Skip to main content
Log in

Phylogeny of Neolitsea (Lauraceae) inferred from Bayesian analysis of nrDNA ITS and ETS sequences

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

ITS and ETS-based sequence analyses of 29 Neolitsea, six Actinodaphne and five outgroup `core' Laureae taxa show that Neolitsea is monophyletic with two large subclades, whereas most of the sampled Actinodaphne are paraphyletic below it. Inflorescence features appear to be among the more reliable morphological characters for explaining relationships between Neolitsea and other genera within the `core' Laureae, with the Neolitsea/Actinodaphne clade defined by inflorescences lacking vegetative terminal buds in the main axis. Although the relationships within Neolitsea are still poorly resolved, there is enough structure to suggest that the genus seems to divide into two groups based on fruit shape: elliptic or ovoid, versus globose, although more evidence (both molecular and morphological) and wider taxon sampling are required to confirm this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen CK (1938). Studies in the Lauraceae. I. Chinese and Indo-Chinese Species of Litsea, Neolitsea and Actinodaphne. Ann Missouri Bot Gard 25: 361–434

    Article  Google Scholar 

  • Baldwin BG (1992). Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plant: an example from the Compositae. Molec Phylogenet Evol 1: 3–16

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BG and Markos S (1998). Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS Trees of Calycadenia (Compositae). Molec Phylogenet Evol 10: 449–463

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ, Soltis PS, Kuzoff RK, Ko SC, O'Kane SL Jr, Schaal BA, Liu ZL, Sinclair JB, Fangan BM, Stedje B, Stabbetorp OE, Jensen ES, Jakobsen KS, Mes THM and Hart HT (1995). The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82: 247–277

    Article  Google Scholar 

  • Barrett M, Donoghue MJ and Sober E (1991). Against consensus. Syst Zool 40: 486–493

    Article  Google Scholar 

  • Bena G, Prosperi JM, Lejeune B and Olivieri I (1998). Evolution of annual species of the genus Medicago: a molecular phylogenetic approach. Molec Phylogenet Evol 9: 552–559

    Article  PubMed  CAS  Google Scholar 

  • Bentham G (1880). Laurineae. In: Bentham, G and Hooker, JD (eds) Genera Plantarum, vol 3, pp 146–168. L. Reeve, London

    Google Scholar 

  • Buckler ES and Holtsford TP (1996). Zea systematics: ribosomal ITS evidence. Molec Biol Evol 13: 612–622

    PubMed  CAS  Google Scholar 

  • Buckler ES, Ippolito A and Holtsford TP (1997). The evolution for ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145: 821–832

    PubMed  CAS  Google Scholar 

  • Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL and Wadell PJ (1993). Partitioning and combining data in phylogenetic analysis. Syst Biol 42: 384–397

    Article  Google Scholar 

  • Chanderbali AS, van der Werff H and Renner SS (2001). Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann Missouri Bot Gard 88: 104–134

    Article  Google Scholar 

  • Cunningham CW (1997). Can tree incongruence tests predict when data should be combined?. Molec Biol Evol 14: 733–740

    PubMed  CAS  Google Scholar 

  • De Queiroz A, Donoghue MJ and Kim J (1995). Separate versus combined analysis of phylogenetic evidence. Ann Rev Ecol Syst 26: 657–681

    Article  Google Scholar 

  • Dowton M and Austin AD (2002). Increased congruence does not necessarily indicate increased phylogenetic accuracy – the behaviour of the incongruence length difference test in mixed-model analyses. Syst Biol 51: 19–31

    Article  PubMed  Google Scholar 

  • Doyle JJ and Doyle JS (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11–15

    Google Scholar 

  • Farris JS, Källersjö M, Kluge AG and Bult C (1995). Testing significance of incongruence. Cladistics 10: 315–319

    Article  Google Scholar 

  • Gentry AH (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Missouri Bot Gard 75: 1–34

    Article  Google Scholar 

  • Good L, Intine RVA and Nazar RN (1997). Interdependence in the processing of ribosomal RNAs in Schizosaccharomyces pombe. J Molec Biol 273: 782–788

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Series 41: 95–98

    CAS  Google Scholar 

  • Hitchen J, Ivakine E, Melekhovets YF, Lalev A and Nazar RN (1997). Structural features in the 3′ external transcribed spacer affecting intragenic processing of yeast rRNA. J Molec Biol 274: 481–490

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP and Ronquist F (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R and Bollback JP (2001). Evolution – Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Hyland BPM (1989). A revision of Lauraceae in Australia (excluding Cassytha). Austral Syst Bot 2: 135–367

    Article  Google Scholar 

  • Klücking EP (1987). Leaf venation patterns, vol 2. Lauraceae. J Cramer, Berlin

    Google Scholar 

  • Kluge AJ (1989). A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst Zool 38: 7–25

    Article  Google Scholar 

  • Kostermans AJGH (1957). Lauraceae. Pengumuman Balai Besar Penjelidikan Kehutanan Indonesia 57: 1–64

    Google Scholar 

  • Lanyon SM (1993). Phylogentic frameworks: towards a firmer foundation for the comparative approach. Bot J Linn Soc 49: 45–61

    Article  Google Scholar 

  • Li H-W (1985). Parallel evolution in Litsea and Lindera of Lauraceae. Acta Bot Yunnan 7: 129–135

    Google Scholar 

  • Li H-W, Pai PY, Lee SK, Wei FN, Wei YT, Yang YC, Huang PH, Tsui HP, Shia ZD and Li JL (1984). Lauraceae. In: Li, H-W (eds) Flora of Reipublicae Popularis Sinicae, vol 31. Science Press, Beijing

    Google Scholar 

  • Li J and Christophel DC (2000). Systematic relationships within the Litsea complex (Lauraceae): a cladisitic analysis based on morphological and leaf cuticle data. Austral Syst Bot 13: 1–13

    Article  Google Scholar 

  • Li J, Christophel DC, Conran JG and Li H-W (2004). Phylogenetic relationships within the Litsea complex (Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS regions. Pl Syst Evol 246: 19–34

    Article  CAS  Google Scholar 

  • Li Z-M, Li J and Li X-W (2006). Polyphyly of the genus Actinodaphne (Lauraceae) inferred from the analyses of nrDNA ITS and ETS sequences. Acta Phytotax Sinica 44: 272–285

    Article  Google Scholar 

  • Liao JC (1988). The taxonomic revision of the family Lauraceae in Taiwan. Mem Coll Agric Natl Taiwan Univ 22: 16–18 [Chinese with English summary]

    Google Scholar 

  • Maddison WP and Maddison DR (1996). MacClade Version 3.06. Sinauer Assoc Inc Publ, Sunderland

    Google Scholar 

  • Merrill ED (1906). Neolitsea (Benth.) Merr. Philippine J Sci 1 (Suppl.): 56–57

    Google Scholar 

  • Miyamoto MM and Fitch WM (1995). Testing species phylogenies and phylogenetic methods with congruence. Syst Biol 44: 64–76

    Article  Google Scholar 

  • Musters W, Boon K, van der Sande CAFM, van Heerikhuizen H and Planta RJ (1990). Functional analysis of transcribed spacers of yeast ribosomal DNA. EMBO J 9: 3989–3996

    PubMed  CAS  Google Scholar 

  • Nixon KC (2002). WinClada Version 1.00.08. Published by the author, Ithaca

    Google Scholar 

  • Nylander JAA, Ronquist F, Huelsenbeck JP and Nieves-Aldrey JL (2004). Bayesian phylogenetic inference of combined data. Syst Biol 53: 47–67

    Article  PubMed  Google Scholar 

  • Posada D and Crandall KA (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818

    Article  PubMed  CAS  Google Scholar 

  • Rohwer JG (1993). Lauraceae. In: Kubitzki, K, Rohwer, JG and Bittrich, V (eds) The families and genera of vascular plants, vol 2, pp 366–391. Springer, Berlin

    Google Scholar 

  • Rohwer JG (2000). Toward a phylogenetic classification of the Lauraceae: evidence from matK sequences. Syst Bot 25: 60–71

    Article  Google Scholar 

  • Swofford DL (2002). PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), Version 4.0b10. Sinauer and Associates, Sunderland

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24: 4876–4882

    Article  Google Scholar 

  • Tsui HP (1987). A study on the system of Lindera. Acta Phytotax Sinica 25: 161–171

    Google Scholar 

  • van der Werff H (2001). An annotated key to the genera of Lauraceae in the Flora Malesiana region. Blumea 46: 125–140

    Google Scholar 

  • Werff H and van der Richter HG (1996). Toward an improved classification of Lauraceae. Ann Missouri Bot Gard 83: 409–418

    Article  Google Scholar 

  • White TJ, Bruns TD, Lee SB and Taylor JW (1990). Amplification and direct sequencing of ribosomal RNA genes and the internal transcribed spacer in fungi. In: Innis, MA, Gelfand, GH, Sninsky, JJ, and White, TJ (eds) PCR – Protocols and applications – A laboratory manual, pp 315–322. Academic, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Li, J., Conran, J. et al. Phylogeny of Neolitsea (Lauraceae) inferred from Bayesian analysis of nrDNA ITS and ETS sequences. Plant Syst. Evol. 269, 203–221 (2007). https://doi.org/10.1007/s00606-007-0580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0580-8

Keywords

Navigation