Skip to main content

An Ecological Overview of Halophytes from the Aralkum Area

  • Reference work entry
  • First Online:
Handbook of Halophytes

Abstract

The fourth largest lake on Earth started to shrink since 1960. Today only small remnants of water bodies are left. The desiccated sea floor is a huge new desert: the Aralkum. Most parts of the Aralkum are saline; thus the region is rich in halophytes which migrated from the adjacent areas. This process can be called one of the largest experiments of primary succession. The new flora of the Aralkum is now about 421 species, from which more than 25% are Chenopodiaceae. The general situation, history, climate, and vegetation are described and a list of all species with their so far known salinity indicator values is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Halophytic types:

EX: Exo-Crino-Halophytes, LSu: leaf-succulent eu-halophytes, Ps: Pseudo-Halophytes, NoH: Non-Halophytes, NX: Endo-Crino-Halophytes, SSu: stem-succulent eu-halophytes

Life-forms:

Ch: chamaephytes, G: geophytes; B: with bulbs; P: parasitic; R: with rhizomes; H: hemicryptophytes; Hy: hydrophytes; Ph-m, Ph-n: micro- and nano-phanerophytes; T: therophytes

References

  • Adam, P. (1990). Saltmarsh ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Aladin, N. V. (1991). Studying of the influence of water salinity in separating bays of the Aral Sea on hydrobionts. USSR Academy of Sciences, Proceedings of Zoological Institute, Leningrad, 223, 5–18. (in Russian).

    Google Scholar 

  • Aladin, N. V., & Potts, W. T. W. (1992). Changes in the Aral Sea ecosystem during the period 1960–1990. Hydrobiologia, 237, 67–79.

    Article  CAS  Google Scholar 

  • Aladin, N. V., Plotnikov, I. S., Orlova, M. I., Filippov, A. A., et al. (1996). Changes in the form and biota of the Aral Sea over time. In P. P. Micklin & W. D. Williams (Eds.), The Aral Sea basin (pp. 33–55). Berlin: Springer.

    Chapter  Google Scholar 

  • Albert, R. (1982). Halophyten. In H. Kinzel (Ed.), Pflanzenökologie und Mineralstoffwechsel (pp. 33–215). Stuttgart: Ulmer.

    Google Scholar 

  • Albert, R. (2005). Das Physiotypen-Konzept – ein Modell zur Erklärung ökophysiologischer Anpassungen? In M. Veste, W. Wucherer, & J. Homeier (Eds.), Ökologische Forschung im globalen Kontext (pp. 1–23). Cuvillier: Göttingen.

    Google Scholar 

  • Balnokin, Y. V., Myasoedov, N. A., Baburina, O. K., & Wucherer, W. (1991). Ion content of Na+, Cl, S and proline in tissues from halophytes from soils with differing salinity on the dry sea floor of the Aral Sea. Probl Osv Pustyn’ Ashkhabad, 2, 70–78. (in Russian).

    Google Scholar 

  • Berg, L. S. (1908). Das Aral-Meer (Russ.), St. Peterburg, 580pp.

    Google Scholar 

  • Berger-Landefeldt, U. (1959). Beiträge zur Ökologie der Pflanzen nordafrikanischer Salzpfannen. Vegetatio, 9, 1–48.

    Article  Google Scholar 

  • Black, R. F. (1954). The leaf anatomy of Australian members of the genus Atriplex I. Atriplex vesicaria Heward and A. nummularia Lindl. Australian Journal of Botany, 2, 269–286.

    Article  Google Scholar 

  • Borshchov, I. G. (1865). Materials for botanical geography of Aral-Caspian region. St Petersburg.

    Google Scholar 

  • Bortnik, V. N. (1996). Changes in the water-level and hydrological balance of the Aral Sea. In P. P. Micklin & W. D. Williams (Eds.), The Aral Sea basin (pp. 25–32). Berlin: Springer.

    Chapter  Google Scholar 

  • Bortnik, V. N., Kuksa, V. I., & Tsytsarin, A. G. (1991). Present state and possible future of the Aral Sea. Izvestiya Akademii Nauk SSR, Seriya geograficheskaya, 4, 62–68. (in Russian).

    Google Scholar 

  • Breckle, S.-W. (1975a). Ionengehalte halophiler Pflanzen Spaniens. Decheniana (Bonn), 127, 221–228.

    Google Scholar 

  • Breckle, S.-W. (1975b). Wasser- und Salzverhältnisse bei Halophyten der Salzsteppe in Utah/USA. Berichte der Deutschen Botanischen Gesellschaft, 87, 589–600.

    Google Scholar 

  • Breckle, S.-W. (1976). Zur Ökologie und zu den Mineralstoffverhältnissen absalzender und nichtabsalzender Xerohalophyten. Dissertationes Botanicae, 35, 1–176. Cramer, Vaduz.

    Google Scholar 

  • Breckle, S.-W. (1982). The significance of salinity. In B. Spooner & H. S. Mann (Eds.), Desertification and development: Dryland ecology in social perspective (pp. 277–292). London: Academic.

    Google Scholar 

  • Breckle, S.-W. (1985). Die siebenbürgische Halophytenflora – Ökologie und ihre pflanzengeographische Einordnung. Siebenbürgisches Archiv, 3, Folge 20, 53–105.

    Google Scholar 

  • Breckle, S.-W. (1986). Studies on halophytes from Iran and Afganistan. II. Ecology of halophytes along salt gradients. Proceedings of the Royal Society of Edinburgh, 89B, 203–215.

    Google Scholar 

  • Breckle, S.-W. (1990). Salinity tolerance of different halophyte types. Plant and Soil, 148, 167–175.

    Google Scholar 

  • Breckle, S.-W. (1992). Salinity-stress and salt-recretion in plants. Bielefelder Ökologische Beiträge (BÖB), 6, 39–52.

    Google Scholar 

  • Breckle, S.-W. (1995). How do halophytes overcome salinity? In M. A. Khan & I. A. Ungar (Eds.), Biology of salt tolerant plants (pp. 199–213). Chelsea: Book Graffers.

    Google Scholar 

  • Breckle, S.-W. (2002). Walter’s vegetation of the earth – The ecological systems of the GeoBiosphere. Berlin: Springer.

    Google Scholar 

  • Breckle, S.-W., & Agachanjanz, O. E. (1994). Spezielle Ökologie der gemäßigten und arktischen Zonen Euro-Nordasiens, Zonobiom VI–IX. Ökologie der Erde (Vol. 3, 2nd ed.). Stuttgart: Fischer.

    Google Scholar 

  • Breckle, S.-W., & Wucherer, W. (2005). Hat der Aralsee eine Zukunft (Has the Aral Sea a future). In: J. L. Lozan, H. Graßl, P. Hupfer, L. Menzel, & Ch.-D. Schönwiese (Hg), Warnsignal Klima: Genug Wasser für alle? (pp. 131–135). Hamburg: Wissenschaftliche Auswertungen, in Kooperation mit GEO (in German).

    Google Scholar 

  • Breckle, S.-W., & Wucherer, W. (2007). What will be the future of the Aral Sea? In J. L. Lozan (Ed.), Global change: Enough water for all? (pp. 142–146). Hamburg: Wissenschaftliche Auswertungen GEO.

    Google Scholar 

  • Breckle, S.-W. and Geldyeva, G.V. (2012). Dynamics of the Aral Sea in geological and historical times. In S.-W. Breckle, L. Dimeyeva, W. Wucherer, & N. P. Ogar (Eds.), Aralkum – A man-made desert. The desiccated floor of the Aral Sea (Central Asia). (Ecol Studies, Vol. 218, No. 12, pp. 271–299). Springer: Heidelberg.

    Google Scholar 

  • Breckle, S.-W., & Wucherer, W. (2012). Halophytes and salt desertification in the Aralkum area. In S.-W. Breckle, L. Dimeyeva, W. Wucherer, & N. P. Ogar (Eds.), Aralkum – A man-made desert. The desiccated floor of the Aral Sea (Central Asia) (Ecol Studies, Vol. 218, No. 12, pp. 271–299). Springer: Heidelberg.

    Google Scholar 

  • Breckle, S.-W., Agachanjanz, O., & Wucherer, W. (1998). Der Aralsee: Geoökologische Probleme. Naturwissenschaftliche Rundschau, 9, 347–355.

    Google Scholar 

  • Breckle, S.-W., Dimeyeva, L., Wucherer, W., Ogar, N.P. (Eds.) (2012). Aralkum – A man-made desert. The desiccated floor of the Aral Sea (Central Asia) (Ecol Studies, Vol. 218. 486 pp. Springer, Heidelberg.

    Google Scholar 

  • Breckle, S.-W., Wucherer, W., Agachanjanz, O., & Geldyev, B. (2001). The Aral Sea crisis region. In S.-W. Breckle, M. Veste, & W. Wucherer (Eds.), Sustainable land use in deserts (pp. 27–37). Berlin: Springer.

    Chapter  Google Scholar 

  • Budyko, M. I. (1956). Heat balance of the Earth surface (Teplpvoy balans zemnoy poverhnosti). Leningrad: Hydrometeoizdat. (Russian).

    Google Scholar 

  • Budyko, M. I. (1974). Change of climate (Izmenenie klimata). Leningrad: Hydrometeoizdat. (Russian).

    Google Scholar 

  • Bugaev, V. A. (Ed.). (1957). Sinopticheskie protsessy v Srednei Asii (Synoptical processes in Central Asia). Tashkent.

    Google Scholar 

  • Cherepanov, S. K. (1995). Vascular plants of Russia and adjacent states (the former USSR). Cambridge University Press, 516p. Cambridge.

    Google Scholar 

  • Curtin, D., Steppuhn, H., & Selles, F. (1993). Plant response to sulfate and chloride salinity: Growth and ionic relations. Soil Science Society of America Journal, 57, 1304–1310.

    Article  CAS  Google Scholar 

  • Dech, S. W., & Ressl, R. (1993). Die Verlandung des Aralsees (Drying out of the Aral Sea). Geographische Rundschau, 45(6), 345–352. (in German).

    Google Scholar 

  • Dimeyeva, L. A. (1990). Flora and vegetation of the Aral Sea coast (in the limits of Kazakhstan) (PhD dissertation, Institute of Botany, Academy of Science, Almaty).

    Google Scholar 

  • Dimeyeva, L. A. (2004). Flora and vegetation of the dry sea floor of the north-western bays of the Aral Sea. In Proceedings of international conference “development of botany in Central Asia and its integration into industry”, Tashkent, pp. 22–23.

    Google Scholar 

  • Dimeyeva, L. A., & Alimbetova, Z. (2006). Flora of nature reserve Barsa Kelmes. In Proceedings of the third international botanical conference, Almaty, pp. 46–48.

    Google Scholar 

  • Dimeyeva, L. A., & Alimbetova, Z. (2007). Analysis of flora of Nature Reserve Barsa Kelmes. Proceedings of Nature Reserve Barsa Kelmes, 2, 10–34.

    Google Scholar 

  • Dimeyeva, L. A., & Kurochkina, L. Ya. (2005). Botanical-geographic zoning of the Aral Sea coast. Scientific reading dedicated to 100-years anniversary of VBSochava. Irkutsk, pp. 125–130.

    Google Scholar 

  • Dimeyeva, L. A., & Kuznetsov, L. A. (1999). Flora of the Aral seaside belt. Botanical Journal St. Petersburg, 4(84), 39–52.

    Google Scholar 

  • Dimeyeva, L. A., Breckle, S.-W., & Wucherer, W. (2008). Flora of the Aralkum desert (in the limits of Kazakhstan). News of the National Academy of Sciences of the Republic of Kazakhstan, 6, 25–31.

    Google Scholar 

  • Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., et al. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 248pp.

    Google Scholar 

  • Erezhepov, S. E. (1978). Flora of Karakalpakia. Fan, Tashkent Flora of Kazakhstan (1956–1966) Vol 1–9 Alma-Ata Flora of USSR (1934–1963) Vol 1–31 Academy of Science URSS, Moskov, Leningrad.

    Google Scholar 

  • Flowers, T. J., & Yeo, A. R. (1995). Breeding for salinity resistance in crop plants: Where next? Australian Journal of Plant Physiology, 22, 875–884.

    Google Scholar 

  • Frey-Wissling, A. (1935). Die Stoffausscheidung der Höheren Pflanzen. Berlin: Springer.

    Book  Google Scholar 

  • Geldyeva, G.V., Budnikova, T., Gobernik I. et al. (1998). Assessment of desertification processes in natural complexes of the Syr-Dar’ya delta; Ecological research and monitoring of the Aral Sea delta. UNESCO Aral Sea Project, pp. 15–41. UNESCO, Paris.

    Google Scholar 

  • Geldyeva, G. V., Ogar, N. P., Scorintseva, I. B., Geldyev, B. V., et al. (2001). Monitoring and modeling of desertification processes in the Syr Dar’ya and Amu Dar’ya River deltas, for GIS. Ecological research and monitoring of the Aral Sea deltas. A basis for restoration. UNESCO Aral Sea Project. 1997–2000 Final Scientific reports. Book 2, pp. 119–153.

    Google Scholar 

  • Giese, E., Bahro, G., & Betke, D. (1998). Umweltzerstörungen in Trockengebieten Zentralasiens (Environment destruction in dry areas of Central Asia) (West- und Ost-Turkestan). In Ursachen, Auswirkungen, Maßnahmen (Causes, consequences, measures) (Vol. 125). Stuttgart: Erdkundliches Wissen. (in German).

    Google Scholar 

  • Glazovskii, N.F. (1990). Aral Sea crisis. Nauka: Moscow. (Russ.).

    Google Scholar 

  • Glazovskii, N. F., & Orlovskii, N. S. (1996). The problems of the desertification and droughts in GUS and the ways of their solution. Izvestiya Akademii Nauk SSR, Seriya geograficheskaya, 4, 7–23. (in Russian).

    Google Scholar 

  • Grigoriev, A. A., & Budyko, M. I. (1959). Classification of climates USSR (Klassiphikaziya klimatov SSSR). Informations of academy of sciences USSR. A geographical series. Izvestiya akademii nauk SSSR. Seriya geographicheskaya. Moscow, 3, 3–18. (Russian).

    Google Scholar 

  • Hedenström, H., & Breckle, S.-W. (1974). Obligate halophytes? A test with tissue culture methods. Zeitschrift für Pflanzenphysiologie, 74, 183–185.

    Article  Google Scholar 

  • Hedge, I., Akhani, H., Freitag, H., Kothe-Heinrich, G., et al. (1997). Chenopodiaceae. In K. H. Rechinger (Ed.), Flora Iranica 172. Graz: Akademische Druck- und Verlagsanstalt.

    Google Scholar 

  • Klötzli, S. (1997). Umweltzerstörung und Politik in Zentralasien. Eine ökoregionale Systemuntersuchung (Environment degradation and politic in Central Asia. An eco-regional system investigation). Bern: Lang (in German).

    Google Scholar 

  • Kurochkina, L. (1978). Psammophytic desert vegetation of Kazakhstan. Alma-Ata: Nauka.

    Google Scholar 

  • Kurochkina, L. Ya. (1979). Botanical survey in the Aral Sea basin. Probl Osvo Pustyn, 2, 9–17 (Russ).

    Google Scholar 

  • Kurochkina, L. Y., Makulbekova, G. B., Wucherer, W., & Malaisarova, A. N. (1983). Vegetation of the dry seafloor of the Aral Sea. State of waters and the dry seafloor of the Aral Sea (pp. 91–127). Almaty: Kazak Academy of Science.

    Google Scholar 

  • Kuznetsov, L. A. (1995). Flora of Barsa kelmes Island. Biological and nature conservation problems of the Aral Sea and the coast. In: Proceedings of Russian Institute of Zoology, St Petersburg, pp. 106–128.

    Google Scholar 

  • Lavrenko, E. M. (1962). Main features of botanical geography of deserts in Eurasia and North Africa. Moscow-Leningrad: Academy of Science.

    Google Scholar 

  • Lavrenko, E. M. (1970). Regionalization of Black Sea – Kazakhstan subregion of Eurasian steppe region. Botanical Journal, 55, 5.

    Google Scholar 

  • Letolle, R., & Mainguet, M. (1996). Der Aralsee. Eine ökologische Katastrophe (The Aral Sea. An ecological disaster). Berlin: Springer (in German).

    Google Scholar 

  • Litwinov, D. (1905). Plants of the Aral Sea coast. Proceedings of Turkest Russian Geographical Science, 5, 1–41.

    Google Scholar 

  • Lvov, V. P. (1959). The Aral Sea level fluctuations in the last 100 years. Tr GOIN, 46, 80–114. (in Russian).

    Google Scholar 

  • Micklin, P. (2007). The Aral Sea disaster. Annual Review of Earth and Planetary Sciences, 35, 47–72.

    Article  CAS  Google Scholar 

  • Micklin, P. (2010). The past, present, and future Aral Sea. Lakes & Reservoirs: Research and Management, 15, 193–213.

    Article  Google Scholar 

  • Micklin, P., & Aladin, N. V. (2008). Reclaiming the Aral Sea. Scientific American, 298, 64–71.

    Article  CAS  PubMed  Google Scholar 

  • Mirazai, N. A., & Breckle, S.-W. (1978). Untersuchungen an afghanischen Halophyten I. Salzverh€altnisse in Chenopodiaceen Nord-Afghanistans. Botanische Jahrbücher für Systematik, 99, 565–578.

    Google Scholar 

  • Moore, R. T., Breckle, S.-W., & Caldwell, M. M. (1972). Mineral ion composition and osmotic relations of Atriplex confertifolia and Eurotia lanata. Oecologia, 11, 67–78.

    Article  PubMed  Google Scholar 

  • Munns, R. (1993). Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant, Cell & Environment, 16, 15–24.

    Article  CAS  Google Scholar 

  • Munns, R., Schachtmann, D. P., & Condon, A. G. (1995). The significance of a two-phase growth response to salinity in wheat and barley. Australian Journal of Plant Physiology, 22, 561–569.

    CAS  Google Scholar 

  • Naik, P. S., & Widholm, J. M. (1993). Comparison of tissue culture and whole plant response to salinity in potato. Plant Cell, Tissue and Organ Culture, 33, 273–280.

    Article  CAS  Google Scholar 

  • Orlova, M. I., Aladin, N. V., Filippov, A. A., et al. (1998). Living associations of the northern part of the Aral Sea in 1993–1995. In: Bruk D et al. (Eds) Ecological Research and Monitoring of the Aral Sea Deltas: A Basis for Restoration, pp. 95–137. UNESCO, Aral Sea Project 1992–1996. Final Scientific Results. Paris.

    Google Scholar 

  • Peneva, E.L., Stanev, E.V., Stanychni, S.V., Salokhiddinov, A. and Stulina, G. (2004). The recent evolution of the Aral Sea level and water properties: analysis of satellite, gauge and hydrometeorological data. J. Marine Syst. 47, 11–24.

    Google Scholar 

  • Popov, M. G. (1927). Salient features of the history of development of the flora of Middle Asia. Byull. Sredne-Asiatk. Gosud, University of Tashkent, 15, 239–292.

    Google Scholar 

  • Popp, M. (1985). Osmotic adaptation in Australian mangroves. Vegetatio, 61, 247–253.

    Article  Google Scholar 

  • Rachkovskaya, E. I. (1986). Flora Gobi desert Moskow (pp. 80–84). Moskow: Nauka.

    Google Scholar 

  • Rachkovskaya, E. I., & Safronova, I. N. (1994). The new map of botanical-geographic regionalization of Kazakhstan and Middle Asia in the limits of the desert area (pp. 33–49). St Petersburg: Geobotanical Mapping 1992, Komarov Botanical Institute.

    Google Scholar 

  • Rachkovskaya, E. I., Volkova, E. A., & Khramtsov, V. N. (Eds.). (2003). Botanical geography of Kazakhstan and Middle Asia (desert region). St Petersburg: Komarov Botanical Institute of Russian Academy of sciences.

    Google Scholar 

  • Ramani, S., & Apte, S. K. (1997). Transient expression of multiple genes in salinity-stressed young seedlings of rice (Oryza sativa L.) cv. Bura Rata. Biochemical and Biophysical Research Communications, 233, 663–667.

    Article  CAS  PubMed  Google Scholar 

  • Raunkiaer, C. (1910). Statistik der Lebensformen als Grundlage für die biologische Pflanzengeographie. Beihefte zum Botanischen Centralblatt, 27(II), 171–206.

    Google Scholar 

  • Reimann, C., & Breckle, S.-W. (1993). Sodium relations in Chenopodiaceae, a comparative approach. Plant, Cell & Environment, 16, 323–328.

    Article  CAS  Google Scholar 

  • Rubanov, I. V., Ishniyazov, D. P., Baskakova, M. A., & Chistyakov, P. A. (1987). Geology of the Aral Sea. Tashkent: Fan.

    Google Scholar 

  • Schirmer, U., & Breckle, S.-W. (1982). The role of bladders for salt removal in some Chenopodiaceae (mainly Atriplex species). In D. N. Sen & K. S. Rajpurohit (Eds.), Tasks for vegetation science (Vol. 2, pp. 215–231). The Hague: Junk.

    Google Scholar 

  • Sherbaev, B. (1982). Composition of flora in the southern coast of the Aral Sea. Botanical Journal, 67, 1372–1377.

    Google Scholar 

  • Sherimbetov, S. (2008a). Primary analysis on floristic composition of the Southern Aralkum. Uzbek Biological Journal, 2, 37–41.

    Google Scholar 

  • Sherimbetov, S. (2008b). Main dominant plant species of flora of the South-eastern part of the Aralkum. Proceedings of National Academy of Sciences of the Uzbekistan, 3, 86–88.

    Google Scholar 

  • Sherimbetov, S. (2008c). Some results on floristic investigations in the south-western part of the Aral Sea dry seabed. In Fundamental and applied problems of Botany in XXI century, Petrozavodsk, Vol. 3, pp. 192–193.

    Google Scholar 

  • Sherimbetov, S., Pratov, U. P., & Mukhamedov, R. S. (2015). Classification of plants in the south drying bottom of the Aral Sea. Bestnik SPbGU, 3, 39–50.

    Google Scholar 

  • Shomer-Ilan, A., Nissenbaum, A., & Waisel, Y. (1981). Photosynthetic pathways and the ecological distribution of the Chenopodiaceae in Israel. Oecologia, 48, 244–248.

    Article  PubMed  Google Scholar 

  • Stanev, E.V., Peneva, E.L., Mercier, F. (2004). Temporal and spatial patterns of sea level in inland basins: recent events in the Aral Sea. Geophys. Res. Lett. 31: L15505. https://doi.org/10.1028/2004GL020478.

  • Svitoch, A. A. (2009). History of the last Aral Sea (Russ.). Arid Ecosystems (Moscow), 15, 5–17.

    Google Scholar 

  • Svitoch, A. A. (2010). Paleogeographical history of the Aral Sea. In Handbook of environmental chemistry (Vol. 7, pp. 25–44). Springer: Heidelberg.

    Google Scholar 

  • Teakle, L. J. H. (1937). The salt (sodium chloride) content of rain water. Journal of the Department of Agriculture, Western Australia, 14, 115–133.

    CAS  Google Scholar 

  • Tobe, K., Li, X., & Omasa, K. (2004). Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae). Seed Science Research, 14, 345–353.

    Article  CAS  Google Scholar 

  • Tobe, K., Li, X., & Omasa, K. (2005). Effects of irrigation on seedlings emergence and seedlings survival of a desert shrub Haloxylon ammodendron (Chenopodiaceae). Australian Journal of Botany, 53, 529–534.

    Article  Google Scholar 

  • Ungar, I. A. (1996). Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). American Journal of Botany, 83, 604–607.

    Article  Google Scholar 

  • von Willert, D. J. (1968). Tageswassermengen des Ionengehalts in Salicornia europaea in Abhängigkeit vom Standort und von der Überflutung. Berichte der Deutschen Botanischen Gesellschaft, 81, 442–449.

    Google Scholar 

  • Waisel, Y. (1972). Biology of halophytes. New York: Academic.

    Google Scholar 

  • Waisel, Y. (2001). Salinity: A major enemy of sustainable agriculture. In S. W. Breckle, M. Veste, & W. Wucherer (Eds.), Sustainable land use in deserts (pp. 166–173). Berlin: Springer.

    Chapter  Google Scholar 

  • Walter, H. (1968). Die Vegetation der Erde in ökophysiologischer Betrachtung. II. Die gemäßigten und arktischen Zonen. Stuttgart: Fischer.

    Google Scholar 

  • Walter, H. (1974). Die Vegetation Osteuropas, Nord- und Zentralasiens. Vegetationsmonographien der einzelnen Großräume (Vol. 7). Stuttgart: Fischer.

    Google Scholar 

  • Walter, H., & Lieth, H. (1967). Klimadiagramm-Weltatlas. Stuttgart: Fischer.

    Google Scholar 

  • Winicov, I., & Bastola, D. R. (1997). Salt tolerance in crop plants; new approaches through tissue culture and gene regulation. Acta Physiologiae Plantarum, 19, 435–449.

    Article  CAS  Google Scholar 

  • Wucherer, W. (1986). Singenez rastitel’nosti osushennogo dna morya (Vegetation dynamics on the dry sea floor of the Aral Sea) (PhD Dissertation, Almaty-Tomsk).

    Google Scholar 

  • Wucherer, W. (1990). Vegetation development on the new habitats in the desert. Gylym/Alma–Ata, 214 pp (Russ).

    Google Scholar 

  • Wucherer, W., Breckle, S.-W., & Dimeyeva, L. (2001). Flora of the dry sea floor of the Aral Sea. In S.-W. Breckle, M. Veste, & W. Wucherer (Eds.), Sustainable land-use in deserts (pp. 38–51). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Wucherer, W., Breckle, S.-W., & Buras, A. (2012). Primary succession in the Aralkum. In S.-W. Breckle, L. Dimeyeva, W. Wucherer, & N. P. Ogar (Eds.), Aralkum – A man-made desert. The desiccated floor of the Aral Sea (Central Asia) (Ecological Studies, Vol. 218, No. 10, pp. 161–198). Berlin/Heidelberg: Springer Berlin Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-W. Breckle .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Breckle, SW. (2021). An Ecological Overview of Halophytes from the Aralkum Area. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_15

Download citation

Publish with us

Policies and ethics