Skip to main content

Biology of the Gonococcus: Disease and Pathogenesis

  • Protocol
  • First Online:
Neisseria gonorrhoeae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1997))

Abstract

Neisseria gonorrhoeae infection is a major public health problem worldwide. The increasing incidence of gonorrhea coupled with global spread of multidrug-resistant isolates of gonococci has ushered in an era of potentially untreatable infection. Gonococcal disease elicits limited immunity, and individuals are susceptible to repeated infections. In this chapter, we describe gonococcal disease and epidemiology and the structure and function of major surface components involved in pathogenesis. We also discuss the mechanisms that gonococci use to evade host immune responses and the immune responses following immunization with selected bacterial components that may overcome evasion. Understanding the biology of the gonococcus may aid in preventing the spread of gonorrhea and also facilitate the development of gonococcal vaccines and treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rice PA (2005) Gonococcal arthritis (disseminated gonococcal infection). Infect Dis Clin N Am 19(4):853–861. https://doi.org/10.1016/j.idc.2005.07.003

    Article  Google Scholar 

  2. Christian P, Khatry SK, LeClerq SC et al (2005) Prevalence and risk factors of chlamydia and gonorrhea among rural Nepali women. Sex Transm Infect 81(3):254–258. https://doi.org/10.1136/sti.2004.011817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Laga M, Meheus A, Piot P (1989) Epidemiology and control of gonococcal ophthalmia neonatorum. Bull World Health Org 67(5):471–477

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Laga M, Manoka A, Kivuvu M et al (1993) Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study [see comments]. AIDS 7(1):95–102

    Article  CAS  PubMed  Google Scholar 

  5. Cohen MS (1998) Sexually transmitted diseases enhance HIV transmission: no longer a hypothesis. Lancet 351(Suppl 3):5–7

    Article  PubMed  Google Scholar 

  6. Cohen MS, Hoffman IF, Royce RA et al (1997) Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Research Group. Lancet 349(9069):1868–1873

    Article  CAS  PubMed  Google Scholar 

  7. Newman L, Rowley J, Vander Hoorn S et al (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 10(12):e0143304. https://doi.org/10.1371/journal.pone.0143304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dubbink JH, de Waaij DJ, Bos M et al (2016) Microbiological characteristics of Chlamydia trachomatis and Neisseria gonorrhoeae infections in South African women. J Clin Microbiol 54(1):200–203. https://doi.org/10.1128/JCM.02848-15

    Article  CAS  PubMed  Google Scholar 

  9. Ginocchio CC, Chapin K, Smith JS et al (2012) Prevalence of Trichomonas vaginalis and coinfection with Chlamydia trachomatis and Neisseria gonorrhoeae in the United States as determined by the Aptima Trichomonas vaginalis nucleic acid amplification assay. J Clin Microbiol 50(8):2601–2608. https://doi.org/10.1128/JCM.00748-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guy R, Ward J, Wand H et al (2015) Coinfection with Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis: a cross-sectional analysis of positivity and risk factors in remote Australian Aboriginal communities. Sex Transm Infect 91(3):201–206. https://doi.org/10.1136/sextrans-2014-051535

    Article  PubMed  Google Scholar 

  11. Lim RB, Wong ML, Cook AR et al (2015) Determinants of chlamydia, gonorrhea, and coinfection in heterosexual adolescents attending the national public sexually transmitted infection clinic in Singapore. Sex Transm Dis 42(8):450–456. https://doi.org/10.1097/OLQ.0000000000000316

    Article  PubMed  Google Scholar 

  12. Marangoni A, Foschi C, Nardini P et al (2012) Chlamydia trachomatis serovar distribution and other sexually transmitted coinfections in subjects attending an STD outpatients clinic in Italy. New Microbiol 35(2):215–219

    PubMed  Google Scholar 

  13. Papadogeorgakis H, Pittaras TE, Papaparaskevas J et al (2010) Chlamydia trachomatis serovar distribution and Neisseria gonorrhoeae coinfection in male patients with urethritis in Greece. J Clin Microbiol 48(6):2231–2234. https://doi.org/10.1128/JCM.00586-10

    Article  PubMed  PubMed Central  Google Scholar 

  14. Centers for Disease Control and Prevention (CDC) (2016) 2016 Sexually transmitted diseases surveillance. CDC, Atlanta, GA

    Google Scholar 

  15. Ohnishi M, Golparian D, Shimuta K et al (2011) Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 55(7):3538–3545. https://doi.org/10.1128/aac.00325-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Camara J, Serra J, Ayats J et al (2012) Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J Antimicrob Chemother 67(8):1858–1860. https://doi.org/10.1093/jac/dks162

    Article  CAS  PubMed  Google Scholar 

  17. Lahra MM, Ryder N, Whiley DM (2014) A new multidrug-resistant strain of Neisseria gonorrhoeae in Australia. N Engl J Med 371(19):1850–1851. https://doi.org/10.1056/NEJMc1408109

    Article  PubMed  Google Scholar 

  18. Cole MJ, Spiteri G, Jacobsson S et al (2017) Overall low extended-spectrum cephalosporin resistance but high azithromycin resistance in Neisseria gonorrhoeae in 24 European countries, 2015. BMC Infect Dis 17(1):617. https://doi.org/10.1186/s12879-017-2707-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katz AR, Komeya AY, Kirkcaldy RD et al (2017) Cluster of Neisseria gonorrhoeae isolates with high-level azithromycin resistance and decreased ceftriaxone susceptibility, Hawaii, 2016. Clin Infect Dis 65(6):918–923. https://doi.org/10.1093/cid/cix485

    Article  PubMed  Google Scholar 

  20. Liang JY, Cao WL, Li XD et al (2016) Azithromycin-resistant Neisseria gonorrhoeae isolates in Guangzhou, China (2009–2013): coevolution with decreased susceptibilities to ceftriaxone and genetic characteristics. BMC Infect Dis 16:152. https://doi.org/10.1186/s12879-016-1469-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vidovic S, Thakur SD, Horsman GB et al (2012) Longitudinal analysis of the evolution and dissemination of Neisseria gonorrhoeae strains (Saskatchewan, Canada, 2005 to 2008) reveals three major circulating strains and convergent evolution of ciprofloxacin and azithromycin resistance. J Clin Microbiol 50(12):3823–3830. https://doi.org/10.1128/JCM.01402-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xue J, Ni C, Zhou H et al (2015) Occurrence of high-level azithromycin-resistant Neisseria gonorrhoeae isolates in China. J Antimicrob Chemother 70(12):3404–3405. https://doi.org/10.1093/jac/dkv266

    Article  CAS  PubMed  Google Scholar 

  23. Thakur SD, Levett PN, Horsman GB et al (2018) High levels of susceptibility to new and older antibiotics in Neisseria gonorrhoeae isolates from Saskatchewan (2003–15): time to consider point-of-care or molecular testing for precision treatment? J Antimicrob Chemother 73(1):118–125. https://doi.org/10.1093/jac/dkx333

    Article  CAS  PubMed  Google Scholar 

  24. Chesson HW, Kirkcaldy RD, Gift TL et al (2018) An illustration of the potential health and economic benefits of combating antibiotic-resistant gonorrhea. Sex Transm Dis 45(4):250–253. https://doi.org/10.1097/OLQ.0000000000000725

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hobbs MM, Sparling PF, Cohen MS et al (2011) Experimental gonococcal infection in male volunteers: cumulative experience with Neisseria gonorrhoeae strains FA1090 and MS11mkC. Front Microbiol 2:123. https://doi.org/10.3389/fmicb.2011.00123

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jerse AE (1999) Experimental gonococcal genital tract infection and opacity protein expression in estradiol-treated mice. Infect Immun 67(11):5699–5708

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Harvey HA, Ketterer MR, Preston A et al (1997) Ultrastructural analysis of primary human urethral epithelial cell cultures infected with Neisseria gonorrhoeae. Infect Immun 65:2420–2427

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McGee ZA, Stephens DS, Hoffman LH et al (1983) Mechanisms of mucosal invasion by pathogenic Neisseria. Rev Infect Dis 5(Suppl 4):S708–S714

    Article  PubMed  Google Scholar 

  29. Rudel T, van Putten JP, Gibbs CP et al (1992) Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol Microbiol 6:3439–3450

    Article  CAS  PubMed  Google Scholar 

  30. van Putten JP (1993) Phase variation of lipooligosaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae. EMBO J 12:4043–4051

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Putten JP, Duensing TD, Carlson J (1998) Gonococcal invasion of epithelial cells driven by P.IA, a bacterial ion channel with GTP binding properties. J Exp Med 188(5):941–952

    Article  PubMed  PubMed Central  Google Scholar 

  32. Weel JF, Hopman CT, van Putten JP (1991) In situ expression and localization of Neisseria gonorrhoeae opacity proteins in infected epithelial cells: apparent role of Opa proteins in cellular invasion. J Exp Med 173(6):1395–1405

    Article  CAS  PubMed  Google Scholar 

  33. Jonsson AB, Nyberg G, Normark S (1991) Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J 10:477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jonsson AB, Pfeifer J, Normark S (1992) Neisseria gonorrhoeae PilC expression provides a selective mechanism for structural diversity of pili. Proc Natl Acad Sci U S A 89:3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rudel T, Scheuerpflug I, Meyer TF (1995) Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 373:357–359

    Article  CAS  PubMed  Google Scholar 

  36. Giltner CL, Nguyen Y, Burrows LL (2012) Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev 76(4):740–772. https://doi.org/10.1128/MMBR.00035-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maier B, Potter L, So M et al (2002) Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci U S A 99(25):16012–16017. https://doi.org/10.1073/pnas.242523299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Merz AJ, So M, Sheetz MP (2000) Pilus retraction powers bacterial twitching motility. Nature 407(6800):98–102. https://doi.org/10.1038/35024105

    Article  CAS  PubMed  Google Scholar 

  39. Sparling PF (1966) Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 92:1364–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244. https://doi.org/10.1146/annurev.micro.53.1.217

    Article  CAS  PubMed  Google Scholar 

  41. Graves JF, Biswas GD, Sparling PF (1982) Sequence-specific DNA uptake in transformation of Neisseria gonorrhoeae. J Bacteriol 152(3):1071–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58(3):563–602

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kellogg D Jr, Peacock W, Deacon W et al (1963) Neisseria gonorrhoeae. I Virulence genetically linked to clonal variation. J Bacteriol 85:1274–1279

    PubMed  PubMed Central  Google Scholar 

  44. Brinton CCJ, Wood SW, Brown A et al (1982) The development of a Neisserial pilus vaccine for gonorrhea and meningococcal meningitis. In: Weinstein L, Fields BN (eds) Seminars in infectious disease IV. Thieme-Stratton, New York, NY

    Google Scholar 

  45. Kellogg D Jr, Cohen IR, Norins LC et al (1968) Neisseria gonorrhoeae. II. Colonial variation and pathogenicity during 35 months in vitro. J Bacteriol 96(3):596–605

    PubMed  PubMed Central  Google Scholar 

  46. Ofek I, Beachey EH, Bisno AL (1974) Resistance of Neisseria gonorrhoeae to phagocytosis: relation to colonial morphology and surface pili. J Infect Dis 129:310–316

    Article  CAS  PubMed  Google Scholar 

  47. Thonthai C, Sawyer WD (1973) Studies on the virulence of Neisseria gonorrhoeae. I. Relation of colonial morphology and resistance to phagocytosis by polymorphonuclear lymphocytes. Infect Immun 7:373–379

    Google Scholar 

  48. Koomey M, Gotschlich EC, Robbins K et al (1987) Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117:391–398

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang QY, DeRyckere D, Lauer P et al (1992) Gene conversion in Neisseria gonorrhoeae: evidence for its role in pilus antigenic variation. Proc Natl Acad Sci U S A 89:5366–5370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ilver D, KAllstrom H, Normark S et al (1998) Transcellular passage of Neisseria gonorrhoeae involves pilus phase variation. Infect Immun 66:469–473

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gotschlich E (1984) Development of a gonorrhoea vaccine: prospects, strategies and tactics. Bull WHO 62:671–680

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hagblom P, Segal E, Billyard E et al (1985) Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315(6015):156–158

    Article  CAS  PubMed  Google Scholar 

  53. Haas R, Meyer TF (1986) The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44:107–115

    Article  CAS  PubMed  Google Scholar 

  54. Haas R, Schwarz H, Meyer TF (1987) Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 84(24):9079–9083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schoolnik GK, Fernandez R, Tai JY et al (1984) Gonococcal pili; primary structure and receptor binding domain. J Exp Med 159:1351–1370

    Article  CAS  PubMed  Google Scholar 

  56. Parge HE, Forest KT, Hickey MJ et al (1995) Structure of the fiber-forming protein pilin at 2.6 A resolution. Nature 378:32–38

    Article  CAS  PubMed  Google Scholar 

  57. Buchanan TM (1975) Antigenic heterogeniety of gonococcal pili. J Exp Med 141:1470–1475

    Article  CAS  PubMed  Google Scholar 

  58. Lambden PR, Robertson JN, Watt PJ (1980) Biological properties of two distinct pilus types produced by isogenic variants of Neisseria gonorrhoeae P9. J Bacteriol 141:393–396

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Virji M, Saunders JR, Sims G et al (1993) Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10:1013–1028

    Article  CAS  PubMed  Google Scholar 

  60. Scheuerpflug I, Rudel T, Ryll R et al (1999) Roles of PilC and PilE proteins in pilus-mediated adherence of Neisseria gonorrhoeae and Neisseria menigitidis to human erythrocytes and endothelial and epithelial cells. Infect Immun 67:834–843

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Blom AM, Rytkonen A, Vasquez P et al (2001) A novel interaction between type IV pili of Neisseria gonorrhoeae and the human complement regulator C4B-binding protein. J Immunol 166(11):6764–6770

    Article  CAS  PubMed  Google Scholar 

  62. Edwards JL, Brown EJ, Uk-Nham S et al (2002) A co-operative interaction between Neisseria gonorrhoeae and complement receptor 3 mediates infection of primary cervical epithelial cells. Cell Microbiol 4(9):571–584

    Article  CAS  PubMed  Google Scholar 

  63. Kallstrom H, Liszewski MK, Atkinson JP et al (1997) Membrane cofactor protein (MCP or CD 46) is a cellular pilus receptor for pathogenic Neisseria. Mol Microbiol 25:639–647

    Article  CAS  PubMed  Google Scholar 

  64. Tramont EC, Ciak J, Boslego J et al (1980) Antigenic specificity of antibodies in vaginal secretions during infection with Neisseria gonorrhoeae. J Infect Dis 142(1):23–31

    Article  CAS  PubMed  Google Scholar 

  65. Cohen MS, Cannon JG (1999) Human experimentation with Neisseria gonorrhoeae: progress and goals. J Infect Dis 179(Suppl 2):S375–S379

    Article  PubMed  Google Scholar 

  66. Tramont EC, Sadoff JC, Boslego JW et al (1981) Gonococcal pilus vaccine. J Clin Invest 68:881–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boslego JW, Tramont EC, Chung RC et al (1991) Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 9(3):154–162

    Article  CAS  PubMed  Google Scholar 

  68. Johnston KH, Holmes KK, Gotschlich EC (1976) The serological classification of Neisseria gonorrhoeae. I Isolation of the outer membrane complex responsible for serotypic specificity. J Exp Med 143:741–758

    Article  CAS  PubMed  Google Scholar 

  69. Blake MS, Gotschlich EC (1982) Purification and partial characterization of the major outer membrane protein of Neisseria gonorrhoeae. Infect Immun 36:277–283

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson AP, Taylor-Robinson D, McGee ZA (1977) Species specificity of attachment and damage to oviduct mucosa by Neisseria gonorrhoeae. Infect Immun 18:833–839

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Joiner KA, Warren KA, Brown EJ et al (1983) Studies on the mechanism of bacterial resistance to complement-mediated killing. IV. C5b-9 forms high molecular weight complexes with bacterial outer membrane constituents on serum-resistant but not on serum-sensitive Neisseria gonorrhoeae. J Immunol 131:1443–1451

    CAS  PubMed  Google Scholar 

  72. Benz R, Ghuysen JM, Hakenbeck R (1995) Uptake of solutes through bacterial outer membranes. In: Ghuysen JM, Hakenbeck R (eds) Bacterial cell wall. Elsevier, Amsterdam, pp 397–423

    Google Scholar 

  73. Nikaido H (1994) Porins and specific diffusion channels in bacterial outer membranes. J Biol Chem 269:3905–3908

    CAS  PubMed  Google Scholar 

  74. Weiss MS, Abele U, Weckesser J et al (1991) Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630

    Article  CAS  PubMed  Google Scholar 

  75. Weiss MS, Schulz GE (1992) Structure of porin refined at 1.8 Å resolution. J Mol Biol 227:493–509

    Article  CAS  PubMed  Google Scholar 

  76. Tam MR, Buchanan TM, Sandstrom EG et al (1982) Serological classification of Neisseria gonorrhoeae with monoclonal antibodies. Infect Immun 36:1042–1053

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cooke SJ, de la Paz JH, La Poh C et al (1997) Variation within serovars of Neisseria gonorrhoeae detected by structural analysis of outer membrane protein PIB and by pulsed-field gel electrophoresis. Microbiology 143:1415–1422

    Article  CAS  PubMed  Google Scholar 

  78. Mee BJ, Thomas H, Cooke SJ et al (1993) Structural comparison and epitope analysis of outer-membrane protein PIA from strains of Neisseria gonorrhoeae with differing serovar specificities. J Gen Microbiol 139:2613–2620

    Article  CAS  PubMed  Google Scholar 

  79. Knapp JS, Tam MR, Nowinski RC et al (1984) Serological classification of Neisseria gonorrhoeae with use of monoclonal antibodies to gonococcal outer membrane protein I. J Infect Dis 150:44–48

    Article  CAS  PubMed  Google Scholar 

  80. Blake MS, Gotschlich EC, Swanson JL (1981) Effect of proteolytic enzymes on the outer membrane proteins of Neisseria gonorrhoeae. Infect Immun 34:212–222

    Google Scholar 

  81. Elkins C, Carbonetti N, Varela V et al (1992) Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipooligasaccharide is not sialylated. Mol Microbiol 6:2617–2628

    Article  CAS  PubMed  Google Scholar 

  82. Schoolnik GK, Mietzner TA (1992) Vaccines against gonococcal infection. In: Woodrow GC, Levine MM (eds) New generation vaccines. Marcel Dekker Inc., New York, NY, pp 565–597

    Google Scholar 

  83. Ram S, McQuillen DP, Gulati S et al (1998) Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria gonorrhoeae. J Exp Med 188(4):671–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ram S, Cullinane M, Blom AM et al (2001) Binding of C4b-binding protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. J Exp Med 193(3):281–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fudyk TC, Maclean IW, Simonsen JN et al (1999) Genetic diversity and mosaicism at the por locus of Neisseria gonorrhoeae. J Bacteriol 181:5591–5599

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Massari P, Visintin A, Gunawardana J et al (2006) Meningococcal porin PorB binds to TLR2 and requires TLR1 for signaling. J Immunol 176(4):2373–2380

    Article  CAS  PubMed  Google Scholar 

  87. Singleton TE, Massari P, Wetzler LM (2005) Neisserial porin-induced dendritic cell activation is MyD88 and TLR2 dependent. J Immunol 174(6):3545–3550

    Article  CAS  PubMed  Google Scholar 

  88. Toussi DN, Carraway M, Wetzler LM et al (2012) The amino acid sequence of Neisseria lactamica PorB surface-exposed loops influences Toll-like receptor 2-dependent cell activation. Infect Immun 80(10):3417–3428. https://doi.org/10.1128/IAI.00683-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu W, Tomberg J, Knilans KJ et al (2018) Properly folded and functional PorB from Neisseria gonorrhoeae inhibits dendritic cell stimulation of CD4(+) T cell proliferation. J Biol Chem 293(28):11218–11229. https://doi.org/10.1074/jbc.RA117.001209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Plummer FA, Simonsen JN, Chubb H et al (1989) Epidemiologic evidence for the development of serovar-specific immunity after gonococcal infection. J Clin Invest 83(5):1472–1476. https://doi.org/10.1172/jci114040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Buchanan TM, Eschenbach DA, Knapp JS et al (1980) Gonococcal salpingitis is less likely to recur with Neisseria gonorrhoeae of the same principal outer membrane protein antigenic type. Am J Obstet Gynecol 138(7 Pt 2):978–980

    Article  CAS  PubMed  Google Scholar 

  92. Fox KK, Thomas JC, Weiner DH et al (1999) Longitudinal evaluation of serovar-specific immunity to Neisseria gonorrhoeae. Am J Epidemiol 149(4):353–358

    Article  CAS  PubMed  Google Scholar 

  93. Kohl P, Olsen D, Buchanan T (1989) Monoclonal antibodies to protein I for serotyping of Neisseria gonorrhoeae: correlation of serotype with bactericidal activity. Zbl Bakt Hyg A 270:517–526

    CAS  Google Scholar 

  94. Virji M, Fletcher J, Zak K et al (1987) The potential protective effect of monoclonal antibodies to gonococcal outer membrane protein IA. J Gen Microbiol 133:2639–2646

    CAS  PubMed  Google Scholar 

  95. Virji M, Zak K, Heckels JE (1986) Monoclonal antibodies to gonococcal outer membrane protein IB: use in investigations of the potential protective effect of antibodies directed agains conserved and type-specific epitopes. J Gen Microbiol 132:1621–1629

    CAS  PubMed  Google Scholar 

  96. Hook EW 3rd, Olsen DA, Buchanan TM (1984) Analysis of the antigen specificity of the human serum immunoglobulin G immune response to complicated gonococcal infection. Infect Immun 43(2):706–709

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Frasch CE, Mocca LF (1978) Heat modifiable outer membrane proteins of Neisseria meningitidis and their organization within the membrane. J Bacteriol 136:1127–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lambden P, Heckels J, James L et al (1979) Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J Gen Microbiol 114:305–312

    Article  CAS  PubMed  Google Scholar 

  99. James JF, Swanson J (1978) Studies on gonococcus infection. XII. Occurrence of color/opacity colonial variants in clinical cultures. Infect Immun 19:332–340

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Blake MS, Blake CM, Apicella MA et al (1995) Gonococcal opacity: lectin-like interactions between Opa proteins and lipooligosaccharide. Infect Immun 63(4):1434–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Swanson J (1982) Colony opacity and protein II compositions of gonococci. Infect Immun 37:359–368

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Stern A, Brown M, Nickel P et al (1986) Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47:61–71

    Article  CAS  PubMed  Google Scholar 

  103. Bhat KC, Gibbs CP, Barrera O et al (1991) The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol Microbiol 5:1889–1901

    Article  CAS  PubMed  Google Scholar 

  104. Swanson J, Barrera O (1983) Immunological characteristics of gonococcal outer membrane protein II assessed by immunoprecipitation, immunoblotting, and coagglutination. J Exp Med 157:1405–1420

    Article  CAS  PubMed  Google Scholar 

  105. de Jonge MI, Bos MP, Hamstra HJ et al (2002) Conformational analysis of opacity proteins from Neisseria meningitidis. Eur J Biochem 269(21):5215–5223

    Article  CAS  PubMed  Google Scholar 

  106. Swanson J (1978) Studies on gonococcus infection. XIV. Cell wall protein differences among color/opacity variants of gonococci. Infect Immun 21:292–302

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mayer LW (1982) Rates of in vitro changes of gonococci opacity phenotypes. Infect Immun 37:481–485

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Swanson J (1981) Surface-exposed protein antigens of the gonococcal outer membrane. Infect Immun 34:804–816

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zak K, Diaz J, Jackson D et al (1984) Antigenic variation during infection with Neisseria gonorrhoeae: detection of antibodies to surface proteins in sera of patients with gonorrhea. J Infect Dis 149:166–174

    Article  CAS  PubMed  Google Scholar 

  110. Draper DL, James JF, Brooks GF et al (1980) Comparison of virulence markers of peritoneal and fallopian tube isolates with endocervical Neisseria gonorrhoeae isolates from woman with acute salpingitis. Infect Immun 27:882–888

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Jerse AE, Cohen MS, Drown PM et al (1995) Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J Exp Med 179:911–920

    Article  Google Scholar 

  112. Swanson J, Barrera O, Sola J et al (1988) Expression of outer membrane protein II by gonococci in experimental gonorrhea. J Exp Med 168:2121–2129

    Article  CAS  PubMed  Google Scholar 

  113. Kupsch EM, Knepper B, Kuroki T et al (1993) Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J 12:641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Makino S, van Putten JP, Meyer TF (1991) Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells. EMBO J 10(6):1307–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen T, Grunert F, Medina-Marino A et al (1997) Several carciniembryonic antigens (CD66) serve as receptors for gonococcal opacity proteins. J Exp Med 185:1557–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gray-Owen SD, Lorenzen DR, Haude A et al (1997) Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae. Mol Microbiol 26:971–980

    Article  CAS  PubMed  Google Scholar 

  117. Virji M, Makepeace K, Ferguson DJ et al (1996) Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol Microbiol 29:941–950

    Article  Google Scholar 

  118. Gomez-Duarte OG, Dehio M, Guzman CA et al (1997) Binding of vitronectin to opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells. Infect Immun 65(9):3857–3866

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Boulton IC, Gray-Owen SD (2002) Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4+ T lymphocytes. Nat Immunol 3(3):229–236. https://doi.org/10.1038/ni769

    Article  CAS  PubMed  Google Scholar 

  120. Sarantis H, Gray-Owen SD (2007) The specific innate immune receptor CEACAM3 triggers neutrophil bactericidal activities via a Syk kinase-dependent pathway. Cell Microbiol 9(9):2167–2180. https://doi.org/10.1111/j.1462-5822.2007.00947.x. CMI947 [pii]

    Article  CAS  PubMed  Google Scholar 

  121. Schmitter T, Agerer F, Peterson L et al (2004) Granulocyte CEACAM3 is a phagocytic receptor of the innate immune system that mediates recognition and elimination of human-specific pathogens. J Exp Med 199(1):35–46. https://doi.org/10.1084/jem.20030204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rest RF, Frangipane JV (1992) Growth of Neisseria gonorrhoeae in CMP-N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils. Infect Immun 60(3):989–997

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Muenzner P, Rohde M, Kneitz S et al (2005) CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells. J Cell Biol 170(5):825–836. https://doi.org/10.1083/jcb.200412151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Naids FL, Belisle B, Lee N et al (1991) Interactions of Neisseria gonorrhoeae with human neutrophils: studies with purified PII (Opa) outer membrane proteins and synthetic Opa peptides. Infect Immun 59(12):4628–4635

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Elkins C, Rest RF (1990) Monoclonal antibodies to outer membrane protein PII block interactions of Neisseria gonorrhoeae with human neutrophils. Infect Immun 58:1078–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sugasawara RJ, Cannon JG, Black WJ et al (1983) Inhibition of Neisseria gonorrhoeae attachment to HeLa cells with monoclonal antibody directed against a protein II. Infect Immun 42:980–985

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Plummer FA, Chubb H, Simonsen JN et al (1994) Antibodies to opacity proteins (Opa) correlate with a reduced risk of gonococcal salpingitis. J Clin Invest 93(4):1748–1755. https://doi.org/10.1172/jci117159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Judd RC (1982) 125I-peptide mapping of protein III isolated from four strains of Neisseria gonorrhoeae. Infect Immun 37:622–631

    CAS  PubMed  PubMed Central  Google Scholar 

  129. McDade RL, Johnston KH (1980) Characterization of serologically dominant outer membrane proteins of Neisseria gonorrhoeae. J Bacteriol 141:1183–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Gotschlich EC, Seiff M, Blake MS (1987) The DNA sequence of the structural gene of gonococcal protein III and the flanking region containing a repetitive sequence: homology of protein III with enterobacterial OmpA proteins. J Exp Med 165:471–482

    Article  CAS  PubMed  Google Scholar 

  131. Newhall W, Sawyer V, Haak R (1980) Cross-linking analysis of the outer membrane proteins of Neisseria gonorrhoeae. Infect Immun 28:785–791

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Swanson J, Mayer LW, Tam MR (1982) Antigenicity of Neisseria gonorrhoeae outer membrane protein(s) III detected by immunoprecipitation and Western blot transfer with a monoclonal antibody. Infect Immun 38:668–672

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Rice PA, McQuillen DP, Gulati S et al (1994) Serum resistance of Neisseria gonorrhoeae. Does it thwart the inflammatory response and facilitate the transmission of infection? Ann N Y Acad Sci 730:7–14

    Article  CAS  PubMed  Google Scholar 

  134. Rice PA (1989) Molecular basis for serum resistance in Neisseria gonorrhoeae. Clin Microbiol Rev 2S:S112–S117

    Article  Google Scholar 

  135. Plummer FA, Chubb H, Simonsen JN et al (1993) Antibody to Rmp (outer membrane protein 3) increases susceptibility to gonococcal infection. J Clin Invest 91(1):339–343. https://doi.org/10.1172/jci116190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rice PA, Gulati S, McQuillen DP et al (1996) Is there protective immunity to gonococcal disease? Proceedings of the 10th international pathogenic neisseria conference (IPNC 1996), Baltimore, MD, pp. 3–8

    Google Scholar 

  137. Rice PA, Tam MR, Blake MS (1985) Immunoglobulin G antibodies in normal human serum directed against protein III block killing; of serum-resistant Neisseria gonorrhoeae by immune human serum. In: Schoolnik G, Brooks G, Falco C et al (eds) The pathogenic Neisseriae: proceedings of the fourth international symposium. American Society for Microbiology, Washington, DC, pp 427–430

    Google Scholar 

  138. Rice PA, Vayo HE, Tam MR et al (1986) Immunoglobulin G antibodies directed against protein III block killing of serum-resistant Neisseria gonorrhoeae by immune serum. J Exp Med 164(5):1735–1748

    Article  CAS  PubMed  Google Scholar 

  139. Gulati S, Mu X, Zheng B et al (2015) Antibody to reduction modifiable protein increases the bacterial burden and the duration of gonococcal infection in a mouse model. J Infect Dis 212(2):311–315. https://doi.org/10.1093/infdis/jiv024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Joiner KA, Scales R, Warren KA et al (1985) Mechanism of action of blocking immunoglobulin G for Neisseria gonorrhoeae. J Clin Invest 76:1765–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Guttman RM, Waisbren BA (1975) Bacterial blocking activity of specific IgG in chronic Pseudomonas aeruginosa infection. Clin Exp Immunol 19:121

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Taylor PW (1972) An antibactericidal factor in the serum of two patients with infections of the upper urinary tract. Clin Sci 43:23–30

    Article  CAS  PubMed  Google Scholar 

  143. Waisbren BA, Brown I (1966) A factor in the serum of patients with persisting infection that inhibits the bactericidal activity of normal serum against the organism that is causing the infection. J Immunol 97:431

    CAS  PubMed  Google Scholar 

  144. Black WJ, Cannon JG (1985) Cloning of the gene for the common pathogenic Neisseria H.8 antigen of Neisseria gonorrhoeae. Infect Immun 47:322–325

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Cannon JG, Black WJ, Nachamkin I et al (1984) Monoclonal antibody that recognizes an outer membrane antigen common to pathogenic Neisseria species but not to most nonpathogenic Neisseria species. Infect Immun 43:994–999

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hitchcock PJ, Brown TM (1983) Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver stained polyacrylamide gels. J Bacteriol 154:269–277

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zollinger WD, Ray JS, Moran EE et al (1985) Identification by monoclonal antibody of an antigen common to the pathogenic Neisseria species. In: SG K, Brooks GF, Falkow S et al (eds) The pathogenic neisseria. ASM, Washington, DC, pp 579–584

    Google Scholar 

  148. Hitchcock PJ, Hayes SF, Mayer LW et al (1985) Analysis of gonococcal H.8 antigen: surface location, inter- and intrastrain electrophoretic heterogeneity and unusual two-dimensional electrophoretic characteristics. J Exp Med 162(6):2017–2034

    Article  CAS  PubMed  Google Scholar 

  149. Wood JP, Spinola SM, Strobel SM et al (1989) Conserved lipoprotein H.8 of pathogenic Neisseria consists entirely of pentapeptide repeats. Mol Microbiol 3:43–50

    Article  Google Scholar 

  150. Gotschlich EC, Blake MS, Koomey JM et al (1986) Cloning of the structural genes of three H8 antigens and of protein III of Neisseria gonorrhoeae. J Exp Med 164:868–881

    Article  CAS  PubMed  Google Scholar 

  151. Mizushima S (1984) Post-translational modification and processing of outer membrane prolipoproteins in Escherichia coli. Mol Cell Biochem 60(1):5–15

    Article  CAS  PubMed  Google Scholar 

  152. Kawula TH, Spinola SM, Klapper DG et al (1987) Localization of a conserved epitope and an azurin-like domain in the H.8 protein of pathogenic Neisseria. Mol Microbiol 1:179–185

    Article  CAS  PubMed  Google Scholar 

  153. Baehr W, Gotschlich EC, Hitchcock PJ (1989) The virulence-associated gonococcal H.8 gene encodes 14 tandemly repeated pentapeptides. Mol Microbiol 3:49–55

    Article  CAS  PubMed  Google Scholar 

  154. Bhattacharjee AK, Moran EE, Ray JS et al (1988) Purification and characterization of H.8 antigen from group B Neisseria meningitidis. Infect Immun 56:773–778

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Strittmatter W, Hitchcock PJ (1986) Isolation and preliminary biochemical characterization of the gonococcal H.8 antigen. J Exp Med 164:2038–2048

    Article  CAS  PubMed  Google Scholar 

  156. Black JR, Black WJ, Cannon JG (1985) Neisserial antigen H.8 is immunogenic in patients with disseminated gonococcal and meningococcal infection. J Infect Dis 151:650–657

    Article  CAS  PubMed  Google Scholar 

  157. Black JR, Thompson MK, Cannon JG et al (1988) Serum immune response to common pathogenic Neisseria antigen H.8 in patients with uncomplicated gonococcal infection and pelvic inflammatory disease. In: Poolman JT, Zanen HC, Meyer TF et al (eds) Gonococci and meningococci. Kluwer, Dordrecht, pp 493–497

    Google Scholar 

  158. Lammel CJ, Sweet RL, Rice PA et al (1985) Antibody-antigen specificity in the immune response to infection with Neisseria gonorrhoeae. J Infect Dis 152(5):990–1001

    Article  CAS  PubMed  Google Scholar 

  159. Brooks GF, Lammel CJ (1989) Humoral immune response to gonococcal infections. Clin Microbiol Rev 2S:S5–S10

    Article  Google Scholar 

  160. Ray TD, Lewis LA, Gulati S et al (2011) Novel blocking human IgG directed against the pentapeptide repeat motifs of Neisseria meningitidis Lip/H.8 and Laz lipoproteins. J Immunol 186(8):4881–4894. https://doi.org/10.4049/jimmunol.1003623

    Article  CAS  PubMed  Google Scholar 

  161. Griffiths E (1987) Iron and infection: molecular, physiological and clinical aspects. In: Bullen JJ, Griffiths E (eds) The iron uptake systems of pathogenic bacteria. John Wiley & Sons, Ltd., Chichester, pp 69–137

    Google Scholar 

  162. Carson SD, Klebba PE, Newton SM et al (1999) Ferric enterobactin binding and utilization by Neisseria gonorrhoeae. J Bacteriol 181(9):2895–2901

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Dyer DW, West EP, Sparling PF (1987) Effects of serum carrier proteins on the growth of pathogenic neisseriae with heme-bound iron. Infect Immun 55(9):2171–2175

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Mickelsen PA, Blackman E, Sparling PF (1982) Ability of Neisseria gonorrhoeae, Neisseria meningitidis, and commensal Neisseria species to obtain iron from lactoferrin. Infect Immun 35:915–920

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Mickelsen PA, Sparling PF (1981) Ability of Neisseria gonorrhoeae, Neisseria meningitidis, and commensal Neisseria species to obtain iron from transferrin and iron compounds. Infect Immun 33:555–564

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Noinaj N, Guillier M, Barnard TJ et al (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60. https://doi.org/10.1146/annurev.micro.112408.134247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen CY, Berish SA, Morse SA et al (1993) The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin. Mol Microbiol 10(2):311–318. https://doi.org/10.1111/j.1365-2958.1993.tb01957.x

    Article  CAS  PubMed  Google Scholar 

  168. Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778(9):1781–1804. https://doi.org/10.1016/j.bbamem.2007.07.026

    Article  CAS  PubMed  Google Scholar 

  169. Cornelissen CN, Hollander A (2011) TonB-dependent transporters expressed by Neisseria gonorrhoeae. Front Microbiol 2:117. https://doi.org/10.3389/fmicb.2011.00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee BC (1992) Isolation of an outer membrane hemin-binding protein of Haemophilus influenzae type b. Infect Immun 60(3):810–816

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Jean S, Juneau RA, Criss AK et al (2016) Neisseria gonorrhoeae evades calprotectin-mediated nutritional immunity and survives neutrophil extracellular traps by production of TdfH. Infect Immun 84(10):2982–2994. https://doi.org/10.1128/IAI.00319-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cornelissen CN, Biswas GD, Sparling PF (1993) Expression of gonococcal transferrin-binding protein I causes Escherichia coli to bind human transferrin. J Bacteriol 175:2448–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cornelissen CN, Biswas GD, Tsai J et al (1992) Gonococcal transferrin-binding protein I is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. J Bacteriol 174:5788–5797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cornelissen CN, Anderson JE, Boulton IC et al (2000) Antigenic and sequence diversity in gonococcal transferrin-binding protein A (TbpA). Infect Immun 68:4725–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Anderson JE, Sparling PF, Cornelissen CN (1994) Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. J Bacteriol 176:3162–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Brooks CL, Arutyunova E, Lemieux MJ (2014) The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences. Acta Crystallogr F Struct Biol Commun 70(Pt 10):1312–1317. https://doi.org/10.1107/S2053230X14019372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Stojiljkovic I, Hwa V, de Saint Martin L et al (1995) The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence. Mol Microbiol 15(3):531–541

    Article  CAS  PubMed  Google Scholar 

  178. Cornelissen CN, Kelley M, Hobbs MM et al (1998) The transferrin receptor expressed by gonococcal strain FA 1090 is required for the experimental infection of human male volunteers. Mol Microbiol 27:611–616

    Article  CAS  PubMed  Google Scholar 

  179. Anderson JE, Hobbs MM, Biswas GD et al (2003) Opposing selective forces for expression of the gonococcal lactoferrin receptor. Mol Microbiol 48(5):1325–1337

    Article  CAS  PubMed  Google Scholar 

  180. Weisenfeld HC, Mietzner TA, Sweet RL (1994) Lactoferrin and hemoglobin iron utilization and the transmission of Neisseria gonorrhoeae, abstr. B-160. In: ASM (ed) Abstracts of the 94th general meeting of the American Society for Microbiology 1994. American Society for Microbiology, Washington, DC

    Google Scholar 

  181. Cornelissen CN, Anderson JE, Sparling PF (1997) Characterization of the diversity and the transferrin-binding domain of gonococcal transferrin-binding protein 2. Infect Immun 65:822–828

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Meyer TF, Gibbs CP, Haas R (1990) Variation and control of protein expression in Neisseria. Annu Rev Microbiol 44:451–477

    Article  CAS  PubMed  Google Scholar 

  183. Price GA, Hobbs MM, Cornelissen CN (2004) Immunogenicity of gonococcal transferrin binding proteins during natural infections. Infect Immun 72(1):277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Price GA, Russell MW, Cornelissen CN (2005) Intranasal administration of recombinant Neisseria gonorrhoeae transferrin binding proteins A and B conjugated to the cholera toxin B subunit induces systemic and vaginal antibodies in mice. Infect Immun 73(7):3945–3953. https://doi.org/10.1128/IAI.73.7.3945-3953.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Price GA, Masri HP, Hollander AM et al (2007) Gonococcal transferrin binding protein chimeras induce bactericidal and growth inhibitory antibodies in mice. Vaccine 25(41):7247–7260. https://doi.org/10.1016/j.vaccine.2007.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4(1):82–91. https://doi.org/10.3945/an.112.003038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Maret W (2013) Zinc and the zinc proteome. Met Ions Life Sci 12:479–501. https://doi.org/10.1007/978-94-007-5561-1_14

    Article  PubMed  Google Scholar 

  188. Striz I, Trebichavsky I (2004) Calprotectin – a pleiotropic molecule in acute and chronic inflammation. Physiol Res 53(3):245–253

    CAS  PubMed  Google Scholar 

  189. Edgeworth J, Gorman M, Bennett R et al (1991) Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J Biol Chem 266(12):7706–7713

    CAS  PubMed  Google Scholar 

  190. Urban CF, Ermert D, Schmid M et al (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5(10):e1000639. https://doi.org/10.1371/journal.ppat.1000639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Corbin BD, Seeley EH, Raab A et al (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319(5865):962–965. https://doi.org/10.1126/science.1152449

    Article  CAS  PubMed  Google Scholar 

  192. Turner PC, Thomas CE, Stojiljkovic I et al (2001) Neisserial TonB-dependent outer-membrane proteins: detection, regulation and distribution of three putative candidates identified from the genome sequences. Microbiology 147(Pt 5):1277–1290. https://doi.org/10.1099/00221287-147-5-1277

    Article  CAS  PubMed  Google Scholar 

  193. Campagnari AA, Spinola SM, Lesse AJ et al (1990) Lipooligosaccharides epitopes shared among gram negative non-enteric mucosal pathogens. Microb Pathog 8:353

    Article  CAS  PubMed  Google Scholar 

  194. Inzana TJ, Seifert WEJ, Williams RP (1985) Composition and antigenic activity of the oligosaccharide moiety of Haemophilus influenzae type b lipooligosaccharide. Infect Immun 48:324–330

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Schneider H, Hale TL, Zollinger WD et al (1984) Heterogeneity of molecular size and antigenic expression within lipooligosaccharides of individual strains of Neisseria gonorrhoeae and Neisseria meningitidis. Infect Immun 45:544–549

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Griffiss J, Brandt B, Saunders N et al (2000) Structural relationships and sialylation among meningococcal L1, L8 and L3, 7 lipooligosaccharide serotypes. J Biol Chem 275:9716–9724

    Article  CAS  Google Scholar 

  197. Zhou D, Stephens DS, Gibson BW et al (1994) Lipooligosaccharide biosynthesis in pathogenic Neisseria. Cloning, identification, and characterization of the phosphoglucomutase gene. J Biol Chem 269(15):11162–11169

    CAS  PubMed  Google Scholar 

  198. Gibson BW, Melaugh W, Phillips NJ et al (1993) Investigation of the structural heterogeneity of lipooligosaccharides from pathogenic Haemophilus and Neisseria species and of R-type lipopolysaccharides from Salmonella typhimurium by electrospray mass spectrometry. J Bacteriol 175(9):2702–2712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Petricoin EF III, Danaher RJ, Stein DC (1991) Analysis of the lsi region involved in lipooligosaccharide biosynthesis in Neisseria gonorrhoeae. J Bacteriol 173:7896–7902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gotschlich EC (1994) Genetic locus for the biosynthesis of the variable portion of Neisseria gonorrhoeae lipooligosaccharide. J Exp Med 180(6):2181–2190

    Article  CAS  PubMed  Google Scholar 

  201. Kahler CM, Carlson RW, Rahman MM et al (1996) Two glucosyltransferase genes, lgtF and rfaK, constitue the lipooligosaccharide ice (inner core extension) biosynthesis operon of Neisseria meningitidis. J Bacteriol 178:6677–6684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Banerjee A, Wang R, Uljon SN et al (1998) Identification of the gene (lgtG) encoding the lipooligosaccharide beta chain synthesizing glucosyl transferase from Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 95(18):10872–10877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Gibson BW, Webb JW, Yamasaki R et al (1989) Structure and heterogeneity of the oligosaccharides from the lipopolysaccharides of a pyocin-resistant Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 86:17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ram S, Gulati S, Lewis LA et al (2018) A novel sialylation site on Neisseria gonorrhoeae lipooligosaccharide links heptose II lactose expression with pathogenicity. Infect Immun 86(8). https://doi.org/10.1128/IAI.00285-18

  205. Yamasaki R, Kerwood DE, Schneider H et al (1994) The structure of lipooligosaccharide produced by Neisseria gonorrhoeae, strain 15253, isolated from a patient with disseminated infection: evidence for a new glycosylation pathway of gonococcal lipooligosaccharide. J Biol Chem 269:30345–30351

    CAS  PubMed  Google Scholar 

  206. Yamasaki R, Koshino H, Kurono S et al (1999) Structural and immunochemical characterization of a Neisseria gonorrhoeae epitope defined by a monoclonal antibody 2C7; the antibody recognizes a conserved epitope on specific lipo-oligosaccharides in spite of the presence of human carbohydrate epitopes. J Biol Chem 51:36550–36558

    Article  Google Scholar 

  207. Apicella MA, Shero M, Jarvis GA et al (1987) Phenotypic variation in epitope expression of the Neisseria gonorrhoeae lipooligosaccharide. Infect Immun 55(8):1755–1761

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Schneider H, Hammack CA, Apicella MA et al (1988) Instability of expression of lipooligosaccharides and their epitopes in Neisseria gonorrhoeae. Infect Immun 56(4):942–946

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Danaher RJ, Levin JC, Arking D et al (1995) Genetic basis of Neisseria gonorrhoeae lipooligosaccharide antigenic variation. J Bacteriol 177:7275–7279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jennings M, Hood D, Peak R et al (1995) Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol Microbiol 18:729–740

    Article  CAS  PubMed  Google Scholar 

  211. Yang QL, Gotschlich EC (1996) Variation of gonococcal lipoligosaccharide structure is due to alteration in poly-G tracts in lgt genes encoding glycosyl transferases. J Exp Med 183:323–327

    Article  CAS  PubMed  Google Scholar 

  212. Gulati S, Zheng B, Reed GW et al (2013) Immunization against a saccharide epitope accelerates clearance of experimental gonococcal infection. PLoS Pathog 9(8):e1003559. https://doi.org/10.1371/journal.ppat.1003559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ingwer I, Petersen BH, Brooks G (1978) Serum bactericidal action and activation of the classic and alternate complement pathways by Neisseria gonorrhoeae. J Lab Clin Med 92:211–220

    CAS  PubMed  Google Scholar 

  214. Griffiss JM, Jarvis GA, O'Brien JP et al (1991) Lysis of Neisseria gonorrhoeae initiated by binding of normal human IgM to a hexosamine-containing lipooligosaccharide epitope(s) is augmented by strain-specific, properdin-binding-dependent alternative complement pathway activation. J Immunol 147:298–305

    CAS  PubMed  Google Scholar 

  215. Jarvis GA (1995) Recognition and control of neisserial infection by antibody and complement. Trends Microbiol 3(5):198–201

    Article  CAS  PubMed  Google Scholar 

  216. Schneider H, Griffiss JM, Williams GD et al (1982) Immunological basis of serum resistance of Neisseria gonorrhoeae. J Gen Microbiol 128(Pt 1):13–22

    CAS  PubMed  Google Scholar 

  217. Ward ME, Glynn AA (1972) Human antibody response to lipopolysaccharides from Neisseria gonorrhoeae. J Clin Pathol 25(1):56–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. de la Paz H, Cooke SJ, Heckels JE (1995) Effect of sialylation of lipopolysaccharide of Neisseria gonorrhoeae on recognition and complement-mediated killing by monoclonal antibodies directed against different outer-membrane antigens. Microbiology 141(Pt 4):913–920

    Article  PubMed  Google Scholar 

  219. Parsons NJ, Andrade JR, Patel PV et al (1989) Sialylation of lipopolysaccharide and loss of absorption of bactericidal antibody during conversion of gonococci to serum resistance by cytidine 5′-monophospho-N-acetyl neuraminic acid. Microb Pathog 7(1):63–72

    Article  CAS  PubMed  Google Scholar 

  220. Jarvis GA (1994) Analysis of C3 deposition and degradation on Neisseria meningitidis and Neisseria gonorrhoeae. Infect Immun 62(5):1755–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Gulati S, Schoenhofen IC, Whitfield DM et al (2015) Utilizing CMP-sialic acid analogs to unravel Neisseria gonorrhoeae lipooligosaccharide-mediated complement resistance and design novel therapeutics. PLoS Pathog 11(12):e1005290. https://doi.org/10.1371/journal.ppat.1005290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Elkins C, Carbonetti NH, Varela VA et al (1992) Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol Microbiol 6(18):2617–2628

    Article  CAS  PubMed  Google Scholar 

  223. Wetzler LM, Barry K, Blake MS et al (1992) Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera. Infect Immun 60(1):39–43

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Zaleski A, Densen P (1996) Sialylation of LOS inhibits gonococcal killing primarily through an effect on classical pathway activation. In: Zollinger WD, Frasch CE, Deal CD (eds) Abstracts of the tenth international pathogenic neisseria conference. National Institutes of Health, Baltimore, MD, p 114

    Google Scholar 

  225. Ram S, Sharma AK, Simpson SD et al (1998) A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J Exp Med 187(5):743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Blom AM, Hallstrom T, Riesbeck K (2009) Complement evasion strategies of pathogens-acquisition of inhibitors and beyond. Mol Immunol 46(14):2808–2817

    Article  CAS  PubMed  Google Scholar 

  227. Ram S, Shaughnessy J, DeOliveira RB et al (2016) Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: lessons from the pathogenic Neisseriae. Immunobiology 221(10):1110–1123. https://doi.org/10.1016/j.imbio.2016.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gulati S, Cox A, Lewis LA et al (2005) Enhanced factor H binding to sialylated Gonococci is restricted to the sialylated lacto-N-neotetraose lipooligosaccharide species: implications for serum resistance and evidence for a bifunctional lipooligosaccharide sialyltransferase in Gonococci. Infect Immun 73(11):7390–7397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Apicella MA, Mandrell RE, Shero M et al (1990) Modification by sialic acid of Neisseria gonorrhoeae lipooligosaccharide epitope expression in human urethral exudates: an immunoelectron microscopic analysis. J Infect Dis 162:506–512

    Article  CAS  PubMed  Google Scholar 

  230. Schneider H, Cross AS, Kuschner RA et al (1995) Experimental human gonococcal urethritis: 250 Neisseria gonorrhoeae MS11mkC are infective. J Infect Dis 172(1):180–185

    Article  CAS  PubMed  Google Scholar 

  231. Schneider H, Griffiss JM, Boslego JW et al (1991) Expression of paragloboside-like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men. J Exp Med 174:1601–1605

    Article  CAS  PubMed  Google Scholar 

  232. Harvey HA, Porat N, Campbell CA et al (2000) Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol Microbiol 36:1059–1070

    Article  CAS  PubMed  Google Scholar 

  233. Schneider H, Schmidt KA, Skillman DR et al (1996) Sialylation lessens the infectivity of Neisseria gonorrhoeae MS11mkC. J Infect Dis 173(6):1422–1427

    Article  CAS  PubMed  Google Scholar 

  234. Lewis LA, Gulati S, Burrowes E et al (2015) Alpha-2,3-sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonorrhoeae to colonize the murine genital tract. MBio 6(1). https://doi.org/10.1128/mBio.02465-14

  235. Wu H, Jerse AE (2006) Alpha-2,3-sialyltransferase enhances Neisseria gonorrhoeae survival during experimental murine genital tract infection. Infect Immun 74(7):4094–4103. https://doi.org/10.1128/iai.00433-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sadarangani M, Pollard AJ (2010) Serogroup B meningococcal vaccines-an unfinished story. Lancet Infect Dis 10(2):112–124. https://doi.org/10.1016/S1473-3099(09)70324-X

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Rice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shaughnessy, J., Ram, S., Rice, P.A. (2019). Biology of the Gonococcus: Disease and Pathogenesis. In: Christodoulides, M. (eds) Neisseria gonorrhoeae. Methods in Molecular Biology, vol 1997. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9496-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9496-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9495-3

  • Online ISBN: 978-1-4939-9496-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics