Skip to main content

Mechanism of Seed Transmission and Seed Infection in Major Agricultural Crops in India

  • Chapter
  • First Online:
Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management

Abstract

The mechanism involved in transmission and infection of seed-borne pathogens in agricultural crops is an important aspect. Healthy tissues of seeds and vegetative propagative materials act as reservoir of major nutrients, viz. carbohydrates, protein and minerals. The seed-associated fungi and bacteria survive and proliferate by using these nutrients and, therefore, subsequently become pathogenic on seedlings and growing plants. However, seeds are also constituted with defence molecules, phenolics, lectins and many more anti-pathogenic proteins in addition to physical barriers. The successful pathogenesis depends on their aggressiveness to overcome such barriers to infect seeds. To counteract such barriers, most of the necrotrophic microbes elaborate suitable biomolecules as compared to obligate parasites of seeds. Plant viruses are exclusive biotrophic pathogens, responsible for yield and quality losses to the crop plants. The horticultural crops, viz. temperate fruits, vegetables and few plantations, are infected by such viruses. Comparatively, cereals are free from virus diseases but few localized and systemic viruses are mostly transmitted by insect vectors and are economically important. Seeds are unique as a carrier of infective virus particles. Available moisture content is normally less in well-maintained dry seeds as compared to fresh seeds from mature plants. Nutrient content is also high in seeds than foliage. These factors could favour better survival and transmission similar to seed-borne fungal mycoflora. Some of the seed-borne viruses are systemically transmitted through seeds to seedlings and adult plants. Such viruses infect male and female gametophytes at the time of seed formation. These processes could favour consistent association of infective viruses. Similarly, seed-borne nematodes also play an important role in seed health. However, there is less understanding about their survival, infection and mechanism of transmission. Various aspects, i.e. nature of pathogens, their mode of entry and survival, transmission and infection, are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo ME, Sy AA (1997) Rice virus diseases: epidemiology and management strategies. J Sustain Agric 11(2–3):113–134

    Google Scholar 

  • Abo ME, Sy AA, Alegbejo MD (1997) Rice yellow mottle virus (RYMV) in Africa: evolution, distribution, economic significance on sustainable rice production and management strategies. J Sustain Agric 11(2–3):85–111

    Google Scholar 

  • Agarwal VK, Sinclair JB (1996) Principles of seed pathology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Ali A, Kobayashi M (2010) Seed transmission of Cucumber mosaic virus in pepper. J Virol Methods 163:234–237

    CAS  PubMed  Google Scholar 

  • Ali A, Randles JW (1998) The effects of two pathotypes of Pea seed-borne mosaic virus on the morphology and yield of pea. Australas J Plant Pathol 27(4):226–233

    Google Scholar 

  • Awoderu VA (1991) Rice yellow mottle virus in West Africa. Trop Pest Manage 37(4):356–362

    Google Scholar 

  • Bagnaresi P, Biselli C, Orrù L et al (2012) Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS One 7(12):e51609. https://doi.org/10.1371/journal.pone.0051609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu AN, Giri BK (1992) Transmission of plant viruses. In: Basu AN, Giri BK (eds) The essentials of viruses, vectors, and plant diseases. Wiley Eastern Limited, New Delhi, pp 104–133

    Google Scholar 

  • Batts CCV (1955) Infection of wheat loose smut, Ustilago tritici (Pers.) Rostr. Nature 175:467–468. https://doi.org/10.1038/175467a0

    Article  Google Scholar 

  • Bennett CW (1969) Seed transmission of plant viruses. Adv Virus Res 14:221–261

    CAS  PubMed  Google Scholar 

  • Bhagat AP, Prasad Y (1996) Effect of irrigation on incidence of false smut of rice. J Appl Biol 6:131–132

    Google Scholar 

  • Bhagat AP, Prasad Y, Yadav BP (1993) Effect of environment on false smut infection in rice. J Appl Biol 3(1/2):56–59

    Google Scholar 

  • Bridge J, Starr JL (2007) Plant nematodes of agricultural importance – a colour handbook. CRC Press, Boca Raton

    Google Scholar 

  • Carbonero P, Garcia-Olmedo F (1999) A multigene family of trypsin/and α-amylase inhibitors from cereals. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic Publishers, Dordrecht, pp 617–633

    Google Scholar 

  • Carroll TW (1981) Seedborne viruses: virus-host interactions. In: Maramorosch K, Harris KF (eds) Plant diseases and vectors: ecology and epidemiology. Academic Press, New York, pp 293–317

    Google Scholar 

  • Carroll TW, Gossel PL, Hockett EA (1979) Inheritance of resistance to seed transmission of Barley stripe mosaic virus in barley. Phytopathology 69:431–433

    Google Scholar 

  • Chakravarty DK, Biswas S (1978) Estimation of yield loss in rice affected by sheath rot. Plant Dis Rep 62:226–227

    Google Scholar 

  • Cheeran A, Raj JS (1966) Effect of seed treatment on the germination of rice seeds infected by Trichoconis padwikii Ganguly. Agric Res J Kerala 4:57–59

    Google Scholar 

  • Cho JY, Moon JH, Seong KY et al (1998) Antimicrobial activity of 4-hydroxybenzoic acid and trans-4-hydroxycinnamic acid isolated and identified from rice hull. Biosci Biotechnol Biochem 62(11):2273–2276

    CAS  PubMed  Google Scholar 

  • Chowdhury S (1946) Mode of transmission of the bunt of rice. Curr Sci 15:111

    Google Scholar 

  • Christie JR (1942) A description of Aphelenchoides besseyi n. sp., the summer-dwarf nematode of strawberries, with comments on the identity of Aphelenchoides subtenuis (Cobb, 1926) and Aphelenchoides hodsoni Goodey, 1935. Proc Helminthol Soc Wash 9:82–84

    Google Scholar 

  • Chuke KC (1983) Pathological and physiological studies on sheath rot of rice caused by Sarocladium oryzae (Sawada) W Gams and Hawksw. MS thesis, University of the Philippines, Los Banos, Laguna, Philippines

    Google Scholar 

  • Coutts BA, Prince RT, Jones RA (2009) Quantifying effects of seed-borne inoculum on virus spread, yield losses, and seed infection in the Pea seed-borne mosaic virus-field pea pathosystem. Phytopathology 99(10):1156–1167

    CAS  PubMed  Google Scholar 

  • Dastur JF (1936) A nematode disease of rice in central provinces. Proc Indian Acad Sci Sec B 4(2):108–121

    Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980–986

    CAS  PubMed  Google Scholar 

  • Decraemer W, Hunt DJ (2006) Structure and classification. In: Perry RN, Moens M (eds) Plant nematology. CABI Publishing, Wallingford, pp 3–32

    Google Scholar 

  • Devi TK, Singh NI (2007) Aerobiology and epidemiology of false smut disease of rice by Ustilaginoidea virens (Syn. Claviceps oryzae sativae) in Thoubal District, Manipur. J Mycopathol Res 45(1):107–108

    Google Scholar 

  • Ding KJ, Tan GJ, Hu JS et al (1997) Yield loss of rice damaged by rice false smut. Plant Prot 23(1):3–6

    Google Scholar 

  • Duhan JC, Jakhar SS (2000) Prevalence and incidence of bunt and false smut in paddy (Oryza sativa) seeds in Haryana. Seed Res 28(2):181–185

    Google Scholar 

  • Fan L, Chen ZY, Chen YL et al (1996) Studies on biological characters and some uncertain key points in relation to infection cycle of rice false smut. Jiangsu J Agric Sci 12(4):35–40

    Google Scholar 

  • Fauquet C, Thouvenel JC (1977) Isolation of Rice yellow mottle virus in Ivory Coast. Plant Dis Rep 61(6):443–446

    Google Scholar 

  • Fielding MJ (1951) Observation on length of dormancy in certain plant infecting nematodes. Proc Helminthol Soc Wash 18:110–112

    Google Scholar 

  • Filipjev IN (1936) On the classification of the Tylenchinae. Proc Helminthol Soc Wash 3:80–82

    Google Scholar 

  • Guerrero FC, Mathur SB, Neergaard P (1972) Seed health testing of rice. V. Seed-borne fungi associated with abnormal seedlings of rice. Proc Int Seed Test Assoc 37:985–997

    Google Scholar 

  • Gupta P, Swarup G (1968) On the ear-cockle and yellow ear rot disease of wheat. I. Symptom and histopathology. Indian Phytopathol 21(3):318–323

    Google Scholar 

  • Gupta P, Swarup G (1972) Ear cockle and ear rot disease of wheat. II. Nematode-bacterial association. Nematologica 18:320–324

    CAS  Google Scholar 

  • Handoo ZA (1998) Plant parasitic nematodes. Available at http://www.ars.usda.gov/Services/docs/htm

  • Heath MC, Valent B, Howard RJ et al (1990) Correlations between cytologically detected plant-fungal interactions and pathogenicity of Magnaporthe grisea toward weeping lovegrass. Phytopathology 80:1382–1386

    Google Scholar 

  • Heath MC, Howard RJ, Valent B et al (1992) Ultrastructural interactions of one strain of Magnaporthe grisea with goosegrass and weeping lovegrass. Can J Bot 70:779–787

    Google Scholar 

  • Hegde YR, Anahosur KH (2000a) Survival, perpetuation and life cycle of Claviceps oryzae-sativae, causal agent of false smut of rice in Karnataka. Indian Phytopathol 53(1):61–64

    Google Scholar 

  • Hegde YR, Anahosur KH (2000b) Effect of false smut of rice on yield components and growth parameters. Indian Phytopathol 53(2):181–184

    Google Scholar 

  • Hegde Y, Anahosur KH, Kulkarni S (2000) Influence of weather parameters on the incidence of false smut of rice. Adv Agric Res India 14:161–165

    Google Scholar 

  • Hibino H (1996) Biology and epidemiology of rice viruses. Annu Rev Phytopathol 34:249–274

    CAS  PubMed  Google Scholar 

  • Hino T, Furuta T (1968) Studies on the control of bakanae disease of rice plants, caused by Gibberella fujikuroi. II. Influence on flowering season on rice plants and seed transmissibility through flower infection. Bull Chugoku Agric Exp Station E2:96–110

    Google Scholar 

  • Hirano K, Goto K (1963) Pathogenesis and ecology of panicle branch blast of rice plant. Bull Natl Inst Agric Sci Ser C16:1–66. (In Japanese with English summary)

    Google Scholar 

  • Horino O (1984) Ultrastructure of water pores in Leersia japonica Makino and Oryza sativa L.: its correlation with the resistance to hydathodal invasion of Xanthomonas campestris pv. oryzae. Ann Phytopathol Soc Japan 50:72–76

    Google Scholar 

  • Hoshino S, Togashi K (1999) A simple method for determining Aphelenchoides besseyi infestation level of Oryza sativa seeds. J Nematol 31(4S):641–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino S, Togashi K (2000) Effect of water-soaking and air-drying on survival of Aphelenchoides besseyi in Oryza sativa seeds. J Nematol 32(3):303–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH et al (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci U S A 88:11281–11284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh SPY, Hsu MF, Liang WC (1980) Etiological studies on the sterility of rice plants. II. Transmission and survival of Acrocylindrium oryzae Sawada. The fungus associated with the sterile rice plants. Plant Prot Bull Taiwan 22:41–46

    Google Scholar 

  • Hugo Y (2013) Rice bacterial blight. https://www.britannica.com/science/rice-bacterial-blight

  • Hutchinson CM (1917) A bacterial disease of wheat in Punjab. Mem Dep Agric India, Bacteriol Ser 1(7):169–175

    Google Scholar 

  • Jeon J, Park SY, Chi MH et al (2007) Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet 39(4):561–565

    CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Kahn RP (1982) Phytosanitary aspects of the international exchange of plant germplasm. In: Proceedings of the international conference on plant protection in the tropics. Malaysian Plant Protection Society, Kuala Lumpur, 1–4 March, 1982, pp 101–116

    Google Scholar 

  • Kanjanasoon P (1965) Studies on the bakanae disease of rice in Thailand. Doc. Agric. Thesis, Tokyo University, Japan

    Google Scholar 

  • Kato H (2001) Rice blast disease. Pestic Outlook 12:23–25

    CAS  Google Scholar 

  • Kato H, Sasaki T, Koshimizu Y (1970) The role of diseased spikelets as the secondary inoculum source in the infection chain of rice blast. Bull Tohoku Natl Agric Expt Stn 39:33–54

    Google Scholar 

  • Kato H, Ohata K, Kauraw LP et al (1987) Fungal diseases of rice seed. In: Rice seed health. In: Procceding of the international workshop on rice seed health 16–19 March, 1987, pp 151–162

    Google Scholar 

  • Kawahara Y, Oono Y, Kanamori H et al (2012) Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS One 7(11):e49423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima T, Goldberg RB (2010) The suspensor: not just suspending the embryo. Trends Plant Sci 15(1):23–30. https://doi.org/10.1016/j.tplants.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  • Kiryu T, Nishizawa T, Kuhara S (1954) Bull Kyushu Agric Exp Stn 2:125–129

    Google Scholar 

  • Konate G, Sarra S, Traore O (2001) Rice yellow mottle virus is seed-borne but not seed transmitted in rice seeds. Eur J Plant Pathol 107(3):361–364

    Google Scholar 

  • Koshy PK, Swarup G (1971) Distribution of Heterodera avenae, H. zeae, H. cajani and Anguina tritici in India. Indian J Nematol 1:106–111

    Google Scholar 

  • Kulkarni GS (1922) Conditions influencing the distribution of grain smut (Sphacelotheca sorghi) of jowar (sorghum) in India. Agric J India 17:159–162

    Google Scholar 

  • Leukel RW (1924) Investigations on the nematode diseases of cereals caused by Tylenchus tritici. J Agric Res 27:928–956

    Google Scholar 

  • Limonard T (1968) Ecological aspects of seed health testing. Proc Int Seed Test Assoc 33:343–513

    Google Scholar 

  • Malavolta VMA, Parisi JJD, Takada HM et al (2002) Effect of different incidence levels of Bipolaris oryzae in rice seeds on physiological aspects, seed-seedling transmission and production. Summa Phytopatológica 28(4):336–340

    Google Scholar 

  • Malik MMS, Batts CCV (1960) The infection of barley by loose smut (Ustilago nuda) (Jens.) Rostr. Trans Br Mycol Soc 43:117–126

    Google Scholar 

  • Manandhar HK, Jorgensen HJL, Smedegaard-Petersen V et al (1998) Seedborne infection of rice by Pyricularia oryzae and its transmission to seedlings. Plant Dis 82:1093–1099

    Google Scholar 

  • Mandahar CL (1981) Virus transmission through seed and pollen. In: Maramorosch K, Harris KF (eds) Plant diseases and vectors: ecology and epidemiology. Academic Press, New York, pp 241–292

    Google Scholar 

  • Mandhare VK, Gawade SB, Game BC et al (2008) Prevalence and incidence of bunt and false smut in paddy (Oryza sativa L.) seeds in Maharashtra. Agric Sci Digest 28(4):292–294

    Google Scholar 

  • Marcinowski K (1909) Parasitche and semiparasitche on Pflanzen lebenden Nematoden. Arb. Kaiserncoen Biot. ustatt. Land and Forest. Berlin 7: 1192s

    Google Scholar 

  • Maule AJ, Wang D (1996) Seed transmission of plant viruses: a lesson in biological complexity. Trends Microbiol 4(4):153–158

    CAS  PubMed  Google Scholar 

  • McGee DC (1981) Seed pathology: its place in modern seed production. Plant Dis 65(8):638–642

    Google Scholar 

  • Mew TW (1987) Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol 25:359–382

    Google Scholar 

  • Mew TW, Mew IC, Huang JS (1984) Scanning electron microscopy of virulent and avirulent strains of Xanthomonas campestris pv. oryzae in rice leaves. Phytopathology 74:635–641

    Google Scholar 

  • Midha SK, Swarup G (1972) Factors affecting development of ear cockle and tundu diseases of wheat. Indian J Nematol 2:97–104

    Google Scholar 

  • Milagrosa SP (1987) Transmission of Sarocladium oryzae (Sawada) W. Gams and Hawsk. through seed. Ph.D. thesis, University of Philippines, Los Banos, Laguna, Philippines

    Google Scholar 

  • Mink GI (1993) Pollen and seed-transmitted viruses and viroids. Annu Rev Phytopathol 31:375–402

    CAS  PubMed  Google Scholar 

  • Mitra M (1931) A new bunt of wheat in India. Ann Appl Biol 18:178–179

    Google Scholar 

  • Mulder JL, Holliday P (1971) Ustilaginoidea virens. CMI Descr Fungi Bact 299:1–2

    Google Scholar 

  • Muralidharan K, Venkata G (1980) Outbreak of sheath rot of rice. Int Rice Res Newsl 5:7

    Google Scholar 

  • Mustafa SA (2009) Study on wheat and barley ear-cockle disease caused by nematode Anguina tritici in Erbil province. M.Sc. thesis. College of Agriculture, University of Salahaddin- Erbil, Erbil, Turkey

    Google Scholar 

  • Nallathambi P, Gupta A, Sharma OK et al (2010) Diversity in morphogenesis of rice false smut from different agro-climatic regions of India. In: Proceedings of national seed congress on quality seed for improved livelihood and profitability, Indian Agricultural Research Institute, New Delhi, 18–20 January, 2010, p 163

    Google Scholar 

  • Nallathambi P, Gogoi R, Gupta A et al (2012a) Diversity in rice false smut pathogen (Ustilaginoidea virens) from India. In: Proceedings of 3rd global conference on plant pathology for food security, Indian Society of Mycology and Plant Pathology and Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 10–13 January, 2012

    Google Scholar 

  • Nallathambi P, Gogoi R, Meshram N et al (2012b) False smut: an emerging disease of rice in India. In: Proceedings of National symposium on “Heading towards molecular horizons in Plant Pathology: Host resistance, pathogen dynamics, diagnostics and management, IPS and sugarcane Breeding Institute, Coimbatore, 16–17 November, 2012, pp 50–51

    Google Scholar 

  • Nallathambi P, Lal SK, Kumar A et al (2013) SEM and PCR based methods for the diagnosis of rice false smut (Ustiloginoidea virens) chlamydospores associated with paddy seeds. In: Proceedings of national symposium on pathogenomics for diagnosis and management of plant diseases, Indian Phytopathological Society and CTCRI, Trivandrum, 24–25, October, 2013

    Google Scholar 

  • Needham T (1743) A letter concerning chalky tubulous concretions called malm: with some microscopical observations on the farina of the red lily, and of worms discovered in smutty corn. Philos Trans Roy Soc London 42:641–643

    Google Scholar 

  • Nino-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7(5):303–324

    CAS  PubMed  Google Scholar 

  • Nome SF, Barreto D, Docampo DM (2002) Seedborne pathogens. In: Proceedings international seed seminar: trade, production and technology. Oct-2002, pp 114–126

    Google Scholar 

  • Ou SH (1985) Rice diseases, 2nd edn. CAB International, Wallingford, p 380

    Google Scholar 

  • Padmanabhan SY (1949) Occurrence of fungi inside rice kernels. Curr Sci 18:442–443

    Google Scholar 

  • Padmanabhan SY (1953) Specialization in pathogenicity of Helminthosporium oryzae. In: Proceedings of the 40th Indian Science Congress, Part 4, Abstract 18

    Google Scholar 

  • Picco AM, Rodolfi M (2002) Pyricularia grisea and Bipolaris oryzae: a preliminary study on the occurrence of airborne spores in a rice field. Aerobiologia 18(2):163–167

    Google Scholar 

  • Prabhu AS, Lopes AM, Zimmermann FJP (1980) Infecvao da fotha e do grao de arroz por Helminthosporium oryzae e seus sfeitos sobre os componenets da producao. Pesquista Agropecuauria brasileria. Brasilia 15(2):183–189

    Google Scholar 

  • Reed GM, Faris JA (1924) Influence of environmental factors on the infection of sorghum and oats smuts. I. Experiments with covered smut of oat and general considerations. Ibdi 11:518–534

    Google Scholar 

  • Ribot C, Hirsch J, Balzergue S et al (2008) Susceptibility of rice to the blast fungus, Magnaporthe grisea. J Plant Physiol 165(1):114–124

    CAS  PubMed  Google Scholar 

  • Roberts IM, Wang D, Thomas CL et al (2003) Pea seed-borne mosaic virus seed transmission exploits novel symplastic pathways to infect the pea embryo and is, in part, dependent upon chance. Protoplasma 222(1–2):31–43

    CAS  PubMed  Google Scholar 

  • Schwanck AA, Meneses PR, Farias CRJ et al (2015) Bipolaris oryzae seed borne inoculum and brown spot epidemics in the subtropical lowland rice-growing region of Brazil. Eur J Plant Pathol 142(4):875–885

    Google Scholar 

  • Shetty SA, Shetty HS (1986) Seed health testing of paddy against kernel smut. ISTA Congress, Brisbane, 10–19 July, 1986

    Google Scholar 

  • Shewry PR, Lucas JA (1997) Plant proteins that confer resistance to pests and pathogens. Adv Bot Res 26:135–192

    CAS  Google Scholar 

  • Singh S, Singh B, Singh AP (2015) Nematodes: a threat to sustainability of agriculture. Procedia Environ Sci 29:215–216. https://doi.org/10.1016/j.proenv.2015.07.270

    Article  Google Scholar 

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27(3):141–150. https://doi.org/10.1016/j.tibtech.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  • Steinbuch JG (1799) Das Grasalchen Vibrio agrostis. Naturoforschung Halle 28:233–250

    Google Scholar 

  • Suzuki H (1930) Experimental studies on the possibility of primary infection of Pyricularia oryzae and Ophiobolils miyabeanus internal of rice seeds. Ann Phytopath Soc Japan 2:245–275

    Google Scholar 

  • Swarup G, Sosa-Moss C (1990) Nematode parasites of cereals. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI Publishing, Wallingford, pp 109–136

    Google Scholar 

  • Swings J, Mooter VD, Vauterin L et al (1990) Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev. Int J Syst Evol Microbiol 40:309–311. https://doi.org/10.1099/00207713-40-3-309

    Article  Google Scholar 

  • Tagami Y, Mizukarni T (1962) Historical review of the researches on bacterial blight of rice caused by Xanthomonas oryzae (Uyeda et Ishiyama) Dowson. Special report on plant diseases and insect pests forecasting service 10: 1–112 (Japanese, English translation by H. Fujii)

    Google Scholar 

  • Tagami Y, Kuhara S, Kurita T et al (1963) Epidemiological studies on the bacterial leaf blight of rice, Xanthomonas oryzae. (Uyeda et Ishiyama) Dowson. I. The overwintering of pathogen. Bull Kyushu Agric Exp Stn 9:89–122

    Google Scholar 

  • Tanaka E, Kumagawa T, Tanaka C et al (2011) Simple transformation of the rice false smut fungus Villosiclava virens by electroporation of intact conidia. Mycoscience 52(5):344–348

    Google Scholar 

  • Thomas KM (1940) Detailed administration report of the government mycologist, Madras, for the year 1939–40, pp 1–18

    Google Scholar 

  • Tsuji H (2001) Seed transmission of the false smut of rice. In: Proceedings on 52nd Annual Report of the Society of Plant Protection of North Japan, pp 24–26

    Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417

    CAS  PubMed  Google Scholar 

  • Unnamalai M, Mew TW, Gnanamanickam SS (1988) Sensitive methods for detection of Xanthomonas oryzae pv. oryzae in rice seeds. In: Gnanamanickam SS, Mahadevan A (eds) Advances in research on plant pathogenic bacteria. Today & Tomorrow Printers, New Delhi, pp 73–82

    Google Scholar 

  • Wang D, Maule AJ (1992) Early embryonic invasion as a determinant in pea of the seed transmission of Pea seed-borne mosaic virus. J. Gen Virol 73:1615–1620

    PubMed  Google Scholar 

  • Wang S, Bai YJ, Zhou YL et al (1998) The pathogen of false smut of rice. Acta Phytopathol Sin 28(1):19–24

    Google Scholar 

  • Wang Y, Kwon SJ, Wu J et al (2014) Transcriptome analysis of early responsive genes in rice during Magnaporthe oryzae infection. Plant Pathol J 30(4):343–354. https://doi.org/10.5423/PPJ.OA.06.2014.0055

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Gao L, Dong S et al (2017) Role of silicon on plant–pathogen interactions. Front Plant Sci 8:701. https://doi.org/10.3389/fpls.2017.00701

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei T, Ou B, Li J et al (2013) Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. PLoS One 8:e59720. https://doi.org/10.1371/journal.pone.0059720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welbaum GE, Bradford KJ, Yim KO et al (1998) Biophysical, physiological and biochemical processes regulating seed germination. Seed Sci Res 8(2):161–172

    CAS  Google Scholar 

  • Zhou YL, Pan YJ, Xie XW et al (2008) Genetic diversity of rice false smut fungus, Ustilaginoidea virens and its pronounced differentiation of populations in North China. J Phytopathol 156(9):559–564

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nallathambi, P., Umamaheswari, C., Lal, S.K., Manjunatha, C., Berliner, J. (2020). Mechanism of Seed Transmission and Seed Infection in Major Agricultural Crops in India. In: Kumar, R., Gupta, A. (eds) Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer, Singapore. https://doi.org/10.1007/978-981-32-9046-4_26

Download citation

Publish with us

Policies and ethics