Skip to main content

Fungal Pigments: Applications and Their Medicinal Potential

  • Chapter
  • First Online:
Fungi Bioactive Metabolites
  • 163 Accesses

Abstract

Color plays an important role in many segments of food, cosmetic, and textile industry; however, in the last century, the deliberate use of synthetic pigments demonstrated the urge for natural alternatives. Pigments produced by fungi have many advantages over synthetic ones, such as low toxicity, the ease of controlled production, the possibility of optimization, and the independence of external seasonal factors. Some metabolites produced by fungi are already commercialized as pigments, notably β-carotene, produced by Blakeslea trispora, and Monascus pigments, found in more than 20 types of products in oriental markets. Pigments produced by fungi are divided into melanins, carotenoids, and polyketides, the latter containing the classes anthraquinones, hydroxyanthraquinones, naphthoquinones, and azaphilones, representing a wide range of colors, including the commonly obtained hues yellow, orange, and red, in addition to brown and dark pigments, such as melanins polymers, and also atypical colors, such as the blue-green pigment xylindein, produced by Chlorociboria aeruginascens. Those pigments are mainly produced by fungi as a defense mechanism against UV light, but also have other important biological functions related to the transport of metals, differentiation, interaction with other organisms, either by symbiosis or competition, or even defense against insects and other animal predators. For this reason, these substances are biologically active, and their functions can be extrapolated to the pharmaceutical industry, with many reports in the literature of their potential as antimicrobial, antifungal, antiviral, antioxidant, cytotoxic, nematicidal, anti-inflammatory, and antitumor agents. However, industrial use of fungal pigments still faces some challenges such as the search for better production yields, the targeted synthesis of only one specific compound or color, and more essentially, a mycotoxin-free production process. Many studies have shown the importance of factors related to the fungus cultivation such as temperature, medium agitation/oxygenation, carbon source, nitrogen source, and pH, the last two being considered the most important factors related to the production of colored metabolites. However, the chemical reaction of pigments with components of the culture medium must also be considered, as an example the oxidation of azaphilones, leading to the conversion of yellow pigments into orange, and the reaction of the same class of substances with amines and nitrogenated compounds, which leads to the production of red pigments in some species. Fungal pigments are gaining ground in different industrial branches, and new uses for pigments are constantly emerging, such as their application as biosensors and as electron acceptors in biofuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afshari M, Shahidi F, Mortazavi SA, Tabatabai F, Es’haghi Z (2015) Investigating the influence of pH, temperature and agitation speed on yellow pigment production by Penicillium aculeatum ATCC 10409. Nat Prod Res 29:1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Aguilar D, Morales-Oyervides L, Contreras-Esquivel JC, Méndez-Zavala A, Raso J, Montañez J (2018) Effect of ozone processing conditions on stability of fungal pigments. Innov Food Sci Emerg Technol 45:255–263

    Article  CAS  Google Scholar 

  • Agurto MEP, Gutierrez SMV, van Court RC, Chen HL, Robinson SC (2020) Oil-based fungal pigment from Scytalidium cuboideum as a textile dye. J Fungi 6(2):53

    Article  Google Scholar 

  • Almurshidi BH, van Court RC, Vega Gutierrez SM, Harper S, Harper B, Robinson SC (2021) Preliminary examination of the toxicity of spalting fungal pigments: a comparison between extraction methods. J Fungi 7:1–16

    Article  Google Scholar 

  • Awaad AS, Al-Zaylaee HM, Alqasoumi SI, Zain ME, Aloyan EM, Alafeefy AM, Awad ES, El-Meligy RM (2014) Anti-leishmanial activities of extracts and isolated compounds from Drechslera rostrata and Eurotium tonpholium. Phytother Res 28:774–780

    Article  CAS  PubMed  Google Scholar 

  • Blanc PJ, Loret MO, Goma G (1995) Production of citrinin by various species of Monascus. Biotechnol Lett 17:291–294

    Article  CAS  Google Scholar 

  • Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, Chen F (2015) Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Compr Rev Food Sci Food Saf 14:555–567

    Article  CAS  Google Scholar 

  • Chen M, Shen NX, Chen ZQ, Zhang FM, Chen Y (2017) Penicilones A-D, anti-MRSA Azaphilones from the marine-derived fungus Penicillium janthinellum HK1-6. J Nat Prod 80:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Tsuyoshi N, Fudou R, Ojika M, Murakami Y, Ogoma Y, Oguchi M, Yamanaka S (2006) Magenta pigment produced by fungus. J Gen Appl Microbiol 52:201–207

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715. https://doi.org/10.3389/fmicb.2014.00715

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh SK, Prakash V, Ranjan N (2018) Marine fungi: a source of potential anticancer compounds. Front Microbiol 8:2536. https://doi.org/10.3389/fmicb.2017.02536

    Article  PubMed  PubMed Central  Google Scholar 

  • Dufossé L (2016) Current and potential natural pigments from microorganisms (bacteria, yeasts, fungi, microalgae). In: Carle R, Schweiggert RM (eds) Handbook on natural pigments in food and beverages: industrial applications for improving food color. Elsevier, London, pp 337–354

    Chapter  Google Scholar 

  • Giesbers G, van Schenck J, Quinn A, Van Court R, Vega Gutierrez SM, Robinson SC, Ostroverkhova O (2019) Xylindein: naturally produced fungal compound for sustainable (Opto)electronics. ACS Omega 4:13309–13318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ (2017) Filamentous ascomycetes fungi as a source of natural pigments. Fung Biol Biotechnol 4:1–25

    Google Scholar 

  • Gmoser R, Ferreira JA, Taherzadeh MJ, Lennartsson PR (2019) Post-treatment of fungal biomass to enhance pigment production. Appl Biochem Biotechnol 189:160–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes DC, Takahashi JA (2016) Sequential fungal fermentation-biotransformation process to produce a red pigment from sclerotiorin. Food Chem 210:355–361

    Article  Google Scholar 

  • Guo W, Li D, Peng J, Zhu T, Gu Q, Li D (2015) Penicitols A-C and penixan acid a from the mangrove-derived Penicillium chrysogenum HDN11-24. J Nat Prod 78:306–310

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez SMV, He Y, Cao Y, Stone D, Walsh Z, Malhotra R, Chen HL, Chang CH, Robinson SC (2019) Feasibility and surface evaluation of the pigment from Scytalidium cuboideum for inkjet printing on textiles. Coatings 9(4):266

    Article  CAS  Google Scholar 

  • Gutierrez SMV, Stone DW, He R, Vega Gutierrez PT, Walsh ZM, Robinson SC (2021) Potential use of the pigments from Scytalidium cuboideum and Chlorociboria aeruginosa to prevent ‘greying’ decking and other outdoor wood products. Coatings 11(5):511

    Article  CAS  Google Scholar 

  • Heo YM, Kim K, Kwon SL, Na J, Lee H, Jang S, Kim CH, Jung J, Kim JJ (2018) Investigation of filamentous fungi producing safe, functional water-soluble pigments. Mycobiology 46:269–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández VA, Machuca Á, Saavedra I, Chavez D, Astuya A, Barriga C (2019) Talaromyces australis and Penicillium murcianum pigment production in optimized liquid cultures and evaluation of their cytotoxicity in textile applications. World J Microbiol Biotechnol 35:160

    Article  PubMed  Google Scholar 

  • Huang Z, Nong X, Ren Z, Wang J, Zhang X, Qi S (2017) Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502. Bioorg Med Chem Lett 27:787–791

    Article  CAS  PubMed  Google Scholar 

  • Isbrandt T, Tolborg G, Ødum A, Workman M, Larsen TO (2020) Atrorosins: a new subgroup of Monascus pigments from Talaromyces atroroseus. Appl Microbiol Biotechnol 104:615–622

    Article  CAS  PubMed  Google Scholar 

  • Kalra R, Conlan XA, Goel M (2020) Fungi as a potential source of pigments: harnessing filamentous fungi. Front Chem 8:1–23

    Article  Google Scholar 

  • Kantifedaki A, Kachrimanidou V, Mallouchos A, Papanikolaou S, Koutinas AA (2018) Orange processing waste valorisation for the production of bio-based pigments using the fungal strains Monascus purpureus and Penicillium purpurogenum. J Clean Prod 185:882–890

    Article  CAS  Google Scholar 

  • Khan AA, Alshabi AM, Alqahtani YS, Alqahtani AM, Bennur RS, Shaikh IA, Muddapur UM, Iqubal SS, Mohammed T, Dawoud A, More SS (2021) Extraction and identification of fungal pigment from Penicillium europium using different spectral studies. J King Saud Univ Sci 33:101437

    Article  Google Scholar 

  • Kim D, Ku S (2018) Beneficial effects of Monascus sp. KCCM 10093 pigments and derivatives: a mini review. Molecules 23:1–15

    Google Scholar 

  • Lebeau J, Petit T, Clerc P, Dufossé L, Caro Y (2019) Isolation of two novel purple naphthoquinone pigments concomitant with the bioactive red bikaverin and derivates thereof produced by Fusarium oxysporum. Biotechnol Prog 35:e2738

    Article  PubMed  Google Scholar 

  • Lebeau J, Petit T, Fouillaud M, Dufossé L, Caro Y (2020a) Aqueous two-phase system extraction of polyketide-based fungal pigments using ammonium-or imidazolium-based ionic liquids for detection purpose: a case study. J Fungi 6:1–17

    Article  Google Scholar 

  • Lebeau J, Petit T, Fouillaud M, Dufossé L, Caro Y (2020b) Alternative extraction and characterization of nitrogen-containing azaphilone red pigments and ergosterol derivatives from the marine-derived fungal Talaromyces sp. 30570 strain with industrial relevance. Microorganisms 8:1–20

    Article  Google Scholar 

  • Liang B, Du XJ, Li P, Sun CC, Wang S (2018) Investigation of citrinin and pigment biosynthesis mechanisms in Monascus purpureus by Transcriptomic analysis. Front Microbiol 9:1374

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin L, Xu J (2020) Fungal pigments and their roles associated with human health. J Fungi 6:1–37

    Article  Google Scholar 

  • Mapari SAS, Meyer AS, Friswad JC, Thrane U (2011) Production of Monascus-like azaphilone pigment. US patent 0250656, 13 Oct 2011

    Google Scholar 

  • Mattoon ER, Cordero RJB, Casadevall A (2021) Fungal melanins and applications in healthcare, bioremediation and industry. J Fungi 7:488

    Article  CAS  Google Scholar 

  • McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous L, Prince E, Sonuga-Barke E, Warner JO, Stevenson J (2007) Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370:1560–1567

    Article  CAS  PubMed  Google Scholar 

  • Melo D, Sequeira SO, Lopes JA, Macedo MF (2019) Stains versus colourants produced by fungi colonising paper cultural heritage: a review. J Cult Herit 35:161–182

    Article  Google Scholar 

  • Meruvu H, dos Santos JC (2021) Colors of life: a review on fungal pigments. Crit Rev Biotechnol 41:1153–1177

    Article  PubMed  Google Scholar 

  • Molelekoa TBJ, Regnier T, da Silva LS, Augustyn W (2021) Production of pigments by filamentous fungi cultured on agro-industrial by-products using submerged and solid-state fermentation methods. Fermentation 7:295

    Article  CAS  Google Scholar 

  • Morales-Oyervides L, Ruiz-Sánchez JP, Oliveira JC, Sousa-Gallagher MJ, Morales-Martínez TK, Albergamo A, Salvo A, Giuffrida D, Dufossé L, Montañez J (2020) Medium design from corncob hydrolyzate for pigment production by Talaromyces atroroseus GH2: kinetics modeling and pigments characterization. Biochem Eng J 161:107698

    Article  CAS  Google Scholar 

  • Oh JJ, Kim JY, Kim YJ, Kim S, Kim GH (2021) Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Chemosphere 272:129884

    Article  CAS  PubMed  Google Scholar 

  • Orona-Navar A, Aguilar-Hernández I, Nigam KDP, Cerdán-Pasarán A, Ornelas-Soto N (2021) Alternative sources of natural pigments for dye-sensitized solar cells: algae, cyanobacteria, bacteria, archaea and fungi. J Biotechnol 332:29–53

    Article  CAS  PubMed  Google Scholar 

  • Pacelli C, Cassaro A, Maturilli A, Timperio AM, Gevi F, Cavalazzi B, Stefan M, Ghica D, Onofri S (2020) Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Appl Microbiol Biotechnol 104:6385–6395

    Article  CAS  PubMed  Google Scholar 

  • Pailliè-Jiménez ME, Stincone P, Brandelli A (2020) Natural pigments of microbial origin. Front Sustain Food Syst 4:590439

    Article  Google Scholar 

  • Palacio-Barrera AM, Areiza D, Zapata P, Atehortúa L, Correa C, Peñuela-Vásquez M (2019) Induction of pigment production through media composition, abiotic and biotic factors in two filamentous fungi. Biotechnol Rep 21:e00308

    Article  Google Scholar 

  • Pittis L, de Oliveira DR, Gutierrez SMV, Robinson SC (2018) Alternative carrier solvents for pigments extracted from spalting fungi. Materials 11:897

    Article  PubMed  PubMed Central  Google Scholar 

  • Poorniammal R, Prabhu S, Dufossé L, Kannan J (2021) Safety evaluation of fungal pigments for food applications. J Fungi 7:1–15

    Article  Google Scholar 

  • Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufossé L (2019) Multifaceted applications of microbial pigments: current knowledge, challenges and future directions for public health implications. Microorganisms 7:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana B, Bhattacharyya M, Patni B, Arya M, Joshi GK (2021) The realm of microbial pigments in the food color market. Front Sustain Food Syst 5:1–14

    Article  Google Scholar 

  • Rapoport A, Guzhova I, Bernetti L, Buzzini P, Kieliszek M, Kot AM (2021) Carotenoids and some other pigments from fungi and yeasts. Meta 11:1–17

    Google Scholar 

  • Robinson SC, Gutierrez SMV, Garcia RAC, Iroume N, Vorland NR, Andersen C, de Oliveira Xaxa ID, Kramer OE, Huber ME (2018) Potential for fungal dyes as colorants in oil and acrylic paints. J Coat Technol Res 15:845–849

    Article  CAS  Google Scholar 

  • Sajid S, Akbar N (2018) Applications of fungal pigments in biotechnology. Pure Appl Biol 7:922–930

    Article  CAS  Google Scholar 

  • Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S (2020) Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24:447–473

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos MC, Bicas JL (2021) Natural blue pigments and bikaverin. Microbiol Res 244:126653

    Article  CAS  PubMed  Google Scholar 

  • Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry—challenges and the way forward. Front Nutr 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi T, Hou XM, Li ZY, Cao F, Zhang YH, Yu JY, Zhao DL, Shao CL, Wang CY (2018) Harzianumnones a and B: two hydroxyanthraquinones from the coral-derived fungus: Trichoderma harzianum. RSC Adv 8:27596–27601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shindy HA (2016) Basics in colors, dyes and pigments chemistry: a review. Chem Int 2:29–36

    CAS  Google Scholar 

  • Siewert B (2021) Does the chemistry of fungal pigments demand the existence of photoactivated defense strategies in basidiomycetes? Photochem Photobiol Sci 20:475–488

    Article  CAS  PubMed  Google Scholar 

  • da Silva PH, Morant KV, do Nascimento RF, de Campos-Takaki GM (2022) An innovate approach of fungal pigments as inducing the oxidase activity applied to bioelectrode systems. Res Soc Dev 11:e16711628799

    Article  Google Scholar 

  • Singh N, Goel G, Singh N, Pathak BK, Kaushik D (2015) Modeling the red pigment production by Monascus purpureus MTCC 369 by artificial neural network using rice water based medium. Food Biosci 11:17–22

    Article  CAS  Google Scholar 

  • Smith DFQ, Casadevall A (2019) The role of melanin in fungal pathogenesis for animal hosts. Curr Top Microbiol Immunol 422:1–30

    CAS  PubMed  Google Scholar 

  • Soliman SSM, Raizada MN (2018) Darkness: a crucial factor in fungal Taxol production. Front Microbiol 9:1–7

    Article  Google Scholar 

  • Song Z (2018) Fungal microsclerotia development: essential prerequisites, influencing factors, and molecular mechanism. Appl Microbiol Biotechnol 102:9873–9880

    Article  CAS  PubMed  Google Scholar 

  • Surup F, Narmani A, Wendt L, Pfütze S, Kretz R, Becker K, Menbrivès C, Giosa A, Elliott M, Petit C, Rohde M (2018) Identification of fungal fossils and novel azaphilone pigments in ancient carbonised specimens of Hypoxylon fragiforme from forest soils of Châtillon-Sur-seine (Burgundy). Fungal Divers 92:345–356

    Article  Google Scholar 

  • Suwannarach N, Kumla J, Nishizaki Y, Sugimoto N, Meerak J, Matsui K, Lumyong S (2019a) Optimization and characterization of red pigment production from an endophytic fungus, Nigrospora aurantiaca CMU-ZY2045, and its potential source of natural dye for use in textile dyeing. Appl Microbiol Biotechnol 103:6973–6987

    Article  CAS  PubMed  Google Scholar 

  • Suwannarach N, Kumla J, Watanabe B, Matsui K, Lumyong S (2019b) Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319. PLoS One 14:e0222187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Ye Z, Liu C, Guo LQ, Lin JF, Wang H, Yun F, Kang L (2019) Increasing of the contain of carotenoids in Caterpillar mushroom, Cordyceps militaris (Ascomycetes) by using the fungal elicitors cultivation. Int J Med Mushrooms 21:1181–1191

    Article  PubMed  Google Scholar 

  • Tauber JP, Matthäus C, Lenz C, Hoffmeister D, Popp J (2018) Analysis of basidiomycete pigments in situ by Raman spectroscopy. J Biophotonics 11:e201700369

    Article  PubMed  Google Scholar 

  • Tavares DG, Barbosa BVL, Ferreira RL, Duarte WF, Cardoso PG (2018) Antioxidant activity and phenolic compounds of the extract from pigment-producing fungi isolated from Brazilian caves. Biocatal Agric Biotechnol 16:148–154

    Article  Google Scholar 

  • Tirumale S, Wani NA (2018) Biopigments: fungal pigments. In: Gehlot P, Singh J (eds) Fungi and their role in sustainable development: current perspective. Springer, Singapore, pp 413–426

    Chapter  Google Scholar 

  • Valenzuela-Gloria MS, Balagurusamy N, Chávez-González ML, Aguilar O, Hernández-Almanza A, Aguilar CN (2021) Molecular characterization of fungal pigments. J Fungi 7:326

    Article  CAS  Google Scholar 

  • Venil CK, Velmurugan P, Dufossé L, Renuka Devi P, Veera Ravi A (2020) Fungal pigments: potential coloring compounds for wide ranging applications in textile dyeing. J Fungi 6:1–23

    Article  Google Scholar 

  • Venkatachalam M, Magalon H, Dufossé L, Fouillaud M (2018a) Production of pigments from the tropical marine-derived fungi Talaromyces albobiverticillius: new resources for natural red-colored metabolites. J Food Compos Anal 70:35–48

    Article  CAS  Google Scholar 

  • Venkatachalam M, Zelena M, Cacciola F, Ceslova L, Girard-Valenciennes E, Clerc P, Dugo P, Mondello L, Fouillaud M, Rotondo A, Giuffrida D (2018b) Partial characterization of the pigments produced by the marine-derived fungus Talaromyces albobiverticillius 30548. Towards a new fungal red colorant for the food industry. J Food Compos Anal 67:38–47

    Article  CAS  Google Scholar 

  • Venkatachalam M, Gérard L, Milhau C, Vinale F, Dufossé L, Fouillaud M (2019) Salinity and temperature influence growth and pigment production in the marine-derived fungal strain Talaromyces albobiverticillius 30548. Microorganisms 7:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatachalam M, Shum-Chéong-sing A, Dufossé L, Fouillaud M (2020) Statistical optimization of the physico-chemical parameters for pigment production in submerged fermentation of Talaromyces albobiverticillius 30548. Microorganisms 8:711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viggiano A, Salo O, Ali H, Szymanski W, Lankhorst PP, Nygård Y, Bovenberg RA, Driessen AJ (2018) Pathway for the biosynthesis of the pigment Chrysogine by Penicillium chrysogenum. Appl Environ Microbiol 84:1–11

    Article  CAS  Google Scholar 

  • Visalakchi S, Muthumary J (2014) Antimicrobial activity of the new endophytic Monodictys castaneae SVJM139 pigment and its optimization. Afr J Microbiol Res 3(9):550–556

    Google Scholar 

  • Wang E, Dong C, Park RF, Roberts TH (2018a) Carotenoid pigments in rust fungi: extraction, separation, quantification and characterisation. Fungal Biol Rev 32:166–180

    Article  Google Scholar 

  • Wang Y, Hu X, Fang Y, Anchieta A, Goldman PH, Hernandez G, Klosterman SJ (2018b) Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae. Microbiology (United Kingdom) 164:685–696

    CAS  Google Scholar 

  • Westphal KR, Wollenberg RD, Herbst FA, Sørensen JL, Sondergaard TE, Wimmer R (2018) Enhancing the production of the fungal pigment aurofusarin in Fusarium graminearum. Toxins (Basel) 10:485

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Vinas M, Alsarrag A, Su L, Pfohl K, Rohlfs M, Schäfer W, Chen W, Karlovsky P (2019) Bis-naphthopyrone pigments protect filamentous ascomycetes from a wide range of predators. Nat Commun 10:3579

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin GP, Wu YR, Yang MH, Li TX, Wang XB, Zhou MM, Lei JL, Kong LY (2017) Citrifurans A-D, four dimeric aromatic polyketides with new carbon skeletons from the fungus Aspergillus sp. Org Lett 19:4058–4061

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liang J, Yang L, Chai S, Zhang C, Sun B, Wang C (2017) Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus. AMB Express 7:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: mycobiota of the inner regions of thecontainment structures of the damaged nuclear reactor. Mycol Res 104:1421–1426

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, D.C. (2024). Fungal Pigments: Applications and Their Medicinal Potential. In: Deshmukh, S.K., Takahashi, J.A., Saxena, S. (eds) Fungi Bioactive Metabolites. Springer, Singapore. https://doi.org/10.1007/978-981-99-5696-8_21

Download citation

Publish with us

Policies and ethics