Skip to main content

Properties of Violacein: A Promising Natural Pharmaceutical Secondary Metabolite from Marine Environment with Emphasis on Its Anticancer Activity

  • Chapter
  • First Online:
Marine Bioactive Molecules for Biomedical and Pharmacotherapeutic Applications

Abstract

Violacein, an indole-derived purple color natural pigment, has been reported from bacteria Janthinobacterium lividum, Chromobacterium violaceum, Pseudoalteromonas luteoviolacea, and Collimonas isolated from seawater, marine sponges, and coral reefs. It is formed by the condensation of two molecules of tryptophan. Factors like carbon source, pH, temperature, rate of agitation, and incubation time are known to affect violacein production. It exhibits extensive biological properties such as antibacterial, antiviral, antifungal, and antinematodal properties. It is an antioxidant in nature. It has immunomodulatory and anticancer activities, making it a promising natural pharmaceutical agent. Understanding violacein’s function and mechanism of action has relevance to those displaying its therapeutic benefits. Violacein displayed anticancer activity in different types of cancers such as breast, colon, prostate, melanoma, lung, cervical, ovarian, central nervous, and renal cancers. Violacein can be established as a reliable natural drug efficient in causing apoptosis in cancerous cells and slowing down the proliferation rate of tumor cells by regulating the expressions of the cell cycle and tumor suppressor proteins. This review describes various pharmaceutical properties of violacein, highlighting its anticancer activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agematu H, Suzuki K, Tsuya H (2011) Massilia sp. BS-1, a novel violacein-producing bacterium isolated from soil. Biosci Biotechnol Biochem 75(10):2008–2010

    Article  CAS  PubMed  Google Scholar 

  • Ahmed A, Ahmad A, Li R, Al-Ansi W, Fatima M, Mushtaq BS, Basharat S, Li Y, Bai Z (2021) Recent advances in synthetic, industrial and biological applications of violacein and its heterologous production. J Microbiol Biotechnol 31(11):1465–1480. https://doi.org/10.4014/jmb.2107.07045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alem D, Canclini L, Castro-Sowinski S, MartĂ­nez-LĂłpez W (2022) Chemosensitizer effect of violacein on cisplatin-treated bladder cancer cells. Clin Complementary Med Pharma 2(2):100036. https://doi.org/10.1016/j.ccmp.2022.100036

    Article  Google Scholar 

  • Alves OL, Gimenez IF, De Azevedo MMM, Duran N, Melo PS (2005) Pharmacological use of cyclodextrine­Au-thiol-derivative/hydrophobic compound nanoparticles as antih1moral, antibacterial, antiviral and/or antiparasites, its obtention process and formulation. Brazil Pat; PIBr 0502657-1

    Google Scholar 

  • Andrighetti-Frohner CR, Antonio RV, Creczynski-Pasa TB, Barardi CRM, Simoes CMO (2003) Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Mem Inst Oswaldo Cruz 98(6):843–848

    Article  CAS  PubMed  Google Scholar 

  • Antonio RV, Creczynski-Pasa TB (2004) Genetic analysis of violacein biosynthesis by Chromobacterium violaceum. Genet Mol Res 3(1):85–91

    CAS  PubMed  Google Scholar 

  • Antonisamy P, Ignacimuthu S (2010) Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine 17:300–304. https://doi.org/10.1016/j.phymed.2009.05.018

    Article  CAS  PubMed  Google Scholar 

  • Aruldass CA, Rubiyatno CKV, Wan AA (2015) Violet pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. R Soc Chem Adv 5:51524–51536

    CAS  Google Scholar 

  • Aruldass CA, Raj S, Masalamany L, Venil CK, Ahmad WA (2018) Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Environ Sci Pollut Res 25:5164. https://doi.org/10.1007/s11356-017-8855-2

    Article  CAS  Google Scholar 

  • Asencio G, Lavin P, Karen A, Dominguez M, Bello H, Gonzalez-Rocha G, Gonzalez-Aravena M (2014) Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant gram-negative bacteria. Electron J Biotechnol 17:1–5

    Article  Google Scholar 

  • Atalah J, Blamey L, Munoz-Ibacache S, Gutierrez F, Urzua M, Encinas MV, Paez M, Sun J, Blamey JM (2020) Isolation and characterization of violacein from an Antarctic Iodobacter: a non-pathogenic psychrotolerant microorganism. Extremophiles 24:43–52

    Article  PubMed  Google Scholar 

  • August PR, Grossman TH, Minor C, Draper MP, MacNeil IA, Pemberton JM, Call KM, Holt D, Osburne MS (2000) Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. J Mol Microbiol Biotechnol 2(4):513–519

    CAS  PubMed  Google Scholar 

  • Aye AM, Jusserand MB, Jaisson FB, Magne AO, Culioli G, Nevry RK, Rabah N, Blache Y, Molmeret M (2015) Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiology 161:2039–2052

    Article  CAS  Google Scholar 

  • Baricz A, Teban A, Chiriac CM, Szekeres E, Farkas A, Nica M, Dascalu A, OpriČ™an C, Lavin P, Coman C (2018) Investigating the potential use of an Antarctic variant of Janthinobacterium lividum for tackling antimicrobial resistance in a one health approach. Sci Rep 8:15272

    Article  PubMed  PubMed Central  Google Scholar 

  • Barreto ES, Torres AR, Barreto MR, Vasconcelos ATR, Filho SA, Hungria M (2008) Diversity in antifungal activity of strains of Chromobacterium violaceum from the Brazilian Amazon. J Ind Microbiol Biotechnol 35:783–790

    Article  CAS  PubMed  Google Scholar 

  • Batista AHM, Moreira ACD, Carvalho RM, Sales GWP, Nogueira PCN, Grangeiro TB, Medeiros SC, Silveira ER, Nogueira NAP (2017) Antimicrobial effects of violacein against planktonic cells and biofilms of Staphylococcus aureus. Molecules 22:1534

    Article  PubMed  PubMed Central  Google Scholar 

  • Berni E, Marcato PD, Nakazato G, Kobayashi RKT, Vacchi FI, Umbuzeiro GA, Durán N (2013) Violacein/poly(ε-caprolactone)/chitosan nanoparticles against bovine mastitis: antibacterial and ecotoxicity evaluation. J Phys 429:012030

    CAS  Google Scholar 

  • Bilsland E, Tavella TA, Krogh R, Stokes JE, Roberts A, Spring JD, Andricopulo AD, Costa FTM, Oliver SG (2018) Antiplasmodial and trypanocidal activity of violacein and deoxyviolacein produced from synthetic operons. BMC Biotechnol 18(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Bromberg N, Justo GZ, Haun M, Duran N, Ferreira CV (2006) Violacein cytotoxicity on human blood lymphocytes and effect on phosphatases. J Enzyme Inhib Med Chem 20(5):449–454

    Article  Google Scholar 

  • Brotosudarmo THP (2021) Exploring bioactive pigments from marine bacterial isolate from the Indonesian Seas. Earth Environ Sci 944:12016. https://doi.org/10.1088/1755-1315/944/1/012016

    Article  Google Scholar 

  • Cardona-Cardona V, Arroyo D, Scellekens J, Rios-Velazquez C (2010) Characterisation of blue pigmented bacteria isolated from Puerto Rico. Curr Res Technol Educ Topics Appl Microbiol Microbial Biotechnol 1:117–123

    Google Scholar 

  • Cazoto LL, Martins D, Ribeiro MG, Duran N, Nakazato G (2011) Antibacterial activity of violacein against Staphylococcus aureus isolated from Bovine mastitis. J Antibiot 64:395–397

    Article  CAS  Google Scholar 

  • Chatragadda R, Nambali VV, Ramalingam K (2019a) Marine pigmented bacteria: a prospective source of antibacterial compounds. J Nat Sci Biol Med 10(2):104–113

    Article  Google Scholar 

  • Chatragadda R, Nambali VV, Ramalingam K, Chidambaram KV, Laurent D (2019b) Multifaceted applications of microbial pigments: current knowledge, challenges and future directions for public health implications. Microorganisms 7:186

    Article  Google Scholar 

  • Cheng KC, Hsiao HC, Hou YC, Hsieh CW, Hsu HY, Chen HY, Lin SP (2022) Improvement in violacein production by utilizing formic acid to induce quorum sensing in Chromobacterium violaceum. Antioxidants 11:849. https://doi.org/10.3390/antiox11050849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chidambaram KV, Nur ZY, Claira AA, Wan AA (2016) Application of violet pigment from Chromobacterium violaceum UTM5 in textile dyeing. Biologia 71:121. https://doi.org/10.1515/biolog-2016-0031

    Article  CAS  Google Scholar 

  • Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ (2015a) High-level production of violacein by the newly isolated Duganellaviolaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci Rep 5:15598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SY, Yoon K, Lee JI, Mitchell RJ (2015b) Violacein: properties and production of a versatile bacterial pigment. BioMed Res Int 2015:465056, 8p

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortes-Osorio N, Cardoso-Cardoso M, Chavarro-Anzola V, Prada-Salcedo LD, Reyes-Cardenas A, Robles-Camargo J, Franco-Correa M (2017) Influence of environmental factors on the production of violacein synthesized by Janthinobacterium lividum. Int J Eng Sci 6(1):76–83

    Article  Google Scholar 

  • Dang HT, Yotsumoto K, Enomoto K (2014) Draft genome sequence of violacein-producing marine bacterium Pseudoalteromonas sp. 520P1. Genome Announc 2(6):e01346

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniela D, Carvalho D, Costa FTM, Duran N, Haun M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol In Vitro 20:1514–1521

    Article  Google Scholar 

  • de Carvalho DD, Costa FT, Duran N, Haun M (2006) Cytotoxic activity of violacein in human colon cancer cells. Toxicol in Vitro 20(8):1514–1521. https://doi.org/10.1016/j.tiv.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  • Demoss RD, Evans NR (1959) Physiological aspects of violacein biosynthesis in nonproliferating cells. J Bacteriol 78:583–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi P, Kannan SS, R and Mariappan T. K. (2018) Production of violacein pigment from Chromobacterium violaceum and its antibacterial activity and synergism on E. coli isolated from UTI samples. Int J Recent Sci Res 9(2):24479–24484

    Google Scholar 

  • Diego AJ, Marizcurrena V, Saravia D, Lopez WM, Sowinski SC (2020) Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate. World J Microbiol Biotechnol 36:120

    Article  Google Scholar 

  • Dike-Ndudim JN et al (2022) Studies on production and in vitro antibacterial potentials of violacein from Chromobacterium violaceum isolated from Otamiri River in Owerri, Imo State. J Microbiol Biotechnol 7(1):000215

    Google Scholar 

  • Dodou HV, de Morais Batista AH, Sales GWP, de Medeiros SC, Rodrigues ML, Nogueira PCN, Silveira ER, Nogueira NAP (2017) Violacein antimicrobial activity on Staphylococcus epidermidis and synergistic effect on commercially available antibiotics. J Appl Microbiol 123:853–860

    Article  CAS  PubMed  Google Scholar 

  • Doing G, Perron GG, Brooke AJ (2018) Draft genome sequence of a violacein-producing Iodobacter sp. from the Hudson Valley watershed. Am Soc Microbiol 6(1):e01428

    Google Scholar 

  • Duran N, Campos V, Riveros R, Joyas A, Pereira MF, Haun M (1989) Bacterial chemistry. III. Preliminary studies on trypanosomal activities of Chromobacterium violaceum products. An Acad Bras Cienc 61:31–36

    CAS  PubMed  Google Scholar 

  • Duran N, De Azevedo MBM, Alderete J (1998) Formulation process of cyclodextrin/violacein for using as antibacterial, antitumoral, antiviral and trypanocide. Brazil Patent 1998; PIBr 9801307

    Google Scholar 

  • Duran N, Justo GZ, Ferreira CV, Melo PS, Cordi L, Martins D (2007) Violacein: properties and biological activities. Biotechnol Appl Biochem 48:127–133

    Article  CAS  PubMed  Google Scholar 

  • Duran M, Ponezi AN, Faljoni-Alario A, Teixeira MFS, Justo GZ, Duran N (2012) Potential applications of violacein: a microbial pigment. Med Chem Res 21:1524–1532

    Article  CAS  Google Scholar 

  • Duran N, Justo GZ, Justo DM, Brocchi M, Cordi L, Tasic L, Castro GR, Nakazato G (2016) Advances in Chromobacterium violaceum and properties of violacein-its main secondary metabolite: a review. Biotechnol Adv 34:1030–1045

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Justo GZ, Nakazato G, Fávaro WJ (2021). Violacein, a microbial antiviral product: does play key role as active agent against SARS-CoV-2?. AIJR preprints, 315, version 1

    Google Scholar 

  • Durán N, Nakazato G, Durán M et al (2021) Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 37:151. https://doi.org/10.1007/s11274-021-03120-4

    Article  CAS  PubMed  Google Scholar 

  • Fakhr FA, Khanafari A, Baserisalehi M, Yaghoobi R, Shahghasempour S (2012) An investigation of antileukemia activity of violacein-loaded dendrimer in Jurkat cell lines. Af J Microbiol Res 6(33):6235–6242

    CAS  Google Scholar 

  • Friedrich I, Hollensteiner J, Schneider D, Poehlein A, Hertel R, Daniel R (2020) First complete genome sequences of Janthinobacterium lividum EIF1 and EIF2 and their comparative genome analysis. Genome Biol Evol 12(10):1782–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller JJ, Rene R, Joern K, Rennhack KE, Daniel NP, Wulf B, Stefan S, Dieter J, Jurgen M (2016) Biosynthesis of violacein, structure and function of L-Tryptophan oxidase VioA from Chromobacterium violaceum. J Biol Chem 291(38):20068–20084. https://doi.org/10.37231/jab.2022.13.1.262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamudi D, Blundell R (2010) Tumor suppressor genes. Res J Med Sci 4(4):280–284. https://doi.org/10.3923/rjmsci.2010.280.284

    Article  Google Scholar 

  • Gunasekaran R, Janarthanam H, Selvaraj V (2020) Antagonistic and antioxidant efficiency of bacterial pigment isolated from Chromobacterium violaceum (BRT-GR2). Int J Curr Microbiol Appl Sci 9(7):4050–4059

    Article  CAS  Google Scholar 

  • Hakvag S, Fjærvik E, Klinkenberg G, Borgos SEF, Josefsen KD, Ellingsen TE, Zotchev SB (2009) Violacein-producing Collimonas sp. from the sea surface microlayer of coastal waters in Trondelag, Norway. Mar Drugs 7:576–588

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DV, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KPC (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. Int Soc Microbiol Ecol J 3:818–824

    CAS  Google Scholar 

  • Hashimi SM, Xu T, Wei MQ (2015) Violacein anticancer activity is enhanced under hypoxia. Oncol Rep 33:1731–1736

    Article  CAS  PubMed  Google Scholar 

  • Inniss WE, Mayfield CI (1979) Effect of temperature on violacein production in a psychrotrophicChromobacterium from Lake Ontario sediment. Microb Ecol 5:51–56

    Article  CAS  PubMed  Google Scholar 

  • Jayasree VS, Sobhana KS, Priyankaa P, Keerthia KR, Jasmine S, Ranjith L, Ramkumar S, Saravanan R, Kingsley HJ, Sreenath KR, George RM, Joshi KK, Gopalakrishnan A (2021) Characterization and antibacterial activity of violacein producing deep purple pigmented bacterium Pseudoalteromonas luteoviolacea (Gauthier, 1982) isolated from coral reef ecosystems. Ind J Geo Marine Sci 50(8):620–634

    Google Scholar 

  • Kallmayer V, Lanzendoerfer G, Meiring U, Mocigemba N, Reidel H, Schaefer J et al (2005) Cosmetic preparation, useful e.g. for the protection of skin and (semi)mucous membrane against bacteria and/or virus, comprises violacein dye in combination with lipophilic and/or hydrophilic substances. Germany Patent 2005; DE102005051869 Al

    Google Scholar 

  • Kanade YB, Waman M, Patwardhan RB (2022) Violacein: a promising bacterial secondary metabolite. Res J Chem Environ 26(6):165–177

    Article  Google Scholar 

  • Kanelli M, Mandic M, Kalakona M, Vasilakos S, Kekos D, Nikodinovic-Runic J, Topakas E (2018) Microbial production of violacein and process optimization for dyeing polyamide fabrics with acquired antimicrobial properties. Front Microbiol 9:1495. https://doi.org/10.3389/fmicb.2018.01495

    Article  PubMed  PubMed Central  Google Scholar 

  • Kodach LL, Bos CL, Duran N, Peppelenbosch MP, Ferreira CV, Hardwick JCH (2006) Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 27(3):508–516

    Article  CAS  PubMed  Google Scholar 

  • Konzen M, Marco DD, Cordova CAS, Vieira TO, Antonio RV, Creczynski-Pasa TB (2006) Antioxidant properties of violacein: possible relation on its biological function. Bioorg Med Chem 14:8307–8313

    Article  CAS  PubMed  Google Scholar 

  • Kothari V, Sharma S, Padia D (2017) Recent research advances on Chromobacterium violaceum. Asian Pac J Trop Med 10(8):744–752

    Article  PubMed  Google Scholar 

  • Kumar P, Kumar P, Barrett DM, Barrett DM, Delwiche MJ, Delwiche MJ et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem 48:3713–3729

    Article  CAS  Google Scholar 

  • Kumar A, Vishwakarma HS, Singh J, Dwivedi S, Kumar M (2015) Microbial pigments: production and their applications in various industries. Int J Pharm Chem Biol Sci 5(1):203–212

    CAS  Google Scholar 

  • Lee YJ, Bashyal P, Pandey RP, Sohng JK (2019) Enzymatic and microbial biosynthesis of novel violacein glycosides with enhanced water solubility and improved anti-nematode activity. Biotechnol Bioprocess Eng 24:366–374

    Article  CAS  Google Scholar 

  • Leon LL, Miranda CC, De Souza AO, Duran N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48:449–450

    Article  CAS  PubMed  Google Scholar 

  • Loke WK, Saud HM (2022) The identification of Chromobacterium violaceum from soil based on the production of violacein. J Agrobiotech 13(1):33–39

    Article  Google Scholar 

  • Lopes SCP, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FLS, Goelnitz U, Wunderlich G, Facchini G, Brocchi M, Duran N, Costa FTM (2009) Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo. Antimicrob Agents Chemother 53(3):2149–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik K, Tokkas J, Goyal S (2012) Microbial pigments: a review. Int J Microbial Resour Technol 1(4):361–365

    Google Scholar 

  • Martins D, Costa F, Brocchi TMM, Durán N (2010) Evaluation of the antibacterial activity of poly-(d,l-lactide-co-glycolide) nanoparticles containing violacein. J Nanopart Res 13:355–363

    Article  Google Scholar 

  • Martins D, Ribeiro MG, Duran N, Gerson N (2011) Antibacterial activity of violacein against Staphylococcus aureus isolated from Bovine mastitis. J Antibiotics 64:395–397

    Article  Google Scholar 

  • Matz C, Deines P, Boenigk J, Arndt H, Eberl L, Kjelleberg S, JĂĽrgens K (2004) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70(3):1593–1599. https://doi.org/10.1128/AEM.70.3.1593-1599.2004. PMID: 15006783; PMCID: PMC368400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May G, Brummer B, Ott H (1991) Treatment of prophylaxis of polio and herpes virus infections comprises admin of 3-(1,2-dihydro-5-(5-hydroxy-1H- indol-3-yl)-2-oxo3H-pyrrole-3-ylidene)-1,3-dihydro-2H-indol-2-one. GerOffenDE:3935066

    Google Scholar 

  • McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143:3703–3711

    Article  CAS  PubMed  Google Scholar 

  • Menezes CBA, Silva BP, Sousa IMO, Ruiz ALTG, Spindola HM, Cabral E, Eberlin MN, Tinti SV, Carvalho JE, Foglio MA, Fantinatti-Garboggini F (2013) In vitro and in vivo antitumor activity of crude extracts obtained from Brazilian Chromobacterium sp isolates. Braz J Med Biores 46:65–70

    Article  CAS  Google Scholar 

  • Momen ZM, Hoshino T (2000) Biosynthesis of violacein: intact incorporation of the tryptophan molecule on the oxindole side, with intramolecular rearrangement of the indole ring on the 5-hydroxyindole side. Biosci Biotechnol Biochem 64(3):539–549

    Article  CAS  PubMed  Google Scholar 

  • Morohoshi T, Fukamachi K, Kato M, Kato N, Ikeda T (2010) Regulation of the violacein biosynthetic gene cluster by acylhomoserine lactone-mediated quorum sensing in Chromobacterium violaceum ATCC 12472. Biosci Biotechnol Biochem 74(10):2116–2119

    Article  CAS  PubMed  Google Scholar 

  • Nakazato G, Gonçalves MC, da Silva das Neves M, RKT K, Brocchi M, Durán N (2019) Violacein@Biogenic Ag system: synergistic antibacterial activity against Staphylococcus aureus. Biotechnol Lett 41(12):1433–1437. https://doi.org/10.1007/s10529-019-02745-8. Epub 2019 Oct 24. PMID: 31650420

    Article  CAS  PubMed  Google Scholar 

  • Nathan VK, Subha Rajam K, Rani ME, Rathinasamy G, Kannan ND (2019) Surface culturing of Chromobacterium violaceum MTCC 2656 for violacein production and prospecting its bio-activities, chapter 3, Current Research in Micro

    Google Scholar 

  • Neroni B, Antonella ZM, Radocchia G, Ciardi MR, Mosca L, Pantanella F, Schippa S (2022) Evaluation of the anti-proliferative activity of violacein, a natural pigment of bacterial origin, in urinary bladder cancer cell lines. Oncol Lett 23:132. https://doi.org/10.3892/ol.2022.13252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh WT, Giri SS, Yun S, Kim HJ, Kim SG, Kim SW, Kang JW, Han SJ, Kwon J, Jun JW, Park SC (2019) Janthinobacterium lividum as an emerging pathogenic bacterium affecting rainbow trout (Oncorhynchus mykiss) fisheries in Korea. Pathogens 8:146. https://doi.org/10.3390/pathogens8030146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palukurty MA, Pyla SP, Silarapu S, Subba RS (2016) Analysing alternative nutrient supplements and optimization of production parameters for violacein using central composite design. Int J Sci Engi Res 7(7):294

    Google Scholar 

  • Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C, Schippa S (2007) Violacein and biofilm production in Janthinobacterium lividum. J Appl Microbiol 102:992–999. https://doi.org/10.1111/j.1365-2672.2006.03155

    Article  CAS  PubMed  Google Scholar 

  • Pawar R, Mohandass C, Rajasabapathy R, Meena RM (2018) Molecular diversity of marine pigmented bacteria in the central Arabian Sea with special reference to antioxidant properties. Cah Biol Mar 59:409–420

    Google Scholar 

  • Pierce BA (2012) Genetics a conceptual approach, 4th edn. W. H. Freeman, New York

    Google Scholar 

  • Platt D, Amara S, Mehta T, Vercuyssee K, Myles EL, Johnson T, Tiriveedhi V (2014) Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis. Biochem Biophys Res Commun 5(455):107–112

    Article  Google Scholar 

  • Queiroz KCS, Milani R, Ruela-de-Sousa RR, Fuhler GM, Justo GZ, Zambuzzi WF, Duran N, Diks HS, Spek CA, Ferreira CV, Peppelenbosch MP (2012) Violacein induces death of resistant leukaemia cells via kinome reprogramming, endoplasmic reticulum stress and golgi apparatus collapse. PLoS One 7(10):e45362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramdass AC, Rampersad SN (2021) Molecular signatures of Janthinobacterium lividum from Trinidad support high potential for crude oil metabolism. BMC Microbiol 21:287. https://doi.org/10.1186/s12866-021-02346-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riveros R, Haun M, Durán N (1989) Effect of growth conditions on production of violacein by Chromobacterium violaceum (BB-78 strain). Braz J Med Biol Res 22(5):569–577

    CAS  PubMed  Google Scholar 

  • Rokade MT, Pethe AS (2017) Isolation, identification, extraction and production of antibacterial violacein pigment by psychrotrophic bacterium MTRI7 strain. J Global Biosci 6(6):5077–5083

    Google Scholar 

  • Santhosh VT, Palaniswamy M (2016a) Isolation and identification of Chromobacterium sp. from different ecosystems. Asian J Pharm Clin Res 9(suppl 3):253–257

    Google Scholar 

  • Santhosh VT, Palaniswamy M (2016b) Isolation and identification of Chromobacterium sp. from different ecosystems. Asian J Pharma Clin Res 9(suppl 3):253–257

    Google Scholar 

  • Santhosh VT, Palaniswamy M (2017) Evaluation of in vitro cytotoxic effect of violacein produced by novel isolate Chromobacterium vaccinii CV5 against the cervical and lung cancer cell. Asian J Pharm Clin 10(10):227–229

    Article  CAS  Google Scholar 

  • Sasidharan A, Sasidharan NK, Amma DBNS et al (2015) Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522). J Microbiol 53:694–701. https://doi.org/10.1007/s12275-015-5173-6

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Allen HK, Klimowicz AK, Christine M, Gross JA, Sarah S, Jennifer ME, Jon C, Ruess RW, Jo H (2010) Psychrotrophic strain Janthinobacterium lividum from a cold Alaskan soil produces prodigiosine. DNA Cell Biol 29(9):533–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedlacek I, Holochova P, Sobotka R, Busse H-J, Svec P, Kralova S, Sedo O, Pilny J, Stankova E, Koublova V, Sedlar K (2021) Classification of a violacein-producing psychrophilic group of isolates associated with freshwater in Antarctica and description of Rugamonas violacea sp. nov. Microbiol Spectr 9:e00452–e00421. https://doi.org/10.1128/Spectrum.00452-21

    Article  CAS  Google Scholar 

  • Sedlacek I, Holochova P, Busse H-J, Koublova V, Kralova S, Svec P, Sobotka R, Stankova E, Pilny J, Sedo O, Smolikova J, Sedlar K (2022) Characterisation of waterborne psychrophilic Massilia isolates with violacein production and description of Massilia antarctica sp. nov. Microorganisms 10:704. https://doi.org/10.3390/microorganisms10040704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry - challenges and the way forward. Front Nutr 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirata A, Tsukamo T, Yasuj H, Hata T, Hayasaka SS, Kojima AA, Kato H (2000) Isolation of bacteria producing bluish-purple pigment and use for dyeing. Japan Agric Res Q 34:131–140

    Google Scholar 

  • Sinha S, Choubey S, Ajay KA, Bhosale P (2017) Identification, characterization of pigment producing bacteria from soil and water and testing of antimicrobial activity of bacterial pigments. Int J Pharm Sci Rev Res 42(2):119–124

    Google Scholar 

  • Siva R (2007) Status of natural dyes and dye yielding plants in India. Curr Sci 92(7):916–925

    CAS  Google Scholar 

  • Soliev AB, Hosokawa K, Enomoto K (2011) Bioactive pigments from marine bacteria: applications and physiological roles. Evid Based Complement Alternat Med 2011:670349, 1–17. https://doi.org/10.1155/2011/670349

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Kannappan A, Shi C, Lin X (2021) Marine bacterial secondary metabolites: a treasure house for structurally unique and effective antimicrobial compounds. Mar Drugs 19:530. https://doi.org/10.3390/md19100530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam S, Ravi V, Sivasubramanian A (2014) Synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic microorganisms. Pharm Biol 52(1):86–90

    Article  CAS  PubMed  Google Scholar 

  • Suman R, Sharma P, Gupta S, Sourirajan A, Dev K (2015) A novel psychrophilic Janthinobacterium lividum MMPP4 isolated from Manimahesh Lake of Chamba District of Himachal Pradesh, India. J Biochem Technol 6(1):846–851

    CAS  Google Scholar 

  • Tabor-Godwin J, Stuart R, Leon Zayas RI, Rajakuberan C (2009) What you didn’t know about Janthinobacterium. Physiol Genet, Teachers Corner

    Google Scholar 

  • Tong Y, Zhou J, Zhang L, Xu P (2019) Engineering oleaginous yeast Yarrowia lipolytica for violacein production: extraction, quantitative measurement and culture optimization. BioRxiv. https://doi.org/10.1101/687012

  • Venegas FA, Köllisch G, Kerstin M, Diederich WE, Kaufmann A, Bauer S, Chavarria M, Araya JJ, GarcĂ­a-Pineres AG (2019) The bacterial product violacein exerts an immunostimulatory effect via TLR8. Sci Rep 9(1):13661

    Article  PubMed  PubMed Central  Google Scholar 

  • Verinaud L, Lopes SCP, Naranjo Prado IC, Alves T, da Costa FZ, Gangi RD, Issayama LK, Carvalho AC, Bonfanti AP, Niederauer GF, Duran N, Maranhao Costa FT, Oliveira ALR, da Cruz Hofling MA, Stach Machado DR, Thome R (2015) Violacein treatment modulates acute and chronic inflammation through the suppression of cytokine production and induction of regulatory T cells. PLoS One 10:e0125409

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishnu TS, Palaniswamy M (2016) Isolation and identification of Chromobacterium SP. from different ecosystems. Asian J Pharm Clin Res 9(suppl 3):253–257

    CAS  Google Scholar 

  • Vishnu TS, Palaniswamy M (2017) Impact of various fermentation conditions on the production of violacein by the novel isolate Chromobacterium vaccinii cv5. Int J Pharm Bio Sci 8(3):514–522

    CAS  Google Scholar 

  • Vishnu TS, Palaniswamy M (2018) Systematic approach on evaluating the in vitro antioxidant activity of violacein; novel isolate Chromobacterium Vaccinii CV5. Biomed Pharmacol J 11(2):703–709

    Article  CAS  Google Scholar 

  • Wan AA, Nur ZY, Nordin N, Zakaria ZA, Rezali MF (2012) Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Appl Biochem Biotechnol 167(5):1220–1234. https://doi.org/10.1007/s12010-012-9553-7

    Article  CAS  Google Scholar 

  • Wu YH, Cheng H, Xu L, Jin XB, Wang CS (2017) Physiological and genomic features of a novel violacein-producing bacterium isolated from surface seawater. PLoS One 12(6):e0179997. https://doi.org/10.1371/journal.pone.0179997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LH, Xiong H, Lee OO, Qi S-H, Qian P-Y (2007a) Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett Appl Microbiol 44:625–630

    Article  CAS  PubMed  Google Scholar 

  • Yang LH, Xiong H, Lee OO, Qi SH, Qian PY (2007b) Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett Appl Microbiol 44:625–630

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol–a byproduct of biodiesel production. Biotechnol Biofuels 5(13):1–10

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Haribhai V. Desai College of Arts, Science and Commerce, Pune, Maharashtra, India, affiliated to Savitribai Phule Pune University (SPPU), for constant support in the completion of the present Springer book chapter.

Conflict of Interest Statements

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanade, Y., Patwardhan, R., Abhyankar, P. (2023). Properties of Violacein: A Promising Natural Pharmaceutical Secondary Metabolite from Marine Environment with Emphasis on Its Anticancer Activity. In: Veera Bramhachari, P., Berde, C.V. (eds) Marine Bioactive Molecules for Biomedical and Pharmacotherapeutic Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-6770-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6770-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6769-8

  • Online ISBN: 978-981-99-6770-4

  • eBook Packages: MedicineBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics