Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Species:

Filter by Pathway Type:

Select Pathway Sub-Category:

Select Pathway Sub-Category:



Showing 151 - 160 of 605359 pathways
PathBank ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0012019

Pw012879 View Pathway

Abscisic Acid Biosynthesis

Arabidopsis thaliana
Abscisic acid biosynthesis is a pathway that begins in the chloroplast and ends in the cytosol by which violaxanthin becomes abscisic acid, a plant hormone that plays a role in many plant developmental processes, including bud dormancy . First, neoxanthin synthase catalyzes the opening of the violaxanthin epoxide ring to form neoxanthin. Second, a yet unidentified neoxanthin isomerase is theorized to isomerize neoxanthin to 9'-cis-neoxanthin. Third, 9-cis-epoxycarotenoid dioxygenase (NCED) uses oxygen to cleave 9'-cis-neoxanthin to form xanthoxin and C25-allenic-apo-aldehyde. This enzyme requires Fe2+ as a cofactor. Next, a xanthoxin transporter is theorized to export xanthoxin from the chloroplast into the cytosol to continue abscisic acid biosynthesis, but it has yet to be discovered. Fourth, xanthoxin dehydrogenase, located in the cytosol, catalyzes the conversion of xanthoxin and NAD to abscisic aldehyde, NADH, and a proton with the help of a molybdenum cofactor (MoCo). Fifth, abscisic-aldehyde oxidase converts abscisic aldehyde, water, and oxygen into hydrogen peroxide, hydrogen ion, and abscisic acid.
Metabolite
Metabolic

SMP0012033

Pw012894 View Pathway

Abscisic Acid Glucose Ester Metabolism

Arabidopsis thaliana
Abscisic acid glucose ester metabolism is a pathway that begins in the chloroplast and enters the cytosol and endoplasmic reticulum body by which violaxanthin becomes abscisic acid glucose ester, synthesizing abscisic acid in the process. Abscisic acid glucose ester synthesis and reformation back to abscisic acid provides a mechanism for precisely controlling abscisic acid concentration (quickly removing and adding abscisic acid when required). First, neoxanthin synthase catalyzes the opening of the violaxanthin epoxide ring to form neoxanthin. Second, a yet unidentified neoxanthin isomerase is theorized to isomerize neoxanthin to 9'-cis-neoxanthin. Third, 9-cis-epoxycarotenoid dioxygenase (NCED) uses oxygen to cleave 9'-cis-neoxanthin to form xanthoxin and C25-allenic-apo-aldehyde. This enzyme requires Fe2+ as a cofactor. Next, a xanthoxin transporter is theorized to export xanthoxin from the chloroplast into the cytosol to continue abscisic acid biosynthesis, but it has yet to be discovered. Fourth, xanthoxin dehydrogenase, located in the cytosol, catalyzes the conversion of xanthoxin and NAD to abscisic aldehyde, NADH, and a proton with the help of a molybdenum cofactor (MoCo). Fifth, abscisic-aldehyde oxidase converts abscisic aldehyde, water, and oxygen into hydrogen peroxide, hydrogen ion, and abscisic acid. Sixth, abscisic acid glucosyltransferase uses UDP to convert abscisic acid into abscisic acid glucose ester. Abscisic acid glucose ester can then be converted back to abscisic acid via abscisic acid glucose ester beta-glucosidase located in the endoplasmic reticulum body (coloured dark green in the image). Consequently, it is theorized that ABA-GE transporters are required for this enzyme to access its substrates from the cytosol.
Metabolite
Metabolic

SMP0128803

Pw130422 View Pathway

Absidia capillata Drug Metabolism

Homo sapiens
Metabolite
Metabolic

SMP0127983

Pw129602 View Pathway

ABX-PTH Drug Metabolism

Homo sapiens
Metabolite
Metabolic

SMP0127946

Pw129565 View Pathway

AC-100 Drug Metabolism

Homo sapiens
Metabolite
Metabolic

SMP0128561

Pw130180 View Pathway

Acacia baileyana pollen Drug Metabolism

Homo sapiens
Metabolite
Metabolic

SMP0129821

Pw131440 View Pathway

Acacia dealbata pollen Drug Metabolism

Homo sapiens
Metabolite
Metabolic

SMP0128320

Pw129939 View Pathway

Acacia Drug Metabolism

Homo sapiens
Metabolite
Metabolic

SMP0128222

Pw129841 View Pathway

Acacia longifolia pollen Drug Metabolism

Homo sapiens
Metabolite
Metabolic

SMP0128774

Pw130393 View Pathway

Acacia pollen Drug Metabolism

Homo sapiens
Metabolite
Metabolic
Showing 151 - 160 of 167268 pathways