Skip to main content

Ecological Genomics and Evolution of Trichoderma reesei

  • Protocol
  • First Online:
Trichoderma reesei

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2234))

Abstract

The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) is an efficient industrial cell factory for the production of cellulolytic enzymes used for biofuel and other applications. Therefore, researches addressing T. reesei are relatively advanced compared to other Trichoderma spp. because of the significant bulk of available knowledge, multiple genomic data, and gene manipulation techniques. However, the established role of T. reesei in industry has resulted in a frequently biased understanding of the biology of this fungus. Thus, the recent studies unexpectedly show that the superior cellulolytic activity of T. reesei and other Trichoderma species evolved due to multiple lateral gene transfer events, while the innate ability to parasitize other fungi (mycoparasitism) was maintained in the genus, including T. reesei. In this chapter, we will follow the concept of ecological genomics and describe the ecology, distribution, and evolution of T. reesei, as well as critically discuss several common misconceptions that originate from the success of this species in applied sciences and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma A, Choudhary J, Singh S, Singh B, Kuhad RC, Kumar A, Nain L (2019) Cellulose as potential feedstock for cellulase enzyme production: versatility and properties of various cellulosic biomasses. In: Srivastava N, Srivastava M, Mishra PK, Ramteke PW, Singh RL (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 11–27

    Chapter  Google Scholar 

  2. Penttilä MC, Limon C, Nevalainen H (2004) Molecular biology of Trichoderma and biotechnological applications. In: Arora DK (ed) Mycology, vol 20, 2nd edn. Marcel Dekker, New York, pp 413–427

    Google Scholar 

  3. Seiboth B, Ivanova C, Seidl-Seiboth V (2011) Trichoderma reesei: a fungal enzyme producer for cellulosic biofuels. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  4. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30—thirty years of strain improvement. Microbiology 158(Pt 1):58–68

    Article  CAS  PubMed  Google Scholar 

  5. Druzhinina IS, Kubicek CP (2017) Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol 10(6):1485–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Derntl C, Mach RL, Mach-Aigner AR (2019) Fusion transcription factors for strong, constitutive expression of cellulases and xylanases in Trichoderma reesei. Biotechnol Biofuels 12:231–231

    Article  PubMed  PubMed Central  Google Scholar 

  7. Derntl C, Kluger B, Bueschl C, Schuhmacher R, Mach RL, Mach-Aigner AR (2017) Transcription factor Xpp1 is a switch between primary and secondary fungal metabolism. Proc Natl Acad Sci U S A 114(4):E560–e569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ungerer MC, Johnson LC, Herman MA (2008) Ecological genomics: understanding gene and genome function in the natural environment. Heredity 100(2):178–183

    Article  CAS  PubMed  Google Scholar 

  9. Druzhinina IS, Kubicek CP (2016) Familiar stranger: ecological genomics of the model saprotroph and industrial enzyme producer Trichoderma reesei breaks the stereotypes. Adv Appl Microbiol 95:69–147

    Article  CAS  PubMed  Google Scholar 

  10. Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73(2):269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reese E (1975) Enzyme systems for cellulose. Biotechnol Bioeng Symp 5:77–80

    CAS  Google Scholar 

  12. Mandels M, Eveleigh DE (2009) Reflections on the United States military 1941-1987. Biotechnol Biofuels 2(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  13. Simmons EG (1977) Classification of some cellulase-producing Trichoderma species. In: Simmons EG (ed) Second International Mycological Congress. p. 618

    Google Scholar 

  14. Rifai MA (1969) A revision of the genus Trichoderma. Mycological papers, no 116. Commonwealth Mycological Institute, Kew

    Google Scholar 

  15. Bissett J (1984) A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can J Bot 62(5):924–931

    Article  Google Scholar 

  16. Morawetz R, Gruber F, Messner R, Kubicek CP (1992) Presence, transcription and translation of cellobiohydrolase genes in several Trichoderma species. Curr Genet 21(1):31–36

    Article  CAS  Google Scholar 

  17. Meyer W, Morawetz R, Börner T, Kubicek CP (1992) The use of DNA-fingerprint analysis in the classification of some species of the Trichoderma aggregate. Curr Genet 21(1):27–30

    Article  CAS  Google Scholar 

  18. Samuels G, Petrini O, Manguin S (1994) Morphological and macromolecular characterization of Hypocrea schweinitzii and its Trichoderma anamorph. Mycologia 86:421–435

    Article  CAS  Google Scholar 

  19. Leuchtmann A, Petrini O, Samuels GJ (1996) Isozyme subgroups in Trichoderma section Longibrachiatum. Mycologia 88(3):384–394

    Article  CAS  Google Scholar 

  20. Bissett J, Gams W, Jaklitsch W, Samuels GJ (2015) Accepted Trichoderma names in the year 2015. IMA Fungus 6(2):263–295

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Wingfield MJ, Abaci O, Aime C, Asan A, Bai F-Y, de Beer ZW, Begerow D, Berikten D, Boekhout T, Buchanan PK, Burgess T, Buzina W, Cai L, Cannon PF, Crane JL, Damm U, Daniel H-M, van Diepeningen AD, Druzhinina I, Dyer PS, Eberhardt U, Fell JW, Frisvad JC, Geiser DM, Geml J, Glienke C, Gräfenhan T, Groenewald JZ, Groenewald M, de Gruyter J, Guého-Kellermann E, Guo L-D, Hibbett DS, Hong S-B, de Hoog GS, Houbraken J, Huhndorf SM, Hyde KD, Ismail A, Johnston PR, Kadaifciler DG, Kirk PM, Kõljalg U, Kurtzman CP, Lagneau P-E, Lévesque CA, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh MJ, Norvell L, Ozerskaya SM, Oziç R, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, Schnürer J, Schroers H-J, Shivas R, Slippers B, Spierenburg H, Takashima M, Taşkın E, Thines M, Thrane U, Uztan AH, van Raak M, Varga J, Vasco A, Verkley G, Videira SIR, de Vries RP, Weir BS, Yilmaz N, Yurkov A, Zhang N (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2(1):105–112

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gams W, Baral H-O, Jaklitsch WM, Kirschner R, Stadler M (2012) Clarifications needed concerning the new Article 59 dealing with pleomorphic fungi. IMA Fungus 3(2):175–177

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rossman AY, Seifert KA, Samuels GJ, Minnis AM, Schroers H-J, Lombard L, Crous PW, Põldmaa K, Cannon PF, Summerbell RC, Geiser DM, Zhuang W-Y, Hirooka Y, Herrera C, Salgado-Salazar C, Chaverri P (2013) Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus 4(1):41–51

    Article  PubMed  PubMed Central  Google Scholar 

  24. Samuels GJ (2014) Proposals to conserve the names Trichoderma catoptron against Hypocrea catoptron, H. sulfurella, and H. flavovirens; T. citrinoviride against Sphaeria schweinitzii (H. schweinitzii), S. contorta, H. repanda, and H. minima; H. lutea against Gliocladium deliquescens (T. deliquescens) with a recommendation to reject the proposal (Cf. Art. 57.2); H. pezizoides (T. pezizoides) against T. pezizoideum; and T. reesei against H. jecorina (Ascomycota: Pezizomycotina: Sordariomycetes: Hypocreales: Hypocreaceae). Taxon 63(4):936–938

    Article  Google Scholar 

  25. Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47(2):55–64

    Article  CAS  Google Scholar 

  26. Druzhinina IS, Komoń-Zelazowska M, Ismaiel A, Jaklitsch W, Mullaw T, Samuels GJ, Kubicek CP (2012) Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genet Biol 49(5):358–368

    Google Scholar 

  27. Samuels GJ, Ismaiel A, Mulaw TB, Szakacs G, Druzhinina IS, Kubicek CP, Jaklitsch WM (2012) The Longibrachiatum Clade of Trichoderma: a revision with new species. Fungal Divers 55(1):77–108

    Google Scholar 

  28. Sung G-H, Poinar GO, Spatafora JW (2008) The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal–arthropod symbioses. Mol Phylogenet Evol 49(2):495–502

    Google Scholar 

  29. Kubicek CP, Steindorff AS, Chenthamara K, Manganiello G, Henrissat B, Zhang J, Cai F, Kopchinskiy AG, Kubicek EM, Kuo A, Baroncelli R, Sarrocco S, Noronha EF, Vannacci G, Shen Q, Grigoriev IV, Druzhinina IS (2019) Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics 20(1):485

    Google Scholar 

  30. Chenthamara K (2018) Using comparative genomics to link phenotypes to genotypes of the mycotrophic fungus Trichoderma. TU Wien

    Google Scholar 

  31. Zhang N, Castlebury L, Miller A, Huhndorf SM, Schoch C, Seifert K, Rossman A, Rogers J, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung G-H (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1087

    Google Scholar 

  32. Schigel D (2016) Beetles versus fungi: trophic interactions in boreal forests. In. pp 269–278

    Google Scholar 

  33. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Dohren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gomez-Rodriguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernandez-Onate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lubeck M, Lubeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12(4):R40

    Google Scholar 

  34. de Man TJ, Stajich JE, Kubicek CP, Teiling C, Chenthamara K, Atanasova L, Druzhinina IS, Levenkova N, Birnbaum SS, Barribeau SM, Bozick BA, Suen G, Currie CR, Gerardo NM (2016) Small genome of the fungus Escovopsis weberi, a specialized disease agent of ant agriculture. Proc Natl Acad Sci U S A 113(13):3567–3572

    Google Scholar 

  35. Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang D, Miao Y, Rahimi MJ, Grujic M, Cai F, Pourmehdi S, Salim KA, Pretzer C, Kopchinskiy AG, Henrissat B, Kuo A, Hundley H, Wang M, Aerts A, Salamov A, Lipzen A, LaButti K, Barry K, Grigoriev IV, Shen Q, Kubicek CP (2018) Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet 14(4):e1007322

    Google Scholar 

  36. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749–759

    Google Scholar 

  37. Jaklitsch WM (2011) European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers 48(1):1–250

    Google Scholar 

  38. Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91

    Google Scholar 

  39. Friedl MA, & Druzhinina, I. S (2012) Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development. Microbiology 158(Pt 1):69–83

    Google Scholar 

  40. Druzhinina I, Kubicek C (2013) Ecological genomics of Trichoderma. In: Martin F (ed) The Ecological Genomics of Fungi. John Wiley & Sons, Inc., pp 89–116

    Google Scholar 

  41. Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, Decaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, Munsterkotter M, Nelson D, O’Donnell K, Ouellet T, Qi W, Quesneville H, Roncero MI, Seong KY, Tetko IV, Urban M, Waalwijk C, Ward TJ, Yao J, Birren BW, Kistler HC (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317(5843):1400–1402

    Google Scholar 

  42. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

    Google Scholar 

  43. Sone T, Suto M, Tomita F (1993) Host species-specific repetitive DNA sequence in the genome of Magnaporthe grisea, the rice blast fungus. Biosci Biotechnol Biochem 57(7):1228–1230

    Google Scholar 

  44. Iwakuma H, Koyama Y, Miyachi A, Nasukawa M, Matsumoto H, Yano S, Ogihara J, Kasumi T (2016) Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. Biosci Biotechnol Biochem 80(3):486–492

    Google Scholar 

  45. Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB (2013) Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics 14:541

    Google Scholar 

  46. Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49(15):3305–3316

    Google Scholar 

  47. Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T (2005) Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng 22(1–3):89–94

    Google Scholar 

  48. Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, Martin J, Druzhinina IS, Mathis H, Monot F, Seiboth B, Cherry B, Rey M, Berka R, Kubicek CP, Baker SE, Margeot A (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106(38):16151–16156

    Google Scholar 

  49. Vitikainen M, Arvas M, Pakula T, Oja M, Penttila M, Saloheimo M (2010) Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. BMC Genomics 11:441

    Google Scholar 

  50. Porciuncula Jde O, Furukawa T, Mori K, Shida Y, Hirakawa H, Tashiro K, Kuhara S, Nakagawa S, Morikawa Y, Ogasawara W (2013) Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan. Biosci Biotechnol Biochem 77(3):534–543

    Google Scholar 

  51. Lichius A, Bidard F, Buchholz F, Le Crom S, Martin J, Schackwitz W, Austerlitz T, Grigoriev IV, Baker SE, Margeot A, Seiboth B, Kubicek CP (2015) Erratum to: Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype. BMC Genomics 16(1):725

    Google Scholar 

  52. Linke R, Thallinger GG, Haarmann T, Eidner J, Schreiter M, Lorenz P, Seiboth B, Kubicek CP (2015) Restoration of female fertility in Trichoderma reesei QM6a provides the basis for inbreeding in this industrial cellulase producing fungus. Biotechnol Biofuels 8:155

    Google Scholar 

  53. Tisch D, Pomraning KR, Collett JR, Freitag M, Baker SE, Chen CL, Hsu PW, Chuang YC, Schuster A, Dattenbock C, Stappler E, Sulyok M, Bohmdorfer S, Oberlerchner J, Wang TF, Schmoll M (2017) Omics analyses of Trichoderma reesei CBS999.97 and QM6a indicate the relevance of female fertility to carbohydrate-active enzyme and transporter levels. Appl Environ Microbiol 83(22)

    Google Scholar 

  54. Marie-Nelly H, Marbouty M, Cournac A, Flot JF, Liti G, Parodi DP, Syan S, Guillen N, Margeot A, Zimmer C, Koszul R (2014) High-quality genome (re)assembly using chromosomal contact data. Nat Commun 5:5695

    Google Scholar 

  55. Druzhinina IS, Kopchinskiy AG, Kubicek EM, Kubicek CP (2016) A complete annotation of the chromosomes of the cellulase producer Trichoderma reesei provides insights in gene clusters, their expression and reveals genes required for fitness. Biotechnol Biofuels 9:75

    Google Scholar 

  56. Li WC, Huang CH, Chen CL, Chuang YC, Tung SY, Wang TF (2017) Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnol Biofuels 10:170

    Google Scholar 

  57. Jourdier E, Baudry L, Poggi-Parodi D, Vicq Y, Koszul R, Margeot A, Marbouty M, Bidard F (2017) Proximity ligation scaffolding and comparison of two Trichoderma reesei strains genomes. Biotechnol Biofuels 10:151

    Google Scholar 

  58. Jourdier E, Baudry L, Poggi-Parodi D, Vicq Y, Koszul R, Margeot A, Marbouty M, Bidard F (2018) Correction to: Proximity ligation scaffolding and comparison of two Trichoderma reesei strains genomes. Biotechnol Biofuels 11:163

    Google Scholar 

  59. Sun Z, Blanchard JL (2014) Strong genome-wide selection early in the evolution of Prochlorococcus resulted in a reduced genome through the loss of a large number of small effect genes. PLoS One 9(3):e88837

    Google Scholar 

  60. Tautz D, Domazet-Loso T (2011) The evolutionary origin of orphan genes. Nat Rev Genet 12(10):692–702

    Google Scholar 

  61. Bischof R, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP (2013) Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuels 6(1):127

    Google Scholar 

  62. Carvunis AR, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N, Charloteaux B, Hidalgo CA, Barbette J, Santhanam B, Brar GA, Weissman JS, Regev A, Thierry-Mieg N, Cusick ME, Vidal M (2012) Proto-genes and de novo gene birth. Nature 487(7407):370–374

    Google Scholar 

  63. Atanasova L, Le Crom S, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 14:121

    Google Scholar 

  64. Druzhinina IS, Komon-Zelazowska M, Atanasova L, Seidl V, Kubicek CP (2010) Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLoS One 5(2):e9191

    Google Scholar 

  65. Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, Van Montagu M, Herrera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8(3):603–613

    Google Scholar 

  66. Carsolio C, Gutierrez A, Jimenez B, Van Montagu M, Herrera-Estrella A (1994) Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci U S A 91(23):10903–10907

    Google Scholar 

  67. de la Cruz J, Pintor-Toro JA, Benitez T, Llobell A (1995) Purification and characterization of an endo-beta-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism. J Bacteriol 177(7):1864–1871

    Google Scholar 

  68. de la Cruz J, Pintor-Toro JA, Benitez T, Llobell A, Romero LC (1995) A novel endo-beta-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. J Bacteriol 177(23):6937–6945

    Google Scholar 

  69. Inbar J, Chet I (1995) The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum. Microbiology 141(11):2823–2829

    Google Scholar 

  70. Carsolio C, Benhamou N, Haran S, Cortes C, Gutierrez A, Chet I, Herrera-Estrella A (1999) Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol 65(3):929–935

    Google Scholar 

  71. Cohen-Kupiec R, Broglie KE, Friesem D, Broglie RM, Chet I (1999) Molecular characterization of a novel beta-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. Gene 226(2):147–154

    Google Scholar 

  72. Mukherjee M, Mukherjee PK, Kale SP (2007) cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153(6):1734–1742

    Google Scholar 

  73. Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A (2011) Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol 77(13):4361–4370

    Google Scholar 

  74. Karimi Aghcheh R, Druzhinina IS, Kubicek CP (2013) The putative protein methyltransferase LAE1 of Trichoderma atroviride is a key regulator of asexual development and mycoparasitism. PLoS One 8(6):e67144

    Google Scholar 

  75. Gomez-Rodriguez EY, Uresti-Rivera EE, Patron-Soberano OA, Islas-Osuna MA, Flores-Martinez A, Riego-Ruiz L, Rosales-Saavedra MT, Casas-Flores S (2018) Histone acetyltransferase TGF-1 regulates Trichoderma atroviride secondary metabolism and mycoparasitism. PLoS One 13(4):e0193872

    Google Scholar 

  76. Ramirez-Valdespino CA, Porras-Troncoso MD, Corrales-Escobosa AR, Wrobel K, Martinez-Hernandez P, Olmedo-Monfil V (2018) Functional characterization of TvCyt2, a member of the p450 monooxygenases from Trichoderma virens relevant during the association with plants and mycoparasitism. Mol Plant Microbe Interact 31(3):289–298

    Google Scholar 

  77. Chenthamara K, Druzhinina IS (2016) 12 Ecological genomics of mycotrophic fungi. In: Druzhinina IS, Kubicek CP (eds) Environmental and microbial relationships. Springer International Publishing, Cham, pp 215–246

    Google Scholar 

  78. Komon-Zelazowska M, Bissett J, Zafari D, Hatvani L, Manczinger L, Woo S, Lorito M, Kredics L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl Environ Microbiol 73(22):7415–7426

    Google Scholar 

  79. Castle A, Speranzini D, Rghei N, Alm G, Rinker D, Bissett J (1998) Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Appl Environ Microbiol 64(1):133–137

    Google Scholar 

  80. Kim CS, Shirouzu T, Nakagiri A, Sotome K, Nagasawa E, Maekawa N (2012) Trichoderma mienum sp. nov., isolated from mushroom farms in Japan. Antonie Van Leeuwenhoek 102(4):629–641

    Google Scholar 

  81. Kopchinskiy A, Komon M, Kubicek CP, Druzhinina IS (2005) TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol Res 109(Pt 6):658–660

    Google Scholar 

  82. Atanasova L, Jaklitsch WM, Komon-Zelazowska M, Kubicek CP, Druzhinina IS (2010) Clonal species Trichoderma parareesei sp. nov. likely resembles the ancestor of the cellulase producer Hypocrea jecorina/T. reesei. Appl Environ Microbiol 76(21):7259–7267

    Google Scholar 

  83. du Plessis IL, Druzhinina IS, Atanasova L, Yarden O, Jacobs K (2018) The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 110(3):559–583

    Google Scholar 

  84. Jang S, Jang Y, Kim C-W, Lee H, Hong J-H, Heo YM, Lee YM, Lee DW, Lee HB Kim J-J (2017) Five new records of soil-derived Trichoderma in Korea: T. albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum. Mycobiology 45(1):1–8

    Google Scholar 

  85. Rubio MB, Quijada NM, Pérez E, Domínguez S, Monte E, Hermosa R (2014) Identifying beneficial qualities of Trichoderma parareesei for plants. Appl Environ Microbiol 80(6):1864

    Google Scholar 

  86. Higginbotham S, Wong WR, Linington RG, Spadafora C, Iturrado L, Arnold AE (2014) Sloth hair as a novel source of fungi with potent anti-parasitic, anti-cancer and anti-bacterial bioactivity. PloS one 9(1):e84549–e84549

    Google Scholar 

  87. Monteiro VN, Steindorff AS, Almeida FBR, Lopes FAC, Ulhoa CJ, Félix CR, Silva RN (2014) Trichoderma reesei mycoparasitism against Pythium ultimum is coordinated by G-alpha protein GNA1 signaling. J Microb Biochem Technol 7:001–007

    Google Scholar 

  88. Wang H, Zhai L, Geng A (2020) Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. J Biosci Bioeng 129(2):242–249

    Google Scholar 

  89. Delabona Pda S, Lima DJ, Robl D, Rabelo SC, Farinas CS, Pradella JG (2016) Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J Ind Microbiol Biotechnol 43(5):617–626

    Google Scholar 

  90. Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK (2014) Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnol 14:103

    Google Scholar 

  91. Pathak P, Bhardwaj NK, Singh AK (2014) Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Appl Biochem Biotechnol 172(8):3776–3797

    Google Scholar 

  92. Delabona Pda S, Farinas CS, da Silva MR, Azzoni SF, Pradella JG (2012) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresour Technol 107:517–521

    Google Scholar 

  93. Seidl V, Seibel C, Kubicek CP, Schmoll M (2009) Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci U S A 106(33):13909–13914

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Christian P. Kubicek for the discussion of the topic and useful suggestions to the content of the chapter. This work was supported by grants from the Ministry of Science and Technology of Jiangsu Province (BK20180533), China, the National Natural Science Foundation of China (KJQN201920), and the Postdoctoral Science Foundation (198162), all to F.C. The work in Vienna (Austria) was supported by the Austrian Science Fund (FWF) P25613-B20 and P25745-B20, to I.S.D. and the Vienna Science and Technology Fund (WWTF), LS13-048, to I.S.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chenthamara, K., Druzhinina, I.S., Rahimi, M.J., Grujic, M., Cai, F. (2021). Ecological Genomics and Evolution of Trichoderma reesei. In: Mach-Aigner, A.R., Martzy, R. (eds) Trichoderma reesei. Methods in Molecular Biology, vol 2234. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1048-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1048-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1047-3

  • Online ISBN: 978-1-0716-1048-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics