory and analytics. Global Industry Analysts, Inc., San Jose. https://www.researchandmarkets.com/reports/5030789/edible-nuts-global-market-trajectory-and

    Google Scholar 

  • Avenot H, Morgan DP, Michailides TJ (2008) Resistance to pyraclostrobin, boscalid and multiple resistance to Pristine® (pyraclostrobin + boscalid) fungicide in Alternaria alternata causing alternaria late blight of pistachios in California. Plant Pathol 57(1):135–140

    CAS  Google Scholar 

  • Banihashemei Z (1990) Biology and control of Polystigma ochraceum, the cause of almond red leaf blotch. Plant Pathol 39(2):309–315

    Google Scholar 

  • Barnes G (1964) Growth responses of the pecan scab fungus,‘Fusicladium effusum’, on various common and exotic agar media. Oklahoma State University, Stillwater

    Google Scholar 

  • Bauman JM, Keiffer CH, McCarthy BC (2014) Growth performance and chestnut blight incidence (Cryphonectria parasitica) of backcrossed chestnut seedlings in surface mine restoration. New For 45:813–828

    Google Scholar 

  • Bock CH, Brenneman TB, Wood BW, Stevenson KL (2017) Challenges of managing disease in tall orchard trees—pecan scab, a case study. CAB Rev 12(8):1–18

    Google Scholar 

  • Borja M, Sánchez F, Rowhani A, Bruening G, Ponz F (1995) Long, nearly identical untranslated sequences at the 3′ terminal regions of the genomic RNAs of cherry leafroll virus (walnut strain). Virus Genes 10(3):245–252

    CAS  PubMed  Google Scholar 

  • Branzanti MB, Rocca E, Pisi A (1999) Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9(2):103–109

    Google Scholar 

  • Brenneman TB (1989) Recent occurrence of pecan anthracnose caused by Glomerella cingulata. Plant Dis 73(9):775

    Google Scholar 

  • Brooks M, Bruening G (1995) Transient gene expression of antisense RNA and coat protein-encoding sequences reduced accumulation of cherry leafroll virus in tobacco protoplasts. Virology 208(1):132–141

    CAS  PubMed  Google Scholar 

  • Büttner C, Von Bargen S, Bandte M, Myrta A (2011) Chapter 24: Cherry leaf roll virus. In: Virus and virus-like diseases of pome and stone fruits. The American Phytopathological Society, St. Paul, pp 119–125

    Google Scholar 

  • Cannon PF (1996) Systematics and diversity of the phyllachoraceae associated with rosaceae, with a monograph of Polystigma. Mycol Res 100(12):1409–1427

    Google Scholar 

  • Cao TA, Duncan RC, Kirkpatrick BA, Shackel KM, Dejong T (2013) Effect of calcium and nitrogen fertilization on bacterial canker susceptibility in stone fruits. Fruits 68(3):245–254

    CAS  Google Scholar 

  • Charlton ND, Yi M, Bock CH, Zhang M, Young CA (2020) First description of the sexual stage of Venturia effusa, causal agent of pecan scab. Mycologia 112(4):711–721

    CAS  PubMed  Google Scholar 

  • Chen SF, Morgan DP, Michailides TJ (2014) Botryosphaeriaceae and Diaporthaceae associated with panicle and shoot blight of pistachio in California, USA. Fungal Divers 67(1):157–179

    Google Scholar 

  • Connell JH (2002) Leading edge of plant protection for almond. HortTechnology 12(4):619–622

    Google Scholar 

  • Crandall BS, Gravatt GF, Ryan MM (1945) Root disease of Castanea species and some coniferous and broadleaf nursery stocks, caused by Phytophthora cinnamomi. Phytopathology 35:162–180

    Google Scholar 

  • de Silva DD, Crous PW, Ades PK, Hyde KD, Taylor PWJ (2017) Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biol Rev 31(3):155–168

    Google Scholar 

  • de Silva DD, Mann RC, Kaur J, Ekanayake PN, Sawbridge TI, McKay S, Taylor PWJ, Edwards J (2021) Revisiting the Colletotrichum species causing anthracnose of almond in Australia. Australas Plant Pathol 50(3):267–279

    Google Scholar 

  • Demaree J (1924) Pecan scab with special reference to sources of the early spring infections. J Agric Res 28:321–330

    Google Scholar 

  • Förster H, Adaskaveg JE (1999) Identification of subpopulations of Colletotrichum acutatum and epidemiology of almond anthracnose in California. Phytopathology 89(11):1056–1065

    PubMed  Google Scholar 

  • González M, Caetano P, Sánchez ME (2017) Testing systemic fungicides for control of Phytophthora oak root disease. For Pathol 47(4):e12343

    Google Scholar 

  • Gottwald TR, Bertrand PF (1982) Patterns of diurnal and seasonal airborne spore concentrations of Fusicladium effusum and its impact on a pecan scab epidemic. Phytopathology 72(3):330–335

    Google Scholar 

  • Gottwald TR, Cameron HR (1979) Studies in the morphology and life history of Anisogramma Anomala. Mycologia 71(6):1107–1126

    Google Scholar 

  • Gottwald TR, Cameron HR (1980a) Infection site, infection period, and latent period of canker caused by Anisogramma anomala in European Filbert. Phytopathology 70(11):1083–1087

    Google Scholar 

  • Gottwald TR, Cameron HR (1980b) Disease increase and the dynamics of spread of canker caused by Anisogramma anomala in European Filbert in the Pacific Northwest. Phytopathology 70(11):1087–1092

    Google Scholar 

  • Grandall BS (1950) The distribution and significance of the chestnut root rot Phytophthoras, P. cinnamomi and P. cambivora. Plant Dis Report 34(6):194–196

    Google Scholar 

  • Highberg LM (1986a) Yield reduction in almond related to incidence of shot-hole disease. Plant Dis 70(9):825–828

    Google Scholar 

  • Highberg LM (1986b) Survival of shot-hole inoculum in association with dormant almond buds. Plant Dis 70(9):828–831

    Google Scholar 

  • Hirano SS, Upper CD (1990) Population biology and epidemiology of pseudomonas syringae. Annu Rev Phytopathol 28(1):155–177

    Google Scholar 

  • Hoefnagels MH, Mason B (2016) Pecan scab. In: The plant health instructor. The American Phytopathological Society, St. Paul. https://doi.org/10.1094/PHI-I-2016-0620-01

    Chapter  Google Scholar 

  • Jacobs DF (2007) Toward development of silvical strategies for forest restoration of American chestnut (Castanea dentata) using blight-resistant hybrids. Biol Conserv 137(4):497–506

    Google Scholar 

  • Johnson KB, Pinkerton JN, Gaudreault SM, Stone JK (1994) Infection of European hazelnut by Anisogramma anomala: site of infection and effect of host developmental stage. Phytopathology 84(12):1465–1470

    Google Scholar 

  • Johnson KB, Mehlenbacher SA, Stone JK, Pscheidt JW, Pinkerton JN (1996) Eastern filbert blight of European hazelnut: It’s becoming a manageable disease. Plant Dis 80(12):1308–1316

    Google Scholar 

  • Jung T, Orlikowski L, Henricot B, Abad-Campos P, Aday AG, Aguín Casal O, Bakonyi J, Cacciola SO, Cech T, Chavarriaga D, Corcobado T, Cravador A, Decourcelle T, Denton G, Diamandis S, Dogmus-Lehtijärvi HT, Franceschini A, Ginetti B, Glavendekic M, Hantula J, Hartmann G, Herrero M, Ivic D, Horta Jung M, Lilja A, Keca N, Kramarets V, Lyubenova A, Machado H, di San M, Lio G, Mansilla Vázquez PJ, Marçais B, Matsiakh I, Milenkovic I, Moricca S, Nagy ZÁ, Nechwatal J, Olsson C, Oszako T, Pane A, Paplomatas EJ, Pintos Varela C, Prospero S, Rial Martínez C, Rigling D, Robin C, Rytkönen A, Sánchez ME, Scanu B, Schlenzig A, Schumacher J, Slavov S, Solla A, Sousa E, Stenlid J, Talgø V, Tomic Z, Tsopelas P, Vannini A, Vettraino AM, Wenneker M, Woodward S, Peréz-Sierra A (2016) Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For Pathol 46(2):134–163

    Google Scholar 

  • Jung T, Pérez-Sierra A, Durán A, Jung MH, Balci Y, Scanu B (2018) Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia: Molecular Phylogeny and Evolution of Fungi 40:182–220

    CAS  Google Scholar 

  • Kennelly MM, Cazorla FM, De Vicente A, Ramos C, Sundin GW (2007) Pseudomonas syringae diseases of fruit trees: Progress toward understanding and control. Plant Dis 91(1):4–17

    PubMed  Google Scholar 

  • Lamichhane JR, Varvaro L (2014) Xanthomonas arboricola disease of hazelnut: current status and future perspectives for its management. Plant Pathol 63(2):243–254

    Google Scholar 

  • Lamichhane JR, Fabi A, Ridolfi R, Varvaro L (2013) Epidemiological study of hazelnut bacterial blight in Central Italy by using laboratory analysis and geostatistics. PLoS One 8(2):e56298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Little EL, Bostock RM, Kirkpatrick BC (1998) Genetic characterization of pseudomonas syringae pv. Syringae strains from stone fruits in California. Appl Environ Microbiol 64(10):3818–3823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Littrell RH (1981) Management of pecan fruit and foliar diseases with fungicides. Plant Dis 65:769

    Google Scholar 

  • López-Moral A, Raya-Ortega MC, Agustí-Brisach C, Roca L, Lov era, M., Luque, F., Arquero, Q. and Trapero, A. (2017) Morphological, pathogenic, and molecular characterization of Colletotrichum acutatum isolates causing almond anthracnose in Spain. Plant Dis 101(12):2034–2045

    PubMed  Google Scholar 

  • López-Moral A, Agustí-Brisach C, Lovera M, Arquero O, Trapero A (2020) Almond anthracnose: current knowledge and future perspectives. Plan Theory 9(8):945

    Google Scholar 

  • Ma Z, Michailides TJ (2004) A real-time PCR assay for the detection of azoxystrobin-resistant Alternaria populations from pistachio orchards in California. Crop Prot 23(12):1259–1263

    CAS  Google Scholar 

  • Ma Z, Morgan DP, Felts D, Michailides TJ (2002) Sensitivity of Botryosphaeria dothidea from California pistachio to tebuconazole. Crop Prot 21(9):829–835

    CAS  Google Scholar 

  • Mantovi P, Bonazzi G, Maestri E, Marmiroli N (2003) Accumulation of copper and zinc from liquid manure in agricultural soils and crop plants. Plant Soil 250(2):249–257

    CAS  Google Scholar 

  • Mantz G, Minhot R, Morrelli G, Maiale S (2010) First report of Colletotrichum gloeosporioides causing pecan anthracnose in Argentina. J Plant Pathol 92(2):544

    Google Scholar 

  • Meyer JB, Gallien L, Prospero S (2015) Interaction between two invasive organisms on the European chestnut: does the chestnut blight fungus benefit from the presence of the gall wasp? FEMS Microbiol Ecol 91(11):1–10

    Google Scholar 

  • Miarnau X, Zazurca L, Torguet L, Zuniga E, Batlle I, Alegre S, Luque J (2021) Cultivar susceptibility and environmental parameters affecting symptom expression of red leaf blotch of almond in Spain. Plant Dis 105(4):940–947

    PubMed  Google Scholar 

  • Michailides TJ (1992) Effects of temperature and wetness duration on infection of pistachio by Botryosphaeria dothidea and management of disease by reducing duration of irrigation. Phytopathology 82(12):1399–1406

    Google Scholar 

  • Michailides TJ (1993) Spore release by Botryosphaeria dothidea in pistachio orchards and disease control by altering the trajectory angle of sprinklers. Phytopathology 83(2):145–152

    Google Scholar 

  • Michailides TJ (2002) Panicle and shoot blight. In: Teviotdale BL, Michailides TJ, Pscheidt JW (eds) Compendium of nut crop diseases in temperate zones. The American Phytopathological Society, St. Paul, pp 68–69

    Google Scholar 

  • Michailides TJ, Morgan DP (1993) Principles for the control of Alternaria late blight of pistachio caused by Alternaria alternata in California. In: Caruso T, Barone E, Sottile F (eds) Proceeding of the GREMPA meeting–Pistachio, 9th. Bront, Sciacca, Italy. Springer, New York, pp 56–63

    Google Scholar 

  • Michailides T, Morgan DP (2004) Panicle and shoot blight of pistachio: a major threat to the California pistachio industry. The American Phytopathological Society, St. Paul. https://doi.org/10.1094/APSnetFeature-2004-0104

    Book  Google Scholar 

  • Mircetich SM (1980) Natural spread, graft-transmission, and possible etiology of walnut blackline disease. Phytopathology 70(10):962–968

    Google Scholar 

  • Mircetich SM (1984) The relationship of Cherry Leafroll Virus and blackline disease of English walnut trees. Phytopathology 74(4):423–428

    Google Scholar 

  • Mircetich SM, Dezoeten GA, Lauritis JA (1981) Etiology and natural spread of blackline disease of English walnut trees. Acta Hortic 94:147–152

    Google Scholar 

  • Moral J, Pérez-Rodríguez M, Michailides TJ, Trapero A (2015) First report of the teleomorph of Neofusicoccum mediterraneum, a pathogen of olive. Phytopathology 105(11):97–98

    Google Scholar 

  • Muehlbauer MF, Honig JA, Capik JM, Vaiciunas JN, Molnar TJ (2014) Characterization of eastern filbert blight-resistant hazelnut germplasm using microsatellite markers. J Am Soc Hortic Sci 139(4):399–432

    CAS  Google Scholar 

  • Nafesa L (2015) Cherry leaf roll virus and blackline disease in walnut. University of California, Davis

    Google Scholar 

  • Neely D (1981) Application of nitrogen fertilizer to control anthracnose of black walnut. Plant Dis 65(7):580–581

    CAS  Google Scholar 

  • Oh JY, Heo JI, Lee DH (2021) First report of anthracnose on pecan (Carya illinoensis) caused by Colletotrichum siamense in Korea. Plant Dis 105(10):3296. https://doi.org/10.1094/pdis-11-20-2458-pdn

    Article  Google Scholar 

  • Peres NA, Timmer LW, Adaskaveg JE, Correll JC (2005) Lifestyles of Colletotrichum acutatum. Plant Dis 89(8):784–796

    CAS  PubMed  Google Scholar 

  • Pinkerton JN (1993) Susceptibility of European hazelnut clones to eastern filbert blight. Plant Dis 77(3):261–266

    Google Scholar 

  • Pinkerton JN, Stone JK, Nelson SJ, Johnson KB (1995) Infection of European hazelnut by Anisogramma anomala: ascospore adhesion, mode of penetration of immature shoots, and host response. Phytopathology 85(10):1260–1268

    Google Scholar 

  • Prospero S, Rigling D (2013) Chestnut blight. In: Gonthier P, Nicolotti G (eds) Infectious forest diseases. CABI, Wallingford, pp 318–338

    Google Scholar 

  • Prospero S, Conedera M, Heiniger U, Rigling D (2006) Saprophytic activity and sporulation of Cryphonectria parasitica on dead chestnut wood in forests with naturally established hypovirulence. Phytopathology 96(12):1337–1344

    CAS  PubMed  Google Scholar 

  • Pryor BM, Michailides TJ (2002) Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with alternaria late blight of pistachio. Phytopathology 92(4):406–416

    CAS  PubMed  Google Scholar 

  • Pscheidt JW, Heckert S, Cluskey SA (2017) Evaluation of quinone outside and succinate dehydrogenase inhibitors for effectiveness against eastern filbert blight of hazelnut. Plant Dis 101(11):1868–1873

    CAS  PubMed  Google Scholar 

  • Rhoades CC, Brosi SL, Dattilo AJ, Vincelli P (2003) Effect of soil compaction and moisture on incidence of phytophthora root rot on American chestnut (Castanea dentata) seedlings. For Ecol Manag 184(1-3):47–54

    Google Scholar 

  • Rigling D, Prospero S (2018) Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol Plant Pathol 19(1):7–20

    CAS  PubMed  Google Scholar 

  • Ristaino JB, Gumpertz ML (2000) New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus Phytophthora. Annu Rev Phytopathol 38(1):541–576

    CAS  PubMed  Google Scholar 

  • Saad AT, Masannat K (1997) Economic importance and cycle of Polystigma ochraceum, causing red leaf blotch disease of almond in Lebanon. EPPO Bull 27(4):481–485

    Google Scholar 

  • Sanfaçon H, Wellink J, Le Gall O, Karasev A, Van Der Vlugt R, Wetzel T (2009) Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch Virol 154(5):899–907

    PubMed  Google Scholar 

  • Saremi H, Amiri ME (2010) Evaluation of resistance to anthracnose (Marssonina juglandis) among diverse Iranian clones of walnut (Juglans regia L.). J Food Agric Environ 8(2):375–378

    Google Scholar 

  • Schubert K, Rischel A, Braun DU (2013) A monograph of Fusicladium s.lat. (Hyphomycetes). Schlechtendalia 9:1–132

    Google Scholar 

  • Sena K, Crocker E, Vincelli P, Barton C (2018) Phytophthora cinnamomi as a driver of forest change: implications for conservation and management. For Ecol Manag 409:799–807

    Google Scholar 

  • Sharpe SR (2017) Phytophthora species associated with American, Chinese, and backcross hybrid chestnut seedlings in field sites in the Southeastern United States. Clemson University, Clemson

    Google Scholar 

  • Shaw DA (1990) Influence of wetness period and temperature on infection and development of shot-hole disease of almond caused by Wilsonomyces carpophilus. Phytopathology 80(8):749–756

    Google Scholar 

  • Sogonov MV, Castlebury LA, Rossman AY, Mejía LC, White JF (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Stud Mycol 62:1–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Standish JR, Brenneman TB, Bock CH, Stevenson KL (2021) Fungicide resistance in Venturia effusa, cause of pecan scab: current status and practical implications. Phytopathology 111(2):244–252

    CAS  PubMed  Google Scholar 

  • Stone JK (1992) Natural infection period and susceptibility of vegetative seedlings of European hazelnut to Anisogramma anomala. Plant Dis 76(4):348–352

    Google Scholar 

  • Terabe NI, Martins CM, Homechin M (2008) Microorganisms associated with fruits of different cultivars of pecan nut. Ciencia Agrotecnol 32(2):659–662

    Google Scholar 

  • Teviotdale BL, Sibbett GS, Viveros M, Mark CI (1989) Effect of fungicides on shot hole disease of almonds. Calif Agric 43(3):21–23

    Google Scholar 

  • Trapiello E, González-Varela G, González AJ (2015) Chestnut blight control by agrochemicals in Castanea sativa under managed conditions. J Plant Dis Protect 122(3):120–124

    Google Scholar 

  • Troncoso-Rojas R, Tiznado-Hernández ME (2014) Alternaria alternata (black rot, black spot). In: Postharvest decay: control strategies. Elsevier Inc., Amsterdam, pp 147–187

    Google Scholar 

  • Turechek WW, Stevenson KL (1998) Effects of host resistance, temperature, leaf wetness, and leaf age on infection and lesion development of pecan scab. Phytopathology 88(12):1294–1301

    CAS  PubMed  Google Scholar 

  • Vettraino AM, Natili G, Anselmi N, Vannini A (2001) Recovery and pathogenicity of Phytophthora species associated with a resurgence of ink disease in Castanea sativa in Italy. Plant Pathol 50(1):90–96

    Google Scholar 

  • Vettraino AM, Morel O, Perlerou C, Robin C, Diamandis S, Vannini A (2005) Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with ink disease and crown decline. Eur J Plant Pathol 111(2):169–180

    Google Scholar 

  • Vonica I (1970) Biology and control of Gnomonia leptostyla and its conidial state Marssonina juglandis, causing anthracnose of walnut. Analele Institutului de Cercetari pentru Protectia Plantelor 8:69–80

    Google Scholar 

  • Webber JB, Putnam M, Serdani M, Pscheidt JW, Wiman NG, Stockwell VO (2020) Characterization of isolates of Xanthomonas arboricola pv. corylina, the causal agent of bacterial blight, from Oregon hazelnut orchards. J Plant Pathol 102(3):799–812

    Google Scholar 

  • Westbrook JW, James JB, Sisco PH, Frampton J, Lucas S, Jeffers SN (2019) Resistance to Phytophthora cinnamomi in American chestnut (Castanea dentata) backcross populations that descended from two Chinese chestnut (Castanea mollissima) sources of resistance. Plant Dis 103(7):1631–1641

    PubMed  Google Scholar 

  • Woeste KE, Beineke WF (2001) An efficient method for evaluating black walnut for resistance to walnut anthracnose in field plots and the identification of resistant genotypes. Plant Breed 120(5):454–456

    Google Scholar 

  • Xin XF, Kvitko B, He SY (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 16(5):316–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Cao G, Jiang S, Han S, Yang C, Wan X, Zhang F, Chen L, Xiao J, Zhu P, Zhang D, He F, Xing W (2021) Identification of the anthracnose fungus of walnut (Juglans spp.) and resistance evaluation through physiological responses of resistant vs. susceptible hosts. Plant Pathol 70(5):1219–1229

    CAS  Google Scholar 

  • Zamani AR, Imani A, Mirza Aghayan M, Mohammadi R (2011) A study and comparison of control methods of anthracnose disease in walnut trees of roodbar region. Int J Nuts Relat Sci 2(4):75–81

    Google Scholar 

  • Zhang YB, Meng K, Shu JP, Zhang W, Wang HJ (2019) First report of anthracnose on pecan (Carya illinoensis) caused by Colletotrichum nymphaeae in China. Plant Dis 103(6):1432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mirzadi Gohari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mirzadi Gohari, A., Feechan, A. (2023). Diseases of Temperate Nuts. In: Mir, M.M., Rehman, M.U., Iqbal, U., Mir, S.A. (eds) Temperate Nuts. Springer, Singapore. https://doi.org/10.1007/978-981-19-9497-5_15

Download citation

Publish with us

Policies and ethics