Next Article in Journal
The Anticancer Effects of Marine Carotenoid Fucoxanthin through Phosphatidylinositol 3-Kinase (PI3K)-AKT Signaling on Triple-Negative Breast Cancer Cells
Previous Article in Journal
Study on the Properties Changes of Reversible Invert Emulsion during the Process from O/W to W/O with Alkali
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

A Comprehensive Review of the Classification, Sources, Phytochemistry, and Pharmacology of Norditerpenes

by
Ni Zeng
,
Qiongdan Zhang
,
Qingying Yao
,
Gang Fu
,
Wei Su
,
Wei Wang
* and
Bin Li
*
TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
*
Authors to whom correspondence should be addressed.
Molecules 2024, 29(1), 60; https://doi.org/10.3390/molecules29010060
Submission received: 29 November 2023 / Revised: 15 December 2023 / Accepted: 19 December 2023 / Published: 21 December 2023
(This article belongs to the Section Natural Products Chemistry)

Abstract

:
Norditerpenes are considered to be a common and widely studied class of bioactive compounds in plants, exhibiting a wide array of complex and diverse structural types and originating from various sources. Based on the number of carbons, norditerpenes can be categorized into C19, C18, C17, and C16 compounds. Up to now, 557 norditerpenes and their derivatives have been found in studies published between 2010 and 2023, distributed in 51 families and 132 species, with the largest number in Lamiaceae, Euphorbiaceae, and Cephalotaxaceae. These norditerpenes display versatile biological activities, including anti-tumor, anti-inflammatory, antimicrobial, and antioxidant properties, as well as inhibitory effects against HIV and α-glucosidase, and can be considered as an important source of treatment for a variety of diseases that had a high commercial value. This review provides a comprehensive summary of the plant sources, chemical structures, and biological activities of norditerpenes derived from natural sources, serving as a valuable reference for further research development and application in this field.

Graphical Abstract

1. Introduction

Diterpenes are natural terpenes composed of twenty carbon atoms in their molecules and are formed by the polymerization of four isoprene units. They are widely distributed in plants, particularly in plant-secreted milk and resin. In addition to plants, diterpenes can also be found in fungal metabolites and marine organisms. Generally consisting of 20 carbons, diterpenes can give rise to norditerpenes with fewer carbon atoms due to the absence of one to three carbon atoms within the diterpene core structure. C19 norditerpenes, which lack one carbon atom, represent the most common structural type among norditerpenes. Natural sources of norditerpenes exhibit diverse pharmacological activities including anti-inflammatory, anti-tumor, and antimicrobial effects. Therefore, extensive attention has been drawn toward research on norditerpenes. Norditerpene alkaloids are a class of norditerpenes. Yong Shen and coworkers reviewed 337 naturally occurring diterpene alkaloids, including 251 norditerpene alkaloids, derived from studies published between 2008 and 2018 [1]. To avoid the duplication of previous work, this article reviews the structural types and biological activities of norditerpenes (norditerpene alkaloids are not included) derived from studies published between 2010 and 2023. In general, 557 norditerpenes and their derivatives were found in the natural world, distributed into 132 species and 51 families (Table 1). This provides the basis for further research on the discovery of natural product drugs.

2. Chemical Constituents of C19 Norditerpenes

In nature, seven primary categories of C19 norditerpenes have been identified: the labdane, pimarane, abietane, kaurane, clerodane, cephalotane, and cembranoid types. These types are shown in Figure 1 as their fundamental frameworks. Additionally, there are other norditerpenes with distinctive structures in the natural environment.

2.1. Labdane

Labdane norditerpenes are commonly found as bicyclic diterpenes, with a trans-fused A/B ring in the nuclear parent and a side chain typically consisting of a six-carbon open chain. The presence of hydroxyl groups on the side chain allows for easy dehydration and condensation reactions, leading to the formation of a five-membered ring. Labdane-type diterpenes with both an open-chain structure and a five-membered ring in the side chain have a wide distribution (Table 2, Figure 2).
Compound 1 is a novel diterpene belonging to the 3-nor-2,3-seco-labdane class. It is characterized by fission the between C-2 and C-3 of ring A, followed by decarboxylation at C-3. Compound 2 is a rare 19-nor labdane-type diterpene isolated from fungus, while compounds 38 possess a fused bicyclic fragment with a 6/6 fusion, both of which are classified as 15-norditerpenes. Compounds 921 belong to the ent-nor-furano diterpene of the labdane series. Compounds 2223 feature unique nine-membered ring structures, showcasing unprecedented characteristics. Compound 23 exhibits an exceptional structural motif with a fused α, β-unsaturated-γ-lactone unit, and a nine-membered ring B at C-10/C-11. Compound 24 represents a rare instance of a 6-norlabdane-type diterpene containing a tetrahydrofuran-lactone moiety. Compounds 2526 display unparalleled hexacyclic structures as 19-nor-secolabdane diterpenes with tetracyclodecane skeletons. Compounds 2728 are structurally similar to compounds 2526 and exist as Z(E)-isomers.

2.2. Clerodane

Clerodane norditerpenes consist of a fused-ring decalin moiety (C1–C10) and a six-carbon side chain at C-9. Based on the A/B ring junction configuration and the substituents on C-8 and C-9, its skeletons can be classified into four types (Figure 3).
Compound 29 is characterized by a double bond between carbon atoms C-3 and C-4. Compounds 3031 have a fused tricyclic ring system with a 6/6/6 configuration. Compound 32 belongs to the bioactive clerodane class of 19-nor-diterpenes, featuring a cyclohexenone decalin ring. Compound 33 is a dehydrogenated derivative of compound 34, resulting in the removal of hydrogen atoms from positions C11–C12. Compounds 3537 exhibit a distinct 3,5(10)-diene moiety. Compounds 3840 belong to the furanoditerpenes of the 18-nor-clerodane class. Compounds 4344 display an opened lactone ring at positions 17 and 12, accompanied by oxidation occurring at position C-12. Compounds 4352 possess a butenolide moiety extending from C-19 to C-6. Compound 53 demonstrates a similar structure, albeit featuring a double bond between C-5 and C-10. Compound 54 consists of a unique cage-like tetracyclic ring system, fused in a pattern of 6/6/6/5, which is formed by the incorporation of a 5,12-epoxy ring. Compound 55 is identified as an exceptionally symmetrical diterpene dimer characterized by the formation of a cyclobutane ring through [2 + 2] cycloaddition (Table 3, Figure 4).

2.3. Pimarane

Pimarane norditerpenes are tricyclic diterpenes and are widely distributed in nature. Pimarane norditerpenes are mainly divided into four types (Figure 5): pimarane, isopimarane, ent-pimarane, and ent-isopimarane. Isopimarane norditerpenes are a class of compounds classified by pimarane norditerpenes according to the difference of chiral centers in the molecule, and they are also the largest number of pimarane norditerpenes (Table 4, Figure 6).

2.3.1. Pimarane

Compounds 5675 belong to the category of pimarane-type norditerpene compounds. Compounds 5660 featured a methoxy group at C-12 and included a vinyl fragment at C-13. Compounds 6364 are exceptional members within the bacterial norditerpene metabolite family. Compounds 6577 exhibit a tetracyclic structure with a 3,20-epoxy bridge, except for compounds 6977, which also feature lactone carbon at C-19, indicating the presence of the 19,6-gamma-lactone moiety. Compound 77 has been identified as (9βH)-17-norpimarane dilactone. Additionally, both compounds 78 and 79 exhibit β orientation of the 2,20-epoxy bridge. Compound 80 represents the first example of a glucoside derivative of 17-nor-pimarane diterpenes.

2.3.2. Isopimarane

Compounds 81105 are isopimarane-type norditerpene compounds, with compound 82 featuring a bulky O-propyl pentanoate group at C-3. Compounds 9095 exhibit unique examples of the 20-nor-isopimarane type, characterized by the presence of a cyclohexa-2,5-dien-1-one moiety. Compounds 9699 represent four aromatic norditerpenes. Compound 100 possesses an unusual skeleton composed of an 18-nor-9, 16-cyclo-isopimarane framework with a cage-like bicycle [2.2.2] octane moiety. Lastly, compounds 101105 display a rare 14,16-cyclic ether unit and possess a unique 6/6/6/5 tetracyclic cycloether skeleton.

2.3.3. Ent-Pimarane

Compounds 106109 exhibit an ester bond instead of the olefinic bond at C-13. Compound 110 displays an additional cinnamoyl group and a vinyl benzene moiety. Compounds 111115 are characterized by a rare 16-nor-ent-pimarane skeleton and demonstrate the presence of γ-lactone between the C15-O-C8 bonds. Compound 115 represents the first reported instance of this previously undescribed skeleton of 2, 3-seco-16-nor-ent-pimarane.

2.3.4. Ent-Isopimarane

Compounds 116117 represent the first examples of 18 (or 19)-ent-isopimarane norditerpenes. Compound 117 has a double bond at C-14, while compounds 118120 feature a hydroxyl group at C-4, with compound 119 being the C-4 epimer of 120.

2.4. Abietane

Abietane norditerpenes are tricyclic diterpenes commonly formed through rearrangements of pimarane norditerpenes. The core structure consists of a hydrogenated phenanthrene with an isopropyl group at C-13, geminal dimethyl groups at C-4, and a methyl group at C-20. Ring B and the side chains on the C ring can easily undergo rearrangement to form a five-membered ring, with some quinone structures also found on the C ring. Abietane norditerpenes are primarily classified into abietane type, ent-abietane type, and seco-abietane type (in Table 5, Figure 7).
Compounds 121123 belong to the 8-nor-7(8→14),9(8→7)-di-abeo-abietane skeleton type. Compounds 124125 possess a 6-nor-6,7-seco-abietane skeleton. Compounds 126127 contain a moiety of 1,2-quinone, while compounds 128130 feature a moiety of 1,4-quinone in ring C. Compounds 126141 are aromatic norditerpenes, while compounds 142146 feature a tropolone moiety; notably, compound 142 is characterized by the presence of a peroxide group connecting C-8 and C-12. Furthermore, compounds 147153 demonstrate rearranged side chains that form an oxygen-containing five-membered ring. Compounds 155156 possess a unique γ-lactone subgroup located between C-8 and C-20. Compound 157 is a seven-membered norditerpene featuring two carbonyl groups in the C ring. Compounds 158162 are seco-abietane norditerpenes. Compounds 158159 possess a unique 18-nor-5,10: 9,10-disecoabietane skeleton, while compound 160 exhibits a rearranged angular methyl group at C-5 and belongs to the 4, 5-seco-19-nor-abietane skeleton. Compound 163 is characterized by a 7β,19-epoxydecalin spirally linked with a five-membered α, β-unsaturated lactone ring, and an acrylic acid moiety.

2.5. Kaurane

Kaurane norditerpenes represent a class of tetracyclic diterpenes characterized by the hydrophenanthrene core skeleton. These compounds can be classified into two configurations, namely kaurane and ent-kaurane. It is worth noting that the ent-kaurane-type norditerpenes exhibit remarkable abundance (Table 6, Figure 8).
Compounds 165166 are spiral seco ent-kaurane norditerpenes. Compound 165 is a naturally occurring compound with a structure of 6-nor-6,7-seco-ent-kauranoid, while compound 166 featured a 6,7: 8,15-seco-ent-kaurane diterpene skeleton.
Compounds 170182 are classified as ent-18-norkaurene-type diterpenes. Compound 173 features an 11β,16β-epoxy ring moiety. Compounds 174182 exhibit a 4β, 19-epoxy ring moiety. Compounds 183186 are categorized as C-19 nor-ent-kaurane norditerpenes.
Compounds 187188 demonstrate a unique structural pattern of 20-nor-ent-kaurane norditerpenes. Compound 189 is determined to be a nor-6,7-seco-1,7: 6, 11-diolide-ent-kaurane, and the first diterpenene within the category of the 20-nor-enmein type.

2.6. Cephalotane

In the past decade, more than fifty cephalotane-type norditerpenes have been discovered through previous phytochemical investigations, which can be categorized into four distinct structural groups: A-ring-contracted cephalotane-type norditerpenes, cephalotaxus troponoids (C19), 17-nor-cephalotane-type diterpenes (C19), and cephalotane dimers (Table 7, Figure 9).
Compounds 190202 are norditerpenes featuring a contracted A-ring structure. Compound 192 exhibits a distinctive bicyclo [4.1.0] hepta-2,4-dien-7-one moiety. Compounds 203235 belong to cephalotaxus troponoids, which represent the predominant group of cephalotane-type norditerpenes. The skeletal structure of cephalotaxus troponoids is distinguished by a highly rigid tetracyclic carbon framework, encompassing a tropone moiety, multiple oxygenated groups, and methyl substituents at positions C-4 and C-12. Cephalotaxus troponoids are derived from labdane-type norditerpenes. The 17-nor-cephalotane-type diterpenes were derived from cephalotaxus troponoids via a reduction in the tropone ring. Compounds 236248 exemplify this class of diterpenes, while compound 247 features an 8-oxabicyclo [3.2.1] oct-2-ene moiety. Compounds 249252 represent the first example of C19 norditerpene dimers and possess a unique tricycle [6.4.1.12, 7] tetradeca-3,5,9,11-tetraene-13,14-dione core, and both ends are terminated with a C2 symmetric or asymmetric rigid polycyclic ring system.

2.7. Cembranoid

Cembranoid-type norditerpenes are macrocyclic diterpenes that belong to a class of natural products characterized by fourteen-membered rings and possess three symmetrically distributed methyl groups and one isopropyl group. Isopropyl-cembrane-type norditerpenes, primarily formed through isopropyl or isopropenyl substitution, represent the most common cembrane-type norditerpenes (Table 8, Figure 10).
Compounds 253263 are characterized by the presence of polycyclic furanobutenolide-derived norcembranoid diterpenes isolated from soft corals. Compound 264 possesses a rare 5/5/11-fused tricyclic ring system, while compounds 265267 possess a 5/5/6/6 tetracyclic ring system. Compounds 268274 possess a cyclopentane ring, a cyclohexane ring, and a seven-membered ring. Compounds 275276 display an uncommon 8/8 bicyclic carbon core.

2.8. Others

Compounds 277278 are lathyrane-type norditerpenes. Compound 279 is an atypical C19 furano-norditerpene. Compounds 280282 have uncommon characteristics as cassane-type norditerpenes. The classification of compounds 283286 confirms their identity as cleistanthane-type norditerpenes. The discovery of compounds 283284 marks the first examples of phenylethylene-bearing derivatives among 20-nor-diterpenes, with compound 284 exhibiting a unique 3,10-oxybridge moiety. Compound 286 stands out due to its scarcity among phenylacetylene-containing 18-nor-diterpene glycosides. Compounds 287291 exhibit the characteristic fusicoccane-type norditerpenes. Specifically, compounds 287289 belong to a unique category of 16-nor-dicyclopenta [a,d]-cyclooctane norditerpenes, while compound 287 features an undescribed tetracyclic ring system with a configuration of 5/6/6/5. Compounds 292293 are obtained through the rearrangement of the crotofolane skeleton. Compounds 294295 exhibit a pair of enantiomeric norditerpenes featuring an unexpected 6/5/6/6-fused tetracyclic ring system. Compounds 296298 are uniformly classified as ent-atisane norditerpenes. Compound 299 possesses a perhydroazulene ring system, while compounds 300302 represent three newly rearranged oxygenated terpenes. Compounds 303304 belong to the class of spongian diterpenes and exhibit a highly distinctive carbon skeleton known as 3-nor-spongian. Li’s group unveiled four unprecedented C19 norditerpenes, including compound 305 with a cyclopenta[b]furan-2,5-dione skeleton, compound 306 with a pyran[b]furan-2,6-dione skeleton, and compounds 307308, which are epimerides possessing a pair of dioxaspiro[4.4]nonane skeletons.
Compound 309 is a naturally occurring norditerpene with a seven-membered ring mulinane skeleton lacking the C-16-methyl group. Compound 310 possesses an undescribed nor-guanacastane skeleton. Compound 312 has been identified as an isomer of 311. Compounds 313314 belong to yonarane norditerpenes, and compound 317 belongs to inelegane-type norditerpenes. Compound 315 is considered an undescribed bicyclo[11.3.0]hexadecane carbon skeleton, whereas compounds 316321 are consistently classified as verticillane-type norditerpenes. Compounds 322323 are norditerpene glycosides. Compounds 324332 represent new norditerpene lactones, whereas compounds 333345 are norditerpene oidiolactones. Compounds 347358 have been identified as norditerpene picrotoxanes. Compound 359 exhibits a podocarpane skeleton, while compound 360 belongs to the xeniaphyllane-type norditerpene. Compounds 363364 are a heterodimeric diterpene consisting of an ent-abietane and an 18-nor-rosane skeleton with an aromatic ring (Table 9, Figure 11).

3. Chemical Constituents of C18 Norditerpenes

Ten primary categories of C18 norditerpenes have been identified in the natural environment, including the labdane, abietane, podocarpane, pimarane, cassane, aspergilane, benzodioxane, commiphorane, totarane, and cephalotane types. Additionally, there are other norditerpenes with atypical structures and certain abietane dipolymers found in nature (Table 10, Figure 12).

3.1. Abietane

Compound 365 is a new abietane type and has been reported as a 20-acetyl derivative of 15,16-dinorpymara-8,11,13-trien-12-ol, known as salyunnanin F. Compound 368 is a diastereomer of 367. Compounds 370375 exhibit an ether bridge between C-18 and C-6 or C-7. Compounds 378388 are dinorditerpenes derived from an abietane-type skeleton with a seven-membered ring in the tricyclic skeleton. Compound 387 is a unique C18 norditerpene bearing a special seco-ring C. Compounds 389397 belong to a special class of tetracyclic abietane-type dinorditerpenes. The stem bark of Trigonostemon chinensis yielded two novel dimeric degraded diterpenes, compounds 398399, featuring a homodimeric biaryl skeleton derived from the rearrangement of chiral nonracemic abietane-type norditerpenes. This structural motif is connected through an axially chiral biaryl 11,11′-linkage.

3.2. Podocarpane

The podocarpane type is a trinucleated norditerpene. Compounds 400414 and 420423 are new 13-methyl-ent-podocarpane norditetrpenoids, while 427428 are 12-methyl-ent-podocarpane norditetrpenoids.
Compounds 400401 exhibit a unique dinorditerpene bearing a special seco-ring A, and 400 is a 13-methyl-3,4-seco-ent-podocarpane norditetrpenoid. Compounds 417419 are classified as 13-methyl-9(10→20)-abeo-ent-podocarpane norditetrpenoids. Compounds 420431 are 13-methyl-7-oxo-ent-podocarpane norditetrpenoids, and compound 420 is a derivative methylated at position 12 of compound 421. Compounds 424428 belong to a special class of tetracyclic diterpenes.

3.3. Other Compounds

Compound 429 is an oxidized derivative of the common C20 labdane precursor and is identified as a 15,16-dinor labdane diterpene. Compounds 430435 are determined to be 14,15-bisnor labdane diterpenes. Compounds 436437 present the 6,7-dinorlabdane diterpenes with a peroxide bridge. Compound 438 is a special norditerpene glucoside and is defined as lyonivaloside I.
Compounds 439448 contain a unique skeleton of 15,16-dinor-ent-pimarane diterpenes. Compound 449 represents a novel phenolic cassane norditerpene. Compound 450 exhibits a new aspergilane skeleton in structure with a special 6/5/6 tricyclic system containing an α,β-unsaturated spironolactone moiety in the B ring. Compound 451 is a novel natural product with a rare 6/6/5-fused tricyclic ring system. Compounds 452453 are two compounds consisting of dinorditerpene and 90-norrosmarinic acid derivatives and are linked by a 1,4-benzodioxanyl motif. Compounds 454455 are aromatic tetranuclear terpenoids with unprecedented carbon skeletons from Resina Commiphora and possess an uncommon 6/6/6/6 ring system. Compounds 458465 have been identified as a series of totarane-type norditerpenes. Compounds 464468 exhibit the rare characteristic of A-ring contraction, known as cephanolide A–C. Compound 469 possesses a skeleton of 17,19-dinorxeniaphyllane.

4. Chemical Constituents of C17 Norditerpenes

Seven major types of C17 norditerpenes have been reported in nature: the labdane type, abietane type, podocarpane type, briarane type, cassane type, cembrane type, and kaurane type. Additionally, there are other trinorditerpenes with special structures and some podocarpane dimers in nature (Table 11, Figure 13).

4.1. Abietane

Compounds 470477 are 15,16,17-bis-norditerpenes. Compound 479 is the 16-OH derivative of 478. Compound 480 represents a rare skeleton of a 20-nor-abietane. Compound 482 is defined as the C-7 epimer of compound 485, while compounds 484486 are aromatic tetranuclear terpenoids with unprecedented carbon skeletons from S. digitaloides. Compounds 487488 possess a unique γ-lactone subunit moiety positioned between C-8 and C-20, leading to the generation of the carbonyl carbon at C-13 through the degradation of the isopropyl group.

4.2. Podocarpane

Compounds 489511 are trinorditerpenes of the podocarpane type. Compounds 509510, existing as atropisomers, are two previously unknown dimeric trinorditerpenes separated from the root bark of C. orbiculatus. Compound 511 is a rare dimeric trinorditerpene with a 1,4-benzodioxane moiety.

4.3. Others

Compound 512 is a novel labdane-norditerpenoid glycoside with a six-membered epoxy system (8→13). Compound 513 is a novel norditerpene derived from a briarane skeleton. Compound 514 represents a previously unidentified trinorcassane diterpenoid bearing a dicyclic norditerpenoid with three acetoxy moieties. Compound 515 is determined to be a cembrane-type macrocyclic trinorditerpenoid with a fused 10/6 carbon skeleton. Compound 516 is a unique trinorditepenoid containing an unprecedented 20-epoxy-ent-kaurane skeleton. Compounds 517521 are three pairs of unfrequent C17 γ-lactone norditerpenoid enantiomers.

5. Chemical Constituents of C16 Norditerpenes

Four main types of C16 norditerpenes have been found in nature: the labdane type, clerodane type, xeniaphyllane type, and abietane type. In addition to the common four types, there are also other norditerpenoids with unique structures and some dimers in nature sources (Table 12, Figure 14).

5.1. Labdane

C16-labdane norditerpenes are common bicyclic diterpenes with four fewer carbon atoms. Compounds 522525 are known as bicyclic norditerpenoids. Compound 525 is the first to be reported in nature. Compound 526 is a rare rearranged labdane-type tetranorditerpenoid with a fused tricarbocyclic system (6/6/5) and an α,β-unsaturated cyclopentenone unit in ring C. Compounds 527 and 528 represent a pair of new labdane-type tetranorditerpenoid epimers, which are the first known examples of naturally derived labdane tetranorditerpenoids. Compounds 531541 are a series of tetracyclic tetranorlabdane diterpenoids.

5.2. Others

Compounds 542543 exhibit clerodane-type tetranorditerpenoids. Compound 544 is a novel abietane tetranorditerpenoid, known as castanol C. Compound 545 possesses an unprecedented carbon skeleton derived from xeniaphyllane. Compound 546 is a newly reported tetranorditerpenoid featuring a special fused ring system of 6/6/5. Compound 547 is a new C16 tetranorditerpenoid lactone with an uncommon tetracyclic fuse system of 5/5/5/6. Compounds 549551 possess an unprecedented framework of 2H-benz[e]inden-2-one. Compounds 552553 represent a pair of epimers of vibsane-type tetranorditerpenes with a bicyclo[4.2.1]nonane unit. Compounds 555556 comprise a pair of rearranged tetranorditerpenoid dimers with a spiroketal core moiety.

6. Pharmacological Activities

Norditerpene, a substance of profound pharmacological significance, manifests diverse primary pharmacological effects and biological activities encompassing cytotoxicity, anti-inflammatory activity, and antibacterial and antiviral actions, as well as antioxidant potential.

6.1. Cytotoxic activity

The anti-tumor activity of numerous norditerpenes has been extensively reported. The cytotoxicity of norditerpenes is the most frequently studied biological activity, and a table listing their cytotoxic activities is provided (Table 13). The cytotoxic activity of compound 208 was found to be the most potent against A549, Hela, and SGC-7901 cell lines, with IC50 values of 0.10 µM, 0.13 µM, and 0.14 µM, respectively [78].

6.2. Antimicrobial Activity

6.2.1. Antibacterial Activity

Inulifolinone D (16) from A. inulifolium can enhance the bactericidal activity against S. aureus. (MIC = 150–75 μg/mL) [10]. Actinomadurol (64) showed high antibacterial activity against pathogenic strains, including Staphylococcus aureus, Rhizophila Kocuria, and Proteus Hauseri, with MICs ranging from 0.39 to 0.78 μg/mL. However, Jbir-65 (63) did not exhibit any antibacterial activity, suggesting that the hydroxyl group at C-7 was responsible for antibacterial activity [25]. Compounds 6972, 74, and 7980 from I. Trichantha showed antibacterial activity against both standard and resistant strains of H. pylori, with an MIC of 8–64 μg/mL. In addition, compounds 72 and 74 showed superior antibacterial activity against H. pylori compared to other compounds, with MIC values ranging from 8 to 16 μg/mL. SAR studies have demonstrated that CH3O-12 and 3, 20-epoxy moiety in 17-nor-pimarane diterpenes can function as activating groups, while the sugar moiety at C-2 might an inactivated group. The combination of antibiotic-icacinlactone B with either metronidazole or amoxicillin exhibited notable additive effects (FICI = 0.56–0.75) against the clinical strain HP159, suggesting that combination therapy has the potential to enhance antimicrobial activity, reduce dosage requirements, and mitigate adverse side effects. Compounds 87, 89, 96, 98, and 99 displayed inhibitory activities against E. tarda, M. luteus, P. aeruginosa, V. harveyi, and V. parahemolyticus, with MIC values of 4.0 μg/mL each; compounds 87 and 99 also exhibited activity against the F. graminearum, with MIC values of 2.0 and 4.0 μg/mL, respectively [34]. Compounds 9091 exhibited comparable MIC values of 8.0 μg/mL against zoonotic pathogenic bacteria, including E. coli, E. tarda, V. harveyi, and V. parahaemolyticus. Compound 93 exhibited potent activity (MIC = 4.0 μg/mL) against the plant pathogen F. graminearum [35]. Salprzelactone (164) showed higher antibacterial activity against A. aerogenes than streptomycin, acheomycin, and ampicillin, as indicated by MIC values of 62.5 μg/mL versus 125 μg/mL, 250 μg/mL, and 125 μg/mL, respectively [55]. The growth of S. aureus was inhibited by citrinovirin (299) at an MIC of 12.4 μg/mL, while it displayed toxicity toward A. salina, with an LC50 of 65.6 μg/mL. Moreover, compound 299 exhibited inhibitory effects ranging from 14.1% to 37.2% against C. Marina, H. Akashiwo, and P.donghaiense at 100 μg/mL; however, it stimulated the growth of S.trochoidea [101]. Compound 531 displayed potent activity against E. tarda, with an MIC value of 16 μg/mL [162,166]. Compounds 555556 showed moderate antimicrobial activities against S. aureus, 8#MRSA, and 82#MRSA, with MIC values from 1.56 to 6.25 μg/mL [173].

6.2.2. Antifungal Activity

Compounds 333, 335, and 342 displayed antifungal activity against C. neoformans (MIC = 17.5, 12.5, and 10.0 μg/mL, respectively) and C. albicans (MIC = 20, 20, and 12.5 μg/mL, respectively) [116]. Compounds 333 and 342 also demonstrated inhibitory effects on the growth of P. destructans, with MIC values of 7.5 and 15 μg/mL, respectively [116]. Compound 534 showed moderate antifungal activities against C. albicans, with an MIC of 16 μg/mL [162].

6.2.3. Antiviral Activity

The compound eupneria J (118) displayed potent anti-HIV-1 activity (IC50 = 0.31 μM). These findings suggest that the presence of a β-oriented hydroxyl group at C-4 may enhance its anti-HIV-1 activity. Furthermore, it is plausible that the acetoxyl group at C-18, rather than at C-3, contributes to an augmented anti-HIV effect [41]. Compound 276 exhibited antiviral activity against human enterovirus EV71, with an IC50 value of 5.0 μM [87]. Compound 394 exhibited anti-HBV activity by effectively suppressing the secretion of HBsAg and HBeAg, with IC50 values of 0.11 and 0.18 μM, respectively. In addition, it also effectively suppressed HBV DNA replication, with an SI value of 647.2 [56]. Compounds 422423 showed potent anti-HCV activity, with EC50 values of 7.5 and 6.6 μM, respectively [128]. Compounds 490491 demonstrated moderate anti-HCV activity, exhibiting EC50 values of 13.0 ± 0.3 μM and 23.6 ± 1.9 μM, respectively [148].

6.3. Anti-Inflammatory

The activation of NLRP3 inflammasome causes pyroptosis and results in the maturation of caspase-1 and the secretion of IL-1β [15]. The anti-NLRP3 inflammasome effects of compound 31 were evaluated by MCC950 (IC50 = 23.1 ± 5.3 µM) as a positive control, which can specifically inhibit NLRP3 inflammasomes. Compound 31 inhibited IL-1β secretion (IC50 = 5.5 ± 3.2 µM) and maturation of caspase-1 in a dose–dependent manner, indicating that cell pyroptosis is prevented, thereby demonstrating its ability to inhibit NLRP3 inflammasome activation [15].
Compound 82 derived from P. malabarica showed anti-inflammatory (anti-5-LOX) effects, with IC50 values of 0.75 mg/mL, more potent than ibuprofen (IC50 = 0.93 mg/mL). In vitro, compared with ibuprofen (selectivity index = 0.44), compound 82 exhibits a higher selectivity index (anti-COX-1IC50/anti-COX-2IC50 = 0.85), indicating fewer side effects. Notably, compound 82 exhibits promising potential against both cyclooxygenase and lipoxygenase [30].
The inhibitory potential of compound 279 against 5-LOX (IC50 = 0.92 mg/mL) was found to be higher than ibuprofen (IC50 = 0.96 mg/mL) [89].
Compound 110 showed significant inhibition, with an IC50 value of 14.7 ± 1.8 μM, surpassing the potency of PDTC (Pyrrolidinedithiocarbamate, IC50 = 26.3 µM), a well-established positive control for an NF-κB inhibitor [39].
Compound 190 from C. sinensis exhibited effective inhibition of NF-κB activity (IC50 4.12 ± 0.61 µM) [73]. Salvialba acid (163) has been shown to possess anti-inflammatory effects on TNF-α-induced vascular inflammation in HAECs (human aortic endothelial cells) [60].
Compound 208, obtained from the twigs and leaves of C. fortune, dose–dependently inhibited TNF-α-induced NF-κB activation with an IC50 value of 0.10 μM, which was similar to the inhibitory effect of the positive control MG132 (a proteasome inhibitor, IC50 = 0.15 μM). These results suggest that the tropone moiety is important for the cytotoxicity and the inhibition of NF-κB signaling [78].
Compounds 255, 261, and 269 also displayed inhibitory effects on NF-κB with inhibitory rates of 28.6%, 25.1%, and 12.5% in a dose of 50 µM compared to the positive control PDTC (IC50 = 37 µM) [82,86].
Compounds 494496 and 500 demonstrated moderate inhibitory activities against NF-κB activation in RAW264.7 macrophages, with IC50 values of 15, 25, 19, and 4 μM, respectively [149,150,151]. Compound 8 was the most effective compound in inhibiting LPS-induced nitric oxide (NO) production (IC50 = 3.56 μM) in T. orientalis. Moreover, it attenuated the expression of iNOS and COX-2 at both mRNA and protein levels by inhibiting LPS-induced degradation of I-κBα and activation of NF-κB, as well as reducing ERK phosphorylation [7].
Compounds 324 and 325 exerted pronounced inhibition of NO production in LPS-induced macrophages (RAW 264.7), with IC50 values of 7.50 and 6.49 μM, respectively [113].
Compound 437 showed a significant anti-inflammatory effect on LPS-induced NO production in RAW264.7 cells (IC50 = 21.0 μM) [12].
Compounds 445448 showed potent inhibitory activity against LPS-induced production of NO and TNF-α in RAW264.7 cells, with IC50 values of below 25 µM [40,137].
Compounds 373, 374, 378, and 480 exhibited potent inhibition of NO release in the cell culture medium of LPS-stimulated macrophages. Furthermore, they significantly inhibited iNOS expression in J774A.1 macrophages at doses of 50–12.5 μM [122].
Compounds 493 and 508 exhibited potent inhibitory effects on LPS-stimulated NO releases and pro-inflammatory mediators, with IC50 values of 4.9 and 12.60 μM, respectively, by suppressing iNOS and COX-2 expressions to prevent NO production [139]. 13-epi-scabrolide C (263) inhibited the production of IL-12 and IL-6 in LPS-stimulated BMDCs (bone marrow-derived cells, IC50 = 5.30 ± 0.21 and 13.12 ± 0.64 μM, respectively). This suggests that the C-13 methoxyl moiety may play an important role in anti-inflammatory activity [82].
Scrodentoids H,I (307308) exert anti-inflammatory effects by reducing LPS-induced inflammation and inhibiting the JNK/STAT3 pathway in macrophages. STAT proteins play a pivotal role in modulating cytokine-mediated inflammatory responses, and STAT3 is highly correlated with inflammatory responses. In response to inflammatory stimuli, STAT3 acts as a transcription factor that directly governs the expression of pro-inflammatory cytokines. Scrodentoids H and I might be beneficial in the treatment of inflammatory diseases, like ulcerative colitis and atherosclerotic diseases [105].
Sinusiaetone A (316) from S. siaesensis exhibited significant inhibition against LPS-induced inflammation in BV-2 microglia at a concentration of 20 μM and also decreased the mRNA levels of pro-inflammatory cytokines IL-6 and IL-1β [109].

6.4. Antioxidative Activity

Compound 82 showed antioxidant activity comparable to α-tocopherol, exhibiting an IC50 value of approximately 0.6 mg/mL for DPPH scavenging activity, and it can serve as a natural alternative to synthetic antioxidants [30].
The radical quenching analysis revealed that compound 279 exhibited a higher antioxidant activity (IC50 value of 0.60 mg/mL) compared to α-tocopherol. This suggests the potential of compound 279 as a natural antioxidant in future applications, attributed to its low hydrophobicity and spatial variability [89].

6.5. α-Glucosidase Inhibitory Activity

Compounds 2, 298, and 363 displayed an inhibitory effect on α-glucosidase and were evaluated by p-nitro-phenyl-α-D-glucopyranoside as the substrate and acarbose as a positive control. Compound 2 showed a moderate inhibition, with IC50 values of 282 μM, surpassing the efficacy of the positive control acarbose (1.33 mM) [2]. Compound 298 displayed significant inhibition, with an IC50 value of 64.05 ± 1.59 μg/mL [100]. Compound 363 showed a moderate inhibition on α-glucosidase (IC50 = 7.94 μM). At the same time, the inhibition kinetics of compound 363 were studied via a noncompetitive inhibition mechanism, and the inhibition kinetics parameter (Ki) was 10.8 μM [120].

6.6. Cell Proliferation Activity

Compounds 100, 477, and 473 exhibited inhibitory effects on concanavalin A-induced T cell proliferation (IC50 = 13.6, 1.66, and 2.09 μM, respectively), as well as lipopolysaccharide-induced B cell proliferation (IC50 = 22.4, 1.37, and 3.31 μM, respectively), without exhibiting any obvious cytotoxicity to T cells and B cells [37,146]. Compounds 258 and 261 showed strong inhibitory activities against Con A-induced T lymphocyte proliferation, with IC50 values of 23.7 and 8.69 μM, respectively. The remarkable enhancement in activity can be attributed to the configurational inversion at C-5 in compound 261 [81].
Compound 515 has been confirmed to promote the proliferation and differentiation of umbilical cord-derived mesenchymal stem cells into keratinocyte-like cells at a concentration of 10 μM [158].

6.7. Other Activities

Compounds 34, 43, and 55 demonstrated the NGF-mediated promotion of neurite outgrowth on PC12 cells at a concentration of 10 μM [17]. Compound 509 showed a potent neuroprotective effect against a hydrogen peroxidation-induced reduction in cell viability in PC12 cells at a concentration of 1 μM [151,154]. Compound 58 displayed the most effective inhibitory effect on osteoclast differentiation, exhibiting IC50 values of 0.7 μM. It downregulated the expression levels of osteoclast-related genes and promoted the apoptosis of osteoclasts. Compounds 5860 inhibited osteoclast formation, with IC50 ranging from 0.7 to 4.0 μM, thereby demonstrating their antiosteoporosis effects [23]. Compounds 9597 showed potent biological activities against some marine organisms. Compound 97 was highly toxic to A. salina, with an LC50 value of 6.36 μM. Moreover, compound 96 displayed significant toxicity toward C. marina and H. akashiwo (LC50 = 0.81 and 2.88 μM, respectively), while compound 95 exhibited higher effectiveness against Alexandrium sp., with an LC50 value of 8.73 μM [36]. Compounds 143 and 152154 selectively inhibited BChE, with IC50 values of 2.4, 7.9, 50.8, and 0.9 µM, respectively. Moreover, compounds 143 and 154 moderately inhibited AChE, with IC50 values of 329.8 μM and 342.9 μM, respectively [54]. Compounds 249252 effectively inhibited Th17 differentiation, exhibiting IC50 values ranging from 2 to 18.07 μM. Compounds 250251 were more effective than the positive control digoxin, which is a classical inhibitor of Th17 differentiation [80]. Compound 364 inhibited the acetyl transfer activity of M. tuberculosis GlmU, with an IC50 value of 41.85 μM, representing a novel therapeutic target for tuberculosis [120]. Compound 371 can significantly inhibit the formation of macrophage foam cells induced by oxidized low-density lipoprotein, suggesting its potential as a protective agent against atherosclerosis [134]. Compounds 454456 displayed antifobrotic activities on TGF-β1-induced rat renal proximal tubular cells, effectively attenuating the excessive production of collagen I and α-SMA [141]. Compound 505 exhibited inhibitory activities against PTP1B and was a moderate time-dependent inactivator of PTP1B, with ki value of 0.11 M−1 s−1 [6]. Compound 539 exhibited a mortality rate of 30% in P. redivivus and 28% in C. elegans within a 24 h period at a concentration of 400 mg/L, whereas the control group (5% acetone) only resulted in a mortality rate of 1.5% during the same time frame [161]. The anti-AD activity of compound 547 was comparatively weaker than memantine (p < 0.05), and it can be regarded as an anti-AD compound candidate [170].

7. Conclusions

This review summarized 557 compounds among C19, C18, C17, and C16 norditerpenes from 2010–2023. Obviously, C19 norditerpenes are the characteristic and main bioactive components of norditerpenes. Lamiaceae plants contain abundant norditerpenes, especially Isodon and Salvia genera. The Lamiaceae plant Salvia miltiorrhiza possesses abundant C19 norditerpenes, and the Cephalotaxaceae plant Cephalotaxus fortunei possesses abundant cephalotane-type norditerpenes.
Most norditerpenes exhibited anti-tumor, anti-inflammatory, anti-bacterial, and antioxidant properties, as well as inhibitory effects against HIV and α-glucosidase. Recent research suggests that norditerpenes may be a possibility for the future development of anti-tumor drugs. For example, euphorane C (139) inhibited the proliferation of K562 cells (IC50 = 3.59 µM) and provided the possibility for developing anti-leukemia drugs. Cephinoid H (208) isolated from C. fortunei showed the strongest cytotoxic activities, with IC50 values of 0.10, 0.13, and 0.14 µM against cell lines A549, Hela, and SGC-7901, respectively. It can be used as a candidate drug for treating various types of cancer. In Table 14, most norditerpenes have inhibitory effects on lung cancer, breast cancer, and cervical cancer cells. We should find appropriate targets to explore their mechanisms and focus on their in vivo activities in the future. With the rapid development of nanomaterials, we can combine effective norditerpenoids with them to improve their targeting and efficacy. Due to antibiotic resistance and side effects, it is meaningful to discover new antibiotics. Actinomadurol (64) has good antibacterial activity and provides the possibility for the discovery of antibiotics. At the same time, the structure–activity relationship was studied, which found that the hydroxyl group at C-7 affected antibacterial activity. CH3O-12 and the 3,20-epoxy moiety in 17-nor-pimarane diterpenes can function as activating groups, while the sugar moiety at C-2 might be an inactivated group. This is beneficial for the design and synthesis of new antibacterial drugs. Norditerpenes produce anti-inflammatory effects by influencing recognized markers of inflammatory processes such as IF, NO levels, nuclear factor kappa-B (NF-κB), and tumor necrosis factor-alpha (TGF-α). In the future, norditerpenes may be a useful and safe method for treating inflammatory diseases, such as rheumatoid arthritis, and can play a similar role as ibuprofen and dexamethasone.
Although current research has shown that these compounds exhibit various biological activities, most of the research mainly focuses on in vitro cell activity assays. It is necessary to investigate their in vivo activities. Further clinical trials are crucial to confirm the pharmacological effects of norditerpenes in order to fully illustrate their therapeutic effects on diseases. We hope that this review can promote research on norditerpenes.

Author Contributions

Conceptualization and writing the manuscript draft, N.Z.; data analysis, Q.Z.; collecting the references, Q.Y. and G.F.; writing—review and editing, W.S.; project administration and funding acquisition, W.W. and B.L. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (grant Nos. 82074122 and 82174078); the Ungraduated Students Research Innovative Program of Hunan University of Chinese Medicine (grant No. 2022CX71); Key Research and Development Programs of Hunan Science and Technology Department (grant No. 2023SK2046); Research Foundation of Education Bureau of Hunan Province (grant No. 23A0280).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Source databases for these publications include the Science Citation Index (SCI), SCI Expanded.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

A549Human non-small cell lung cancer cells
AGSHuman gastric adenocarcinoma cells
AREAntioxidant response element
BGC-823Human gastric adenocarcinoma cells
BMDCsBone marrow-derived cells
COXsCyclooxygenases
Con AKnife-beetle protein A
ED50Median effective dose
GlmUGlcNAc-P uridyltransferase
HepG2Human hepatocellular carcinoma cells
HelaHuman cervical carcinoma cells
Huh-7Human hepatocellular carcinoma cells
HL-60Human promyelocytic leukemia cells
HT-29Human colon cancer cells
HCTsHuman colon cancer cells
HAECsHuman aortic endothelial cells
iNOSInducible nitric oxide synthase
IC5050% inhibiting concentration
ICAM-1Intercellular adhesion molecule-1
ILsInterleukins
JNKc-Jun NH2-terminal kinase
KBsHuman oral epidermoid carcinoma cells
LPSLipopolysaccharide
MICMinimum inhibitory concentration
MCF-7Human breast cancer cells
MDA-MBTriple-negative breast cancer cells
MG132A proteasome inhibitor
NF-κBNuclear factor kappa B
NONitric oxide
NGFNerve growth factor
PANC-1Human pancreatic cancer cells
PDTCPyrrolidinedithiocarbamate
SMMC-7721Human hepatocarcinoma cells
SW-480Human colon cancer cells
SGC-7901Human stomach cancer cells
SK-BR-3Human breast cancer cells
SKOV3Human ovarian cancer cells
STATSignal transducers and activators of transcription
T-47DHuman breast duct cancer cells
TNF-αTumor necrosis factor-α
TCMTraditional Chinese medicine
VCAM-1Vascular cell adhesion molecule-1

References

  1. Shen, Y.; Liang, W.J.; Shi, Y.N.; Kennelly, E.J.; Zhao, D.K. Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat. Prod. Rep. 2020, 37, 763–796. [Google Scholar] [CrossRef] [PubMed]
  2. Bian, X.Q.; Bai, J.; Hu, X.L.; Wu, X.; Xue, C.M.; Han, A.H.; Su, G.Y.; Hua, H.M.; Pei, Y.H. Penioxalicin, a novel 3-nor-2,3-seco-labdane type diterpene from the fungus Penicillium oxalicum TW01-1. Tetrahedron Lett. 2015, 56, 5013–5016. [Google Scholar] [CrossRef]
  3. Li, Y.L.; Liu, W.; Han, S.Y.; Zhang, J.; Xu, W.; Li, Q.; Cheng, Z.B. Penitholabene, a rare 19-nor labdane-type diterpenoid from the deep-sea-derived fungus Penicillium thomii YPGA3. Fitoterapia 2020, 146, 104691. [Google Scholar] [CrossRef] [PubMed]
  4. Yang, Y.L.; Yang, X.Y.; Zhang, X.K.; Song, Z.T.; Liu, F.; Liang, Y.; Zhang, J.; Jin, D.Q.; Xu, J.; Lee, D.; et al. Bioactive terpenoids from Euonymus verrucosus var. pauciflorus showing no inhibitory activities. Bioorg. Chem. 2019, 87, 447–456. [Google Scholar] [CrossRef] [PubMed]
  5. Zhang, M.; Linuma, M.; Wang, J.S.; Oyama, M.; Ito, T.; Kong, L.Y. Terpenoids from Chloranthus serratus and their anti-inflammatory activities. J. Nat. Prod. 2012, 75, 694–698. [Google Scholar] [CrossRef]
  6. Li, Y.; Wang, T.T.; Zhao, J.; Shi, X.; Hu, S.C.; Gao, K. Norditerpenoids from Agathis macrophylla. Food Chem. 2012, 131, 972–976. [Google Scholar] [CrossRef]
  7. Kim, T.H.; Li, H.; Wu, Q.; Lee, H.J.; Ryu, J.H. A new labdane diterpenoid with anti-inflammatory activity from Thuja orientalis. J. Ethnopharmacol. 2013, 146, 760–767. [Google Scholar] [CrossRef]
  8. Balbinot, R.B.; Oliveira, J.A.M.D.; Bernardi, D.I.; Melo, U.Z.; Zanqueta, E.B.; Endo, E.H.; Ribeiro, F.M.; Volpato, H.; Figueiredo, M.C.; Back, D.F.; et al. Structural characterization and biological evaluation of 18-nor-ent-labdane diterpenoids from Grazielia gaudichaudeana. Chem. Biodivers. 2019, 16, e1800644. [Google Scholar] [CrossRef]
  9. Yoshinori, S.; Sachie, M.; Suyatno, S.; Motoo, T. Nine new norlabdane diterpenoids from the leaves of Austroeupatorium inulifolium. Helv. Chim. Acta 2011, 94, 313–326. [Google Scholar] [CrossRef]
  10. Chacon-Morales, P.A.; Amaro-Luis, J.M.; Fermin, L.B.R.; Peixoto, P.A.; Deffieux, D.; Pouysegu, L.; Quideau, S. Preparation and bactericidal activity of oxidation derivatives of austroeupatol, an ent-nor-furano diterpenoid of the labdane series from Austroeupatorium inulifolium. Phytochem. Lett. 2019, 29, 47–52. [Google Scholar] [CrossRef]
  11. Yin, H.; Luo, J.G.; Shan, S.M.; Wang, X.B.; Luo, J.; Yang, M.H.; Kong, L.Y. Amomaxins A and B, two unprecedented rearranged labdane norditerpenoids with a nine-membered ring from Amomum maximum. Org. Lett. 2013, 15, 1572–1575. [Google Scholar] [CrossRef] [PubMed]
  12. Zhao, Q.; Xiao, L.G.; Bi, L.S.; Si, Y.; Zhang, X.M.; Chen, J.H.; Liu, H.Y. Hedychins E and F: Labdane-type norditerpenoids with anti-Inflammatory activity from the rhizomes of Hedychium forrestii. Org. Lett. 2022, 24, 6936–6939. [Google Scholar] [CrossRef] [PubMed]
  13. Wang, L.N.; Zhang, J.Z.; Li, X.; Wang, X.N.; Xie, C.F.; Zhou, J.C.; Lou, H.X. Pallambins A and B, unprecedented hexacyclic 19-nor-secolabdane diterpenoids from the Chinese liverwort Pallavicinia ambigua. Org. Lett. 2012, 14, 1102–1105. [Google Scholar] [CrossRef] [PubMed]
  14. Wang, Y.M.; Jiang, W.Q.; Feng, Q.; Lu, H.; Zhou, Y.P.; Liao, J.; Wang, Q.T.; Sheng, G.Y. Identification of 15-nor-cleroda-3,12-diene in a Dominican amber. Org. Geochem. 2017, 113, 90–96. [Google Scholar] [CrossRef]
  15. Bi, D.W.; Xiong, F.; Cheng, B.; Zhou, Y.L.; Zeb, M.A.; Tang, P.; Pang, W.H.; Zhang, R.H.; Li, X.L.; Zhang, X.J.; et al. Callintegers A and B, unusual tricyclo[4.4.0.09,10]tetradecane clerodane diterpenoids from Callicarpa integerrima with inhibitory effects on NLRP3 inflammasome activation. J. Nat. Prod. 2022, 85, 2675–2681. [Google Scholar] [CrossRef] [PubMed]
  16. Soares, B.A.; Firme, C.L.; Maciel, M.A.M.; Kaiser, C.R.; Schilling, E.; Bortoluzzi, A.J. Experimental and NMR theoretical methodology applied to geometric analysis of the bioactive clerodane trans-dehydrocrotonin. J. Braz. Chem. Soc. 2014, 25, 629–638. [Google Scholar] [CrossRef]
  17. Zou, M.F.; Pan, Y.H.; Hu, R.; Yuan, F.Y.; Huang, D.; Tang, G.H.; Li, W.; Yin, S. Highly modified nor-clerodane diterpenoids from Croton yanhuii. Fitoterapia 2021, 153, 104979. [Google Scholar] [CrossRef]
  18. Pan, Z.H.; Ning, D.S.; Wu, X.D.; Huang, S.S.; Li, D.P.; Lv, S.H. New clerodane diterpenoids from the twigs and leaves of Croton euryphyllus. Bioorg. Med. Chem. Lett. 2015, 25, 1329–1332. [Google Scholar] [CrossRef]
  19. Zou, M.F.; Hu, R.; Liu, Y.X.; Fan, R.Z.; Xie, X.L.; Yin, S. Two highly oxygenated nor-clerodane diterpenoids from Croton caudatus. J. Asian. Nat. Prod. Res. 2020, 22, 927–934. [Google Scholar] [CrossRef]
  20. Wang, B.; Zhang, P.L.; Zhou, M.X.; Shen, T.; Zou, Y.X.; Lou, H.X.; Wang, X.N. New nor-clerodane-type furanoditerpenoids from the rhizomes of Tinospora capillipes. Phytochem. Lett. 2016, 15, 225–229. [Google Scholar] [CrossRef]
  21. Ye, G.H.; Xue, J.J.; Liang, W.L.; Yang, S.J. Three new bioactive diterpenoids from the roots of Croton crassifolius. Nat. Prod. Res. 2021, 35, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
  22. Lv, H.W.; Luo, J.G.; Zhu, M.D.; Shan, S.M.; Kong, L.Y. Teucvisins A-E, five new neo-clerodane diterpenes from Teucrium viscidum. Chem. Pharm. Bull. 2014, 62, 472–476. [Google Scholar] [CrossRef] [PubMed]
  23. Huang, D.; Luo, X.K.; Yin, Z.Y.; Xu, J.; Gu, Q. Diterpenoids from the aerial parts of Flueggea acicularis and their activity against RANKL-induced osteoclastogenesis. Bioorg. Chem. 2020, 94, 103453. [Google Scholar] [CrossRef] [PubMed]
  24. Yang, L.; Guo, P.Y.; Liu, A.J.; Sui, S.Y.; Shi, S.; Guo, S.X.; Dai, J.G. Aquilariaenes A–H, eight new diterpenoids from Chinese eaglewood. Fitoterapia 2019, 133, 180–185. [Google Scholar] [CrossRef] [PubMed]
  25. Shin, B.; Kim, B.Y.; Cho, E.J.; Oh, K.B.; Shin, J.H.; Goodfellow, M.; Oh, D.C. Actinomadurol, an antibacterial norditerpenoid from a rare actinomycete, Actinomadura sp. KC 191. J. Nat. Prod. 2016, 79, 1886–1890. [Google Scholar] [CrossRef] [PubMed]
  26. Guo, B.; Zhao, M.; Wu, Z.L.; Onakpa, M.M.; Burdette, J.E.; Che, C.T. 19-nor-pimaranes from Icacina trichantha. Fitoterapia 2020, 144, 104612. [Google Scholar] [CrossRef] [PubMed]
  27. Xu, M.M.; Zhou, J.F.; Zeng, L.P.; Xu, J.C.; Onakpa, M.M.; Duan, J.A.; Che, C.T.; Bi, H.K.; Zhao, M. Pimarane-derived diterpenoids with anti-Helicobacter pylori activity from the tuber of Icacina trichantha. Org. Chem. Front. 2021, 8, 3014–3022. [Google Scholar] [CrossRef]
  28. Zhao, M.; Onakpa, M.M.; Chen, W.L.; Santarsiero, B.D.; Swanson, S.M.; Burdette, J.E.; Asuzu, I.U.; Che, C.T. 17-Norpimaranes and (9βH)-17-norpimaranes from the tuber of Icacina trichantha. J. Nat. Prod. 2015, 78, 789–796. [Google Scholar] [CrossRef]
  29. Li, C.X.; Li, B.; Ye, J.; Zhang, W.D.; Shen, Y.H.; Yin, J. A new norditerpenoid from Euonymus grandiflorus Wall. Nat. Prod. Res. 2013, 27, 1716–1721. [Google Scholar] [CrossRef]
  30. Joy, M.; Chakraborty, K. An unprecedented antioxidative isopimarane norditerpenoid from bivalve clam, Paphia malabarica with anti-cyclooxygenase and lipoxygenase potential. Pharm. Biol. 2017, 55, 819–824. [Google Scholar] [CrossRef]
  31. Wang, X.N.; Bashyal, B.P.; Wijeratne, E.M.K.; U'Ren, J.M.; Liu, M.P.; Gunatilaka, M.K.; Arnold, A.E.; Gunatilaka, A.A.L. Smardaesidins A-G, isopimarane and 20-nor-isopimarane diterpenoids from Smardaea sp., a fungal endophyte of the moss Ceratodon purpureus. J. Nat. Prod. 2011, 74, 2052–2061. [Google Scholar] [CrossRef] [PubMed]
  32. Di Lecce, R.; Masi, M.; Linaldeddu, B.T.; Pescitelli, G.; Maddau, L.; Evidente, A. Bioactive specialized metabolites produced by the emerging pathogen Diplodia olivarum. Beilstein. Archi. 2020, 2020, 105. [Google Scholar] [CrossRef]
  33. Kato, H.; Sebe, M.; Nagaki, M.; Eguchi, K.; Kagiyama, I.; Hitora, Y.; Frisvad, J.C.; Williams, R.M.; Tsukamoto, S. Taichunins A-D, Norditerpenes from Aspergillus taichungensis. J. Nat. Prod. 2019, 82, 1377–1381. [Google Scholar] [CrossRef] [PubMed]
  34. Li, X.D.; Li, X.M.; Li, X.; Xu, G.M.; Liu, Y.; Wang, B.G. Aspewentins D–H, 20-nor-isopimarane derivatives from the deep sea sediment-derived fungus Aspergillus wentii SD-310. J. Nat. Prod. 2016, 79, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
  35. Li, X.D.; Lin, X.; Li, X.M.; Xu, G.M.; Liu, Y.; Wang, B.G. 20-nor-isopimarane epimers produced by Aspergillus wentii SD-310, a fungal strain obtained from deep sea sediment. Mar. Drugs 2018, 16, 440. [Google Scholar] [CrossRef] [PubMed]
  36. Miao, F.P.; Liang, X.R.; Liu, X.H.; Ji, N.Y. Aspewentins A–C, norditerpenes from a cryptic pathway in an algicolous strain of Aspergillus wentii. J. Nat. Prod. 2014, 77, 429–432. [Google Scholar] [CrossRef] [PubMed]
  37. Chen, H.P.; Li, J.; Zhao, Z.Z.; Li, X.Y.; Liu, S.L.; Wang, Q.Y.; Liu, J.K. Diterpenes with bicyclo[2.2.2]octane moieties from the fungicolous fungus Xylaria longipes HFG1018. Org. Biomol. Chem. 2020, 18, 2410–2415. [Google Scholar] [CrossRef] [PubMed]
  38. Li, X.; Li, X.M.; Li, X.D.; Xu, G.M.; Liu, Y.; Wang, B.G. 20-Nor-isopimarane cycloethers from the deep-sea sediment-derived fungus Aspergillus wentii SD-310. RSC Adv. 2016, 79, 75981–75987. [Google Scholar] [CrossRef]
  39. Li, H.; Zhao, J.J.; Chen, J.L.; Zhu, L.P.; Wang, D.M.; Jiang, L.; Yao, D.P.; Zhao, Z.M. Diterpenoids from aerial parts of Flickingeria fimbriata and their nuclear factor-kappaB inhibitory activities. Phytochemistry 2015, 117, 400–409. [Google Scholar] [CrossRef]
  40. Chen, J.L.; Zhao, Z.M.; Xue, X.; Tang, G.H.; Zhu, L.P.; Yang, D.P.; Jiang, L. Bioactive norditerpenoids from Flickingeria fimbriata. RSC Adv. 2014, 4, 14447–14456. [Google Scholar] [CrossRef]
  41. Li, C.J.; Dai, W.F.; Liu, D.; Jiang, M.Y.; Zhang, Z.J.; Chen, X.Q.; Chen, C.H.; Li, R.T.; Li, H.M. Bioactive ent-isopimarane diterpenoids from Euphorbia neriifolia. Phytochemistry 2020, 175, 112373. [Google Scholar] [CrossRef] [PubMed]
  42. Wang, P.X.; Xie, C.F.; An, L.J.; Yang, X.Y.; Xi, Y.R.; Yuan, S.; Zhang, C.Y.; Tuerhong, M.; Jin, D.Q.; Lee, D.H.; et al. Bioactive diterpenoids from the stems of Euphorbia royleana. J. Nat. Prod. 2019, 82, 183–193. [Google Scholar] [CrossRef] [PubMed]
  43. Kadir, A.; Zheng, G.J.; Zheng, X.F.; Jin, P.F.; Maiwulanjiang, M.; Gao, B.; Aisa, H.A.; Yao, G.M. Structurally diverse diterpenoids from the roots of Salvia deserta based on nine different skeletal types. J. Nat. Prod. 2021, 84, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
  44. Zhang, D.W.; Liu, X.; Xie, D.; Chen, R.D.; Tao, X.Y.; Zou, J.H.; Dai, J.G. Two new diterpenoids from cell cultures of Salvia miltiorrhiza. Chem. Pharm. Bull. 2013, 61, 576–580. [Google Scholar] [CrossRef] [PubMed]
  45. Kang, J.; Li, L.; Wang, D.D.; Wang, H.Q.; Liu, C.; Li, B.M.; Yan, Y.; Fang, L.H.; Du, G.H.; Chen, R.Y. Isolation and bioactivity of diterpenoids from the roots of Salvia grandifolia. Phytochemistry 2015, 116, 337–348. [Google Scholar] [CrossRef]
  46. Hussain, A.; Adhikari, A.; Choudhary, M.I.; Ayatollahi, S.A.; Atta-Ur-Rahman. New adduct of abietane-type diterpene from Salvia leriifolia Benth. Nat. Prod. Res. 2016, 30, 1511–1516. [Google Scholar] [CrossRef]
  47. Eghtesadi, F.; Farimani, M.M.; Hazeri, N.; Valizadeh, J. Abietane and nor-abitane diterpenoids from the roots of Salvia rhytidea. SpringerPlus 2016, 5, 1068. [Google Scholar] [CrossRef]
  48. Alizadeh, Z.; Farimani, M.M.; Parisi, V.; Marzocco, S.; Ebrahimi, S.N.; Tommasi, N.D. Nor-abietane diterpenoids from Perovskia abrotanoides roots with anti-inflammatory potential. J. Nat. Prod. 2021, 84, 1185–1197. [Google Scholar] [CrossRef]
  49. Cao, Q.; Wang, S.X.; Chen, Y.X. Abietane diterpenoids with potent cytotoxic activities from the resins of Populus euphratica. Nat. Prod. Commune 2019, 14, 1934578X19850029. [Google Scholar] [CrossRef]
  50. Pan, Z.H.; Li, Y.; Wu, X.D.; He, J.; Chen, X.Q.; Xu, G.; Peng, L.Y.; Zhao, Q.S. Norditerpenoids from Salvia castanea Diels f. pubescens. Fitoterapia 2012, 83, 1072–1075. [Google Scholar] [CrossRef]
  51. Li, J.Y.; Peng, Y.; Li, L.Z.; Gao, P.Y.; Gao, C.; Xia, S.X.; Song, S.J. Two new abietane diterpenoids from the roots of Tripterygium wilfordii Hook. f. Helv. Chim. Acta 2013, 96, 313–319. [Google Scholar] [CrossRef]
  52. Yan, X.L.; Zou, M.F.; Chen, B.L.; Yuan, F.Y.; Zhu, Q.F.; Zhang, X.; Lin, Y.; Long, Q.D.; Liu, W.L.; Liao, S.G. Euphorane C, an unusual C17-norabietane diterpenoid from Euphorbia dracunculoides induces cell cycle arrest and apoptosis in human leukemia K562 cells. Arab. J. Chem. 2022, 15, 104203. [Google Scholar] [CrossRef]
  53. Zhao, H.M.; Li, H.L.; Huang, G.L.; Chen, Y.G. A new abietane mono-norditerpenoid from Podocarpus nagi. Nat. Prod. Res. 2017, 31, 844–848. [Google Scholar] [CrossRef] [PubMed]
  54. Lusarczyk, S.; Senol Deniz, F.S.; Abel, R.; Pecio, Ł.; Pérez-Sánchez, H.; Cerón-Carrasco, J.P.; Den-Haan, H.; Banerjee, P.; Preissner, R.; Krzyżak, E.; et al. Norditerpenoids with selective anti-cholinesterase activity from the roots of Perovskia atriplicifolia Benth. Int. J. Mol. Sci. 2020, 21, 4475. [Google Scholar] [CrossRef] [PubMed]
  55. Jiang, H.L.; Wang, X.Z.; Xiao, J.; Luo, X.H.; Yao, X.J.; Zhao, Y.Y.; Chen, Y.J.; Crews, P.; Wu, Q.X. New abietane diterpenoids from the roots of Salvia przewalskii. Tetrahedron 2013, 69, 6687–6692. [Google Scholar] [CrossRef]
  56. Cheng, Q.Q.; He, Y.F.; Li, G.; Liu, Y.J.; Gao, W.; Huang, L.Q. Effects of combined Eelicitors on tanshinone metabolic profiling and SmCPS expression in Salvia miltiorrhiza hairy root culture. Molecules 2013, 18, 7473–7485. [Google Scholar] [CrossRef] [PubMed]
  57. He, K.; Zou, J.; Wang, Y.X.; Zhao, C.L.; Ye, J.H.; Zhang, J.J.; Pan, L.T.; Zhang, H.J. Rubesanolides F and G: Two novel lactone-type norditerpenoids from Isodon rubescens. Molecules 2021, 26, 3865. [Google Scholar] [CrossRef]
  58. Yu, P.; Zhang, S.D.; Li, Y.L.; Yang, X.W.; Zeng, H.W.; Li, H.L.; Zhang, W.D. Abieseconordines A and B, two novel norditerpenoids with a 18-nor-5,10: 9,10-disecoabietane skeleton from Abies forrestii. Helv. Chim. Acta 2012, 95, 415–422. [Google Scholar] [CrossRef]
  59. Wang, L.J.; Xiong, J.; Liu, S.T.; Pan, L.L.; Hu, J.F. ent-Abietane-type and related seco-/nor-diterpenoids from the rare chloranthaceae plant Chloranthus sessilifolius and their nntineuroinflammatory activities. J. Nat. Prod. 2015, 78, 1635–1646. [Google Scholar] [CrossRef]
  60. Xie, T.T.; Ma, S.L.; Lou, H.X.; Zhu, R.X.; Sun, L.R. Two novel abietane norditerpenoids with anti-inflammatory properties from the roots of Salvia miltiorrhiza var. alba. Tetrahedron Lett. 2014, 55, 7106–7109. [Google Scholar] [CrossRef]
  61. Wang, W.G.; Yan, B.C.; Li, X.N.; Du, X.; Wu, H.Y.; Zhan, R.; Li, Y.; Pu, J.X.; Sun, H.D. 6,7-Seco-ent-kaurane-type diterpenoids from Isodon eriocalyx var. laxiflora. Tetrahedron 2014, 70, 7445–7453. [Google Scholar] [CrossRef]
  62. Zou, J.; Du, X.; Pang, G.; Shi, Y.M.; Wang, W.G.; Zhan, R.; Kong, L.M.; Li, X.N.; Li, Y.; Pu, J.X. Ternifolide A, a new diterpenoid possessing a rare macrolide motif from Isodon ternifolius. Org. Lett. 2012, 14, 3210–3213. [Google Scholar] [CrossRef] [PubMed]
  63. Ueno, A.K.; Barcellos, A.F.; Costa-Silva, T.A.; Mesquita, J.T.; Ferreira, D.D.; Tempone, A.G.; Romoff, P.; Antar, G.M.; Lago, J.H.G. Antitrypanosomal activity and evaluation of the mechanism of action of diterpenes from aerial parts of Baccharis retusa. Fitoterapia 2018, 125, 55–58. [Google Scholar] [CrossRef] [PubMed]
  64. Faiella, L.; Piaz, F.D.; Bader, A.; Braca, A. Diterpenes and phenolic compounds from Sideritis pullulans. Phytochemistry 2014, 106, 164–170. [Google Scholar] [CrossRef] [PubMed]
  65. Li, H.; Liang, Y.R.; Chen, S.X.; Wang, W.X.; Zou, Y.K.; Nuryyeva, S.; Houk, K.N.; Xiong, J.; Hu, J.F. Amentotaxins C–V, Structurally diverse diterpenoids from the leaves and twigs of the vulnerable conifer Amentotaxus argotaenia and their cytotoxic effects. J. Nat. Prod. 2020, 83, 2129–2144. [Google Scholar] [CrossRef] [PubMed]
  66. Kennedy, M.L.; Llanos, G.G.; Castanys, S.; Gamarro, F.; Bazzocchi, I.L.; Jimenez, I.A. Terpenoids from Maytenus species and assessment of their reversal activity against a multidrug-resistant Leishmania tropica line. Chem. Biodivers. 2011, 8, 2291–2298. [Google Scholar] [CrossRef] [PubMed]
  67. Ren, H.; Xu, Q.L.; Luo, Y.; Zhang, M.; Zhou, Z.Y.; Dong, L.M.; Tan, J.W. Two new ent-kaurane diterpenoids from Wedelia trilobata (L.) Hitchc. Phytochem. Lett. 2015, 11, 260–263. [Google Scholar] [CrossRef]
  68. Isyaka, S.M.; Mas-Claret, E.; Langat, M.K.; Hodges, T.; Selway, B.; Mbala, B.M.; Mvingu, B.K.; Mulholland, D.A. Cytotoxic diterpenoids from the leaves and stem bark of Croton haumanianus (Euphorbiaceae). Phytochemistry 2020, 178, 112455. [Google Scholar] [CrossRef]
  69. Zhou, X.Q.; Li, S.Q.; Liao, C.C.; Dai, W.F.; Rao, K.R.; Ma, X.R.; Li, R.T.; Chen, X.Q. Structurally diversified ent-kaurane and abietane diterpenoids from the stems of Tripterygium wilfordii and their anti-inflammatory activity. Bioorg. Chem. 2021, 115, 105178. [Google Scholar] [CrossRef]
  70. Zhou, C.X.; Sun, L.R.; Feng, F.; Mo, J.X.; Zhu, H.; Yang, B.; He, Q.J.; Gan, L.S. Cytotoxic diterpenoids from the stem bark of Annona squamosa L. Helv. Chim. Acta 2013, 96, 656–662. [Google Scholar] [CrossRef]
  71. Yang, J.; Wang, W.G.; Wu, H.Y.; Liu, M.; Jiang, H.Y.; Du, X.; Li, Y.; Pu, J.X.; Sun, H.D. ent-Kaurene diterpenoids from Isodon phyllostachys. Tetrahedron Lett. 2017, 58, 349–351. [Google Scholar] [CrossRef]
  72. Zhan, R.; Li, X.N.; Du, X.; Wang, W.G.; Dong, K.; Su, J.; Li, Y.; Pu, J.X.; Sun, H.D. Bioactive ent-kaurane diterpenoids from Isodon rosthornii. J. Nat. Prod. 2013, 76, 1267–1277. [Google Scholar] [CrossRef]
  73. Xu, J.B.; Fan, Y.Y.; Gan, L.S.; Zhou, Y.B.; Li, J.; Yue, J.M. Cephalotanins A–D, four norditerpenoids represent three highly rigid carbon skeletons from Cephalotaxus sinensis. Chemistry 2016, 22, 14648–14654. [Google Scholar] [CrossRef]
  74. Ge, Z.P.; Zhou, B.; Zimbres, F.M.; Cassera, M.B.; Zhao, J.X.; Yue, J.M. Cephalotane-type norditerpenoids from Cephalotaxus fortunei var. alpine. Chin. J. Chem. 2022, 40, 1177–1184. [Google Scholar] [CrossRef]
  75. Fan, Y.Y.; Xu, J.B.; Liu, H.C.; Gan, L.S.; Ding, J.; Yue, J.M. Cephanolides A–J, cephalotane-type diterpenoids from Cephalotaxus sinensis. J. Nat. Prod. 2017, 80, 3159–3166. [Google Scholar] [CrossRef]
  76. Ge, Z.P.; Liu, H.C.; Wang, G.C.; Liu, Q.F.; Xu, C.H.; Ding, J.; Fan, Y.Y.; Yue, J.M. 17-nor-Cephalotane-type diterpenoids from Cephalotaxus fortunei. J. Nat. Prod. 2019, 82, 1565–1575. [Google Scholar] [CrossRef]
  77. Zhao, J.X.; Fan, Y.Y.; Xu, J.B.; Gan, L.S.; Xu, C.H.; Ding, J.; Yue, J.M. Diterpenoids and lignans from Cephalotaxus fortune. J. Nat. Prod. 2017, 80, 356–362. [Google Scholar] [CrossRef]
  78. Ni, L.; Zhong, X.H.; Chen, X.J.; Zhang, B.J.; Bao, M.F.; Cai, X.H. Bioactive norditerpenoids from Cephalotaxus fortunei var. alpina and C. lanceolata. Phytochemistry 2018, 151, 50–60. [Google Scholar] [CrossRef]
  79. Ni, G.; Zhang, H.; Fan, Y.; Liu, H.; Ding, J.; Yue, J.M. Mannolides A–C with an intact diterpenoid skeleton providing insights on the biosynthesis of antitumor Cephalotaxus Troponoids. Org. Lett. 2016, 18, 1880–1883. [Google Scholar] [CrossRef]
  80. Ge, Z.P.; Fan, Y.Y.; Deng, W.D.; Zheng, C.Y.; Li, T.; Yue, J.M. Cephalodiones A-D: Compound characterization and semisynthesis by [6+6] cycloaddition. Angew. Chem. Int. Ed. Engl. 2021, 60, 9374–9378. [Google Scholar] [CrossRef]
  81. Cui, W.X.; Yang, M.; Li, H.; Li, S.W.; Yao, L.G.; Li, G.; Tang, W.; Wang, C.H.; Liang, L.F.; Guo, Y.W. Polycyclic furanobutenolide-derived norditerpenoids from the South China Sea soft corals Sinularia scabra and Sinularia polydactyla with immunosuppressive activity. Bioorg. Chem. 2020, 94, 103350. [Google Scholar] [CrossRef]
  82. Nguyen, P.T.; Nguyen, H.N.; Nguyen, X.C.; Quang, T.H.; Tung, P.T.; Dat, L.D.; Chae, D.; Kim, S.; Koh, Y.S.; Kiem, P.V. Anti-inflammatory norditerpenoids from the soft coral Sinularia maxima. Bioorg. Med. Chem. Lett. 2013, 23, 228–231. [Google Scholar] [CrossRef]
  83. Wang, C.L.; Jin, T.Y.; Liu, X.H.; Zhang, J.R.; Shi, X.; Wang, M.F.; Huang, R.F.; Zhang, Y.; Liu, K.C.; Li, G.Q. Sinudenoids A–E, C19-norcembranoid diterpenes with unusual scaffolds from the soft coral Sinularia densa. Org. Lett. 2022, 24, 9007–9011. [Google Scholar] [CrossRef]
  84. Craig, R.A.; Smith, R.C.; Roizen, J.L.; Jones, A.C.; Virgil, S.C.; Stoltz, B.M. Development of a unified enantioselective, convergent synthetic Aapproach toward the furanobutenolide-derived polycyclic norcembranoid diterpenes: Asymmetric formation of the polycyclic norditerpenoid carbocyclic core by tandem annulation cascade. J. Org. Chem. 2018, 83, 3467–3485. [Google Scholar] [CrossRef]
  85. Thomas, S.A.L.; von Salm, J.L.; Clark, S.; Ferlita, S.; Nemani, P.; Azhari, A.; Rice, C.A.; Wilson, N.G.; Kyle, D.E.; Baker, B.J. Keikipukalides, furanocembrane diterpenes from the antarctic deep sea octocoral Plumarella delicatissima. J. Nat. Prod. 2018, 81, 117–123. [Google Scholar] [CrossRef]
  86. Cheng, W.; Ji, M.; Li, X.D.; Ren, J.W.; Yin, F.L.; van Ofwegen, L.; Yu, S.W.; Chen, X.G.; Lin, W.H. Fragilolides A–Q, norditerpenoid and briarane diterpenoids from the gorgonian coral Junceella fragilis. Tetrahedron 2017, 73, 2518–2528. [Google Scholar] [CrossRef]
  87. Liu, J.; Tang, Q.; Huang, J.; Li, T.; Ouyang, H.; Lin, W.H.; Yan, X.J.; Yan, X.; He, S. Sinuscalide A: An antiviral norcembranoid with an 8/8-fused carbon scaffold from the South China Sea soft coral Sinularia scabra. J. Org. Chem. 2022, 87, 9806–9814. [Google Scholar] [CrossRef]
  88. Liu, W.W.; Zhang, Y.; Yuan, C.M.; Yu, C.; Ding, J.Y.; Li, X.X.; Hao, X.J.; Wang, Q.; Li, S.L. Japodagricanones A and B, novel diterpenoids from Jatropha podagrica. Fitoterapia 2014, 98, 156–159. [Google Scholar] [CrossRef]
  89. Chakraborty, K.; Krishnan, S.; Joy, M. Antioxidative oxygenated terpenoids with bioactivities against pro-inflammatory inducible enzymes from Indian squid, Uroteuthis (Photololigo) duvaucelii. Nat. Prod. Res. 2021, 35, 909–920. [Google Scholar] [CrossRef]
  90. Li, L.L.; Chen, L.; Li, Y.H.; Sun, S.K.; Ma, S.G.; Li, Y.; Qu, J. Cassane and nor-cassane diterpenoids from the roots of Erythrophleum fordii. Phytochemistry 2020, 174, 112343. [Google Scholar] [CrossRef]
  91. Kamikawa, S.; Oshimo, S.; Ohta, E.; Nehira, T.; Omura, H.; Ohta, S. Cassane diterpenoids from the roots of Caesalpinia decapetala var. japonica and structure revision of caesaljapin. Phytochemistry 2016, 121, 50–57. [Google Scholar] [CrossRef]
  92. Sun, P.; Cao, D.H.; Xiao, Y.D.; Zhang, Z.Y.; Wang, J.N.; Shi, X.C.; Xiao, C.F.; Hu, H.B.; Xu, Y.K. Aspidoptoids A–D: Four new diterpenoids from Aspidopterys obcordata vine. Molecules 2020, 25, 529. [Google Scholar] [CrossRef] [PubMed]
  93. Zhao, J.Q.; Lv, J.J.; Wang, Y.M.; Xu, M.; Zhu, H.T.; Wang, D.; Yang, C.R.; Wang, Y.F.; Zhang, Y.J. Phyllanflexoid C: First example of phenylacetylene-bearing 18-nor-diterpenoid glycoside from the roots of Phyllanthus flexuosus. Tetrahedron Lett. 2013, 54, 4670–4674. [Google Scholar] [CrossRef]
  94. Li, F.L.; Lin, S.; Zhang, S.T.; Pan, L.F.; Chai, C.W.; Su, J.C.; Yang, B.Y.; Liu, J.J.; Wang, J.P.; Hu, Z.X. Modified fusicoccane-type diterpenoids from Alternaria brassicicola. J. Nat. Prod. 2020, 83, 1931–1938. [Google Scholar] [CrossRef]
  95. Wu, J.; Zhang, H.; He, L.M.; Xue, Y.Q.; Jia, J.; Wang, S.B.; Zhu, K.K.; Hong, K.; Cai, Y.S. A new fusicoccane-type norditerpene and a new indone from the marine-derived fungus Aspergillus aculeatinus WHUF0198. Chem. Biodivers. 2021, 18, e2100562. [Google Scholar] [CrossRef]
  96. Bie, Q.; Chen, C.M.; Yu, M.Y.; Guo, J.R.; Wang, J.P.; Liu, J.J.; Zhou, Y.; Zhu, H.C.; Zhang, Y.H. Dongtingnoids A–G: Fusicoccane diterpenoids from a Penicillium Species. J. Nat. Prod. 2019, 82, 80–86. [Google Scholar] [CrossRef] [PubMed]
  97. Kawakami, S.; Toyoda, H.; Harinantenaina, L.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takeda, Y.; Kawahata, M.; Yamaguchi, K. Eight new diterpenoids and two new nor-diterpenoids from the stems of Croton cascarilloides. Chem. Pharm. Bull. 2013, 61, 411–418. [Google Scholar] [CrossRef] [PubMed]
  98. Liang, W.J.; Geng, C.A.; Zhang, X.M.; Chen, H.; Yang, C.Y.; Rong, G.Q.; Zhao, Y.; Xu, H.B.; Wang, H.; Zhou, N.J. (±)-Paeoveitol, a pair of new norditerpene enantiomers from Paeonia veitchii. Org. Lett. 2014, 16, 424–427. [Google Scholar] [CrossRef]
  99. Zhao, J.X.; Liu, C.P.; Qi, W.Y.; Han, M.L.; Han, Y.S.; Wainberg, M.A.; Yue, J.M. Eurifoloids A–R, structurally diverse diterpenoids from Euphorbia neriifolia. J. Nat. Prod. 2014, 77, 2224–2233. [Google Scholar] [CrossRef]
  100. Oanh, V.T.K.; Ha, N.T.T.; Duc, H.V.; Thuc, D.N.; Hang, N.T.M.; Thanh, L.N. New triterpene and nor-diterpene derivatives from the leaves of Adinandra poilanei. Phytochem. Lett. 2021, 45, 110–113. [Google Scholar] [CrossRef]
  101. Liang, X.R.; Miao, F.P.; Song, Y.P.; Liu, X.H.; Ji, N.Y. Citrinovirin with a new norditerpene skeleton from the marine algicolous fungus Trichoderma citrinoviride. Bioorg. Med. Chem. Lett. 2016, 26, 5029–5031. [Google Scholar] [CrossRef]
  102. White, A.M.; Pierens, G.K.; Forster, L.C.; Winters, A.E.; Cheney, K.L.; Garson, M.J. Rearranged diterpenes and norditerpenes from three Australian Goniobranchus Mollusks. J. Nat. Prod. 2016, 79, 447–483. [Google Scholar] [CrossRef]
  103. Han, G.Y.; Sun, D.Y.; Liang, L.F.; Yao, L.G.; Chen, K.X.; Guo, Y.W. Spongian diterpenes from Chinese marine sponge Spongia officinalis. Fitoterapia 2018, 127, 159–165. [Google Scholar] [CrossRef]
  104. Zhang, L.Q.; Zhao, Y.Y.; Huang, C.; Chen, K.X.; Li, Y.M. Scrodentoids F-I, four C19-norditerpenoids from Scrophularia dentate. Tetrahedron 2016, 72, 8031–8035. [Google Scholar] [CrossRef]
  105. Mao, G.H.; Sun, L.Q.; Xu, J.W.; Li, Y.M.; Dunzhu, C.; Zhang, L.Q.; Qian, F. Scrodentoids H and I, a pair of natural epimerides from Scrophularia dentata, inhibit inflammation through JNK-STAT3 axis in THP-1 cells. Evid. Based Complement. Alternat. Med. 2020, 2020, 1842347. [Google Scholar] [CrossRef]
  106. San-Martin, A.; Bacho, M.; Nunez, S.; Rovirosa, J.; Soler, A.; Blanc, V.; Leon, R.; Olea, A.F. A novel normulinane isolated from Azorella compacta and assessment of its antibacterial activity. J. Chil. Chem. Soc. 2018, 63, 4082–4085. [Google Scholar] [CrossRef]
  107. Lam, Y.T.H.; Palfner, G.; Lima, C.; Porzel, A.; Brandt, W.; Frolov, A.; Sultani, H.; Franke, K.; Wagner, C.; Merzweiler, K. Nor-guanacastepene pigments from the Chilean mushroom Cortinarius pyromyxa. Phytochemistry 2019, 165, 112048. [Google Scholar] [CrossRef]
  108. Nidhal, N.; Zhou, X.M.; Chen, G.Y.; Zhang, B.; Han, C.R.; Song, X.P. Chemical constituents of Leucas zeylanica and their chemotaxonomic significance. Biochem. Syst. Ecol. 2020, 89, 104006. [Google Scholar] [CrossRef]
  109. Chen, Z.H.; Li, W.S.; Zhang, Z.Y.; Luo, H.; Wang, J.R.; Zhang, H.Y.; Zeng, Z.R.; Chen, B.; Li, X.W.; Guo, Y.W. Sinusiaetone A, an anti-inflammatory norditerpenoid with a bicyclo[11.3.0]hexadecane nucleus from the Hainan soft coral Sinularia siaesensis. Org. Lett. 2021, 23, 5621–5625. [Google Scholar] [CrossRef]
  110. Wang, S.S.; Cheng, Y.B.; Lin, Y.C.; Liaw, C.C.; Chang, J.Y.; Kuo, Y.H.; Shen, Y.C. Nitrogen-containing diterpenoids, sesquiterpenoids, and nor-diterpenoids from Cespitularia taeniata. Mar. Drugs 2015, 13, 5796–5814. [Google Scholar] [CrossRef]
  111. Lin, Y.C.; Lin, C.C.; Chu, Y.C.; Fu, C.W.; Sheu, J.H. Bioactive diterpenes, norditerpenes, and sesquiterpenes from a Formosan soft coral Cespitularia sp. Pharmaceuticals 2021, 14, 1252. [Google Scholar] [CrossRef]
  112. Gao, P.Y.; Li, L.Z.; Liu, K.C.; Sun, C.; Sun, X.; Wu, Y.N.; Song, S.J. Natural terpenoid glycosides with in vitro/vivo antithrombotic profiles from the leaves of Crataegus pinnatifida. RSC Adv. 2017, 7, 48466–48474. [Google Scholar] [CrossRef]
  113. Liu, Z.G.; Li, Z.L.; Bai, J.; Meng, D.L.; Li, N.; Pei, Y.H.; Zhao, F.; Hua, H.M. Anti-inflammatory diterpenoids from the roots of Euphorbia ebracteolata. J. Nat. Prod. 2014, 77, 792–799. [Google Scholar] [CrossRef]
  114. Zhang, Y.; Liu, Y.B.; Li, Y.; Li, L.; Ma, S.G.; Qu, J.; Jiang, J.D.; Chen, X.G.; Zhang, D.; Yu, S.S. Terpenoids from the roots of Alangium chinense. J. Asian Nat. Prod. Res. 2015, 17, 1025–1038. [Google Scholar] [CrossRef]
  115. Li, L.Z.; Liang, X.; Sun, X.; Qi, X.L.; Wang, J.; Zhao, Q.C.; Song, S.J. Bioactive norditerpenoids and neolignans from the roots of Salvia miltiorrhiza. Org. Biomol. Chem. 2016, 14, 10050–10057. [Google Scholar] [CrossRef]
  116. Rusman, Y.; Wilson, M.B.; Williams, J.M.; Held, B.W.; Blanchette, R.A.; Anderson, B.N.; Lupfer, C.R.; Salomon, C.E. Antifungal norditerpene oidiolactones from the fungus Oidiodendron truncatum, a potential biocontrol agent for whitenose syndrome in bats. J. Nat. Prod. 2020, 83, 344–353. [Google Scholar] [CrossRef]
  117. Olivon, F.; Retailleau, P.; Desrat, S.; Touboul, D.; Roussi, F.; Apel, C.; Litaudon, M. Isolation of picrotoxanes from Austrobuxus carunculatus using taxonomy-based molecular networking. J. Nat. Prod. 2020, 83, 3069–3079. [Google Scholar] [CrossRef]
  118. Olivon, F.; Retailleau, P.; Desrat, S.; Touboul, D.; Roussi, F.; Apel, C.; Litaudon, M. Sinuhirtone A, an uncommon 17, 19-dinorxeniaphyllanoid, and nine related new terpenoids from the Hainan soft coral Sinularia hirta. Mar. Drugs 2022, 20, 272. [Google Scholar] [CrossRef]
  119. Prieto, I.M.; Paola, A.; Perez, M.; Garcia, M.; Blustein, G.; Schejter, L.; Palermo, J.A. Antifouling Diterpenoids from the Sponge Dendrilla Antarctica. Chem. Biodivers. 2022, 19, e202100618. [Google Scholar] [CrossRef] [PubMed]
  120. Wei, Y.L.; Wang, C.; Cheng, Z.B.; Tian, X.G.; Jia, J.M.; Cui, Y.L.; Feng, L.; Sun, C.P.; Zhang, B.J.; Ma, X.C. Diterpenoids isolated from Euphorbia ebracteolata roots and their inhibitory effects on α-Glucosidase. J. Nat. Prod. 2017, 80, 3218–3223. [Google Scholar] [CrossRef]
  121. Wu, C.Y.; Liao, Y.; Yang, Z.G.; Yang, X.W.; Shen, X.L.; Li, R.T.; Xu, G. Cytotoxic diterpenoids from Salvia yunnanensis. Phytochemistry 2014, 106, 171–177. [Google Scholar] [CrossRef]
  122. Xu, G.; Yang, J.; Wang, Y.Y.; Peng, L.Y.; Yang, X.W.; Pan, Z.H.; Liu, E.D.; Li, Y.; Zhao, Q.S. Diterpenoid constituents of the roots of Salvia digitaloides. J. Agric. Food Chem. 2010, 58, 12157–12161. [Google Scholar] [CrossRef]
  123. Yao, F.; Zhang, D.W.; Qu, G.W.; Li, G.S.; Dai, S.J. New abietane norditerpenoid from Salvia miltiorrhiza with cytotoxic activities. J. Asian. Nat. Prod. Res. 2012, 14, 913–917. [Google Scholar] [CrossRef]
  124. Zhu, Q.; Tang, C.P.; Ke, C.Q.; Li, X.Q.; Liu, J.; Gan, L.S.; Weiss, H.; Gesing, E.; Ye, Y. Constituents of Trigonostemon chinensis. J. Nat. Prod. 2010, 73, 40–44. [Google Scholar] [CrossRef]
  125. Jiang, Z.Y.; Zhou, J.; Huang, C.G.; Hu, Q.F.; Huang, X.Z.; Wang, W.; Zhang, L.Z.; Li, G.P.; Xia, F.T. Two novel antiviral terpenoids from the cultured Perovskia atriplicifolia. Tetrahedron 2015, 71, 3844–3849. [Google Scholar] [CrossRef]
  126. Zhu, Q.; Tang, C.P.; Mandi, A.; Kurtan, T.; Ye, Y. Trigonostemons G and H, dinorditerpenoid dimers with axially chiral biaryl linkage from Trigonostemon chinensis. Chirality 2020, 32, 265–272. [Google Scholar] [CrossRef]
  127. Wang, X.F.; Liu, F.F.; Zhu, Z.D.; Fang, Q.Q.; Qu, S.J.; Zhu, W.L.; Yang, L.; Zuo, J.P.; Tan, C.H. Flueggenoids A–E, new dinorditerpenoids from Flueggea virosa. Fitoterapia 2019, 133, 96–101. [Google Scholar] [CrossRef]
  128. Chao, C.H.; Cheng, J.C.; Shen, D.Y.; Wu, T.S. Anti-hepatitis C virus dinorditerpenes from the roots of Flueggea virosa. J. Nat. Prod. 2014, 77, 22–28. [Google Scholar] [CrossRef]
  129. Zhu, J.Y.; Zhang, C.Y.; Dai, J.J.; Rahman, K.; Zhang, H. Diterpenoids with thioredoxin reductase inhibitory activities from Jatropha multifida. Nat. Prod. Res. 2017, 31, 2753–2758. [Google Scholar] [CrossRef] [PubMed]
  130. Chang, F.R.; Wang, S.W.; Chen, S.R.; Lee, C.Y.; Sheu, J.H.; Cheng, Y.B. Aleuritin, a novel dinor-diterpenoid from the twigs of Aleurites moluccanus with an anti-lymphangiogenic effect. Org. Biomol. Chem. 2020, 18, 7892–7898. [Google Scholar] [CrossRef] [PubMed]
  131. Qi, Y.Y.; Su, J.; Zhang, Z.J.; Li, L.W.; Fan, M.; Zhu, Y.; Wu, X.D.; Zhao, Q.S. Two new anti-proliferative C18-norditerpenes from the roots of Podocarpus macrophyllus. Chem. Biodivers. 2018, 15, e1800043. [Google Scholar] [CrossRef] [PubMed]
  132. Huang, T.; Ying, S.H.; Li, J.Y.; Chen, H.W.; Zang, Y.; Wang, W.X.; Li, J.; Xiong, J.; Hu, J.F. Phytochemical and biological studies on rare and endangered plants endemic to China. Part XV. Structurally diverse diterpenoids and sesquiterpenoids from the vulnerable conifer Pseudotsuga sinensis. Phytochemistry 2020, 169, 112184. [Google Scholar] [CrossRef] [PubMed]
  133. Mirzania, F.; Farimani, M.M.; Sarrafi, Y.; Ebrahimi, S.N.; Troppmair, J.; Kwiatkowski, M.; Stuppner, H.; Alilou, M. New sesterterpenoids from Salvia mirzayanii Rech.f. and Esfand. stereochemical characterization by computational electronic circular dichroism. Front. Chem. 2021, 9, 783292. [Google Scholar] [CrossRef] [PubMed]
  134. Cheng, B.; Fang, F.; Zhou, Q.T.; Li, Y.; Wu, X.W.; Zhao, X.R.; Bi, D.W.; Zhang, X.J.; Zhang, R.H.; Ji, X. Highly oxygenated labdane diterpenoids from Stevia rebaudiana and their anti-atherosclerosis activities. Chem. Biodivers. 2023, 20, e202200999. [Google Scholar] [CrossRef] [PubMed]
  135. Lv, X.J.; Li, Y.; Ma, S.G.; Qu, J.; Liu, Y.B.; Li, L.; Wang, R.B.; Yu, S.S. Isopimarane and nor-diterpene glucosides from the twigs and leaves of Lyonia ovalifolia. Tetrahedron 2017, 73, 776–784. [Google Scholar] [CrossRef]
  136. Ge, Y.Z.; Zhang, H.; Liu, H.C.; Dong, L.; Ding, J.; Yue, J.M. Cytotoxic dinorditerpenoids from Drypetes perreticulata. Phytochemistry 2014, 100, 120–125. [Google Scholar] [CrossRef]
  137. Chen, J.L.; Zhong, W.J.; Tang, G.H.; Li, J.; Zhao, Z.M.; Yang, D.P.; Jiang, L. Norditerpenoids from Flickingeria fimbriata and their inhibitory activities on nitric oxide and tumor necrosis factor-α production in mouse macrophages. Molecules 2014, 19, 5863–5875. [Google Scholar] [CrossRef]
  138. Dade, J.M.E.; Kablan, L.A.; Okpekon, T.A.; Say, M.; Yapo, K.D.; Komlaga, G.; Boti, J.B.; Koffi, A.P.; Guei, L.E.; Djakoure, L.A. Cassane diterpenoids from stem bark of Erythrophleum suaveolens. Phytochem. Lett. 2015, 12, 224–231. [Google Scholar] [CrossRef]
  139. Guo, Z.K.; Wang, R.; Huang, W.; Li, X.N.; Jiang, R.; Tan, R.X.; Ge, H.M. Aspergiloid I, an unprecedented spirolactone norditerpenoid from the plant-derived endophytic fungus Aspergillus sp. YXf3. Beilstein J. Org. Chem. 2014, 10, 2677–2682. [Google Scholar] [CrossRef]
  140. Su, X.D.; Wu, Y.C.; Wu, M.F.; Lu, J.F.; Jia, S.J.; He, X.; Liu, S.N.; Zhou, Y.Y.; Xing, H.; Xue, Y.B. Regioisomers Salviprolin A and B, unprecedented rosmarinic acid conjugated dinorditerpenoids from Salvia przewalskii Maxim. Molecules 2021, 26, 6955. [Google Scholar] [CrossRef]
  141. Dong, L.; Cheng, L.Z.; Yan, Y.M.; Wang, S.M.; Cheng, Y.X. Commiphoranes A-D, carbon skeletal terpenoids from Resina commiphora. Org. Lett. 2017, 19, 286–289. [Google Scholar] [CrossRef] [PubMed]
  142. Zhu, S.S.; Liu, J.W.; Yan, Y.M.; Liu, Y.; Mao, Z.; Cheng, Y.X. Terpenoids from Resina Commiphora regulating lipid metabolism via activating PPARα and CPT1 expression. Org. Lett. 2020, 22, 3428–3432. [Google Scholar] [CrossRef] [PubMed]
  143. Yang, X.H.; Wang, D.W.; Yan, Y.M.; Jiao, Y.B.; Cheng, Y.X.; Wang, F. Commiphoranes K-O, new terpenoids from Resina Commiphora and their anti-inflammatory activities. Chem. Biodivers. 2021, 18, e2100265. [Google Scholar] [CrossRef] [PubMed]
  144. Feng, Z.L.; Zhang, L.L.; Zheng, Y.D.; Liu, Q.Y.; Liu, J.X.; Feng, L.; Huang, L.; Zhang, Q.W.; Lu, J.J.; Lin, L.G. Norditerpenoids and dinorditerpenoids from the seeds of Podocarpus nagi as cytotoxic agents and autophagy inducers. J. Nat. Prod. 2017, 80, 2110–2117. [Google Scholar] [CrossRef] [PubMed]
  145. Zhang, H.Y.; He, H.B.; Gao, S.H. Asymmetric total synthesis of cephanolide B. Org. Chem. Front. 2021, 8, 55–559. [Google Scholar] [CrossRef]
  146. Chen, S.S.; Tong, X.; Liu, X.Y.; Zheng, C.Y.; Zhou, J.S.; Fan, Y.Y.; He, S.J.; Zhou, B.; Yue, J.M. Baccaramiones A–D, four highly oxygenated and rearranged trinorditerpenoids from Baccaurea ramiflora. J. Org. Chem. 2023, 88, 455–461. [Google Scholar] [CrossRef] [PubMed]
  147. Liu, Y.F.; Yang, B.C.; Song, Z.M.; Qiao, L.Q.; Peng, R.; Feng, W.S.; Cheng, Y.X.; Wang, Y.Z. Seven diterpenoids from the resin of Pinus yunnanensis Franch and their anti-inflammatory activity. Fitoterapia 2023, 165, 105396. [Google Scholar] [CrossRef] [PubMed]
  148. Chao, C.H.; Cheng, J.C.; Hwang, T.L.; Shen, D.Y.; Wu, T.S. Trinorditerpenes from the roots of Flueggea virosa. Bioorg. Med. Chem. Lett. 2014, 24, 447–449. [Google Scholar] [CrossRef] [PubMed]
  149. Wang, J.X.; Jin, H.; Li, H.L.; Zhang, W.D. Podocarpane trinorditerpenes from Celastrus angulatus and their biological activities. Fitoterapia 2018, 130, 156–162. [Google Scholar] [CrossRef]
  150. Jang, H.J.; Kim, K.H.; Park, E.J.; Kang, J.A.; Yun, B.S.; Lee, S.J.; Park, C.S.; Lee, S.; Lee, S.W.; Rho, M.C. Anti-inflammatory activity of diterpenoids from Celastrus orbiculatus in lipopolysaccharide-stimulated RAW264.7 cells. J. Immunol. Res. 2020, 2020, 7207354. [Google Scholar] [CrossRef]
  151. Wang, L.Y.; Wu, J.; Yang, Z.; Wang, X.J.; Fu, Y.; Liu, S.Z.; Wang, H.M.; Zhu, W.L.; Zhang, H.Y.; Zhao, W.M. (M)- and (P)-Bicelaphanol A, dimeric trinorditerpenes with promising neuroprotective activity from Celastrus orbiculatus. J. Nat. Prod. 2013, 76, 745–749. [Google Scholar] [CrossRef] [PubMed]
  152. Georges, P.; Legault, J.; Lavoie, S.; Grenon, C.; Pichette, A. Diterpenoids from the buds of Pinus banksiana Lamb. Molecules 2012, 17, 9716–9727. [Google Scholar] [CrossRef] [PubMed]
  153. Wang, L.J.; Xiong, J.; Lau, C.; Pan, L.L.; Hu, J.F. Sesquiterpenoids and further diterpenoids from the rare Chloranthaceae plant Chloranthus sessilifolius. J. Asian Nat. Prod. Res. 2015, 17, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
  154. Wang, X.J.; Wang, L.Y.; Fu, Y.; Wu, J.; Tang, X.C.; Zhao, W.M.; Zhang, H.Y. Promising effects on ameliorating mitochondrial function and enhancing Akt signaling in SH-SY5Y cells by (M)-bicelaphanol A, a novel dimeric podocarpane type. Phytomedicine 2013, 20, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
  155. Guo, M.L.; Xu, H.T.; Yang, J.J.; Chou, G.X. Diterpenoid glycosides from the flower of Trollius chinensis Bunge and their nitric oxide inhibitory activities. Bioorg. Chem. 2021, 116, 105312. [Google Scholar] [CrossRef] [PubMed]
  156. Thomas, S.A.L.; Sanchez, A.; Kee, Y.; Wilson, N.G.; Baker, B.J. Bathyptilones: Terpenoids from an antarctic sea pen, Anthoptilum grandiflorum (Verrill, 1879). Mar. Drugs 2019, 17, 513. [Google Scholar] [CrossRef] [PubMed]
  157. Zheng, Y.; Zhang, S.W.; Xuan, L.J. Trinorcassane and cassane diterpenoids from the seeds of Caesalpinia minax. Fitoterapia 2015, 102, 177–181. [Google Scholar] [CrossRef]
  158. Liu, K.X.; Zhu, Y.X.; Yan, Y.M.; Zeng, Y.; Jiao, Y.B.; Qin, F.Y.; Liu, J.W.; Zhang, Y.Y.; Cheng, Y.X. Discovery of populusone, a skeletal stimulator of umbilical cord mesenchymal stem cells from Populus euphratica exudates. Org. Lett. 2019, 21, 1837–1840. [Google Scholar] [CrossRef]
  159. Hu, Z.X.; Xu, H.C.; Hu, K.; Liu, M.; Li, X.N.; Li, X.R.; Du, X.; Zhang, Y.H.; Puno, P.; Sun, H.D. Structurally diverse diterpenoids from Isodon pharicus. Org. Chem. Front. 2018, 5, 2379–2389. [Google Scholar] [CrossRef]
  160. Zhang, X.W.; Li, P.L.; Qin, G.F.; Li, S.Y.; de Voogd, N.J.; Tang, X.L.; Li, G.Q. Isolation and absolute configurations of diversiform C17, C21 and C25 terpenoids from the marine sponge Cacospongia sp. Mar. Drugs 2019, 17, 14. [Google Scholar] [CrossRef]
  161. Chen, Y.M.; Yang, Y.H.; Li, X.N.; Zou, C.; Zhao, P.J. Diterpenoids from the endophytic fungus Botryosphaeria sp. P483 of the Chinese herbal medicine Huperzia serrate. Molecules 2015, 20, 16924–16932. [Google Scholar] [CrossRef] [PubMed]
  162. Sun, H.F.; Li, X.M.; Meng, L.; Cui, C.M.; Gao, S.S.; Li, C.S.; Huang, C.G.; Wang, B.G. Asperolides A–C, tetranorlabdane diterpenoids from the marine alga-derived endophytic fungus Aspergillus wentii EN-48. J. Nat. Prod. 2012, 75, 148–152. [Google Scholar] [CrossRef] [PubMed]
  163. Srivedavyasasri, R.; White, M.B.; Kustova, T.S.; Gemejiyeva, N.G.; Cantrell, C.L.; Ross, S.A. New tetranorlabdanoic acid from aerial parts of Salvia aethiopis. Nat. Prod. Res. 2018, 32, 14–17. [Google Scholar] [CrossRef] [PubMed]
  164. Yin, H.; Dan, W.J.; Fan, B.Y.; Guo, C.; Wu, K.; Li, D.; Xian, K.F.; Pescitelli, G.; Gao, J. M Anti-inflammatory and α-glucosidase inhibitory activities of labdane and norlabdane diterpenoids from the rhizomes of Amomum villosum. J. Nat. Prod. 2019, 82, 2963–2971. [Google Scholar] [CrossRef] [PubMed]
  165. Liang, S.; Luo, J.G.; Wang, Z.; Wang, X.B.; Kong, L. New tetranorlabdane diterpenoids from the fruits of Elettaria cardamomum Maton. Phytochem. Lett. 2017, 20, 295–299. [Google Scholar] [CrossRef]
  166. Li, X.D.; Li, X.; Li, X.M.; Xu, G.M.; Zhang, P.; Meng, L.H.; Wang, B.G. Tetranorlabdane diterpenoids from the deep sea sediment-derived fungus Aspergillus wentii SD-310. Planta Med. 2016, 82, 877–881. [Google Scholar] [CrossRef]
  167. Afolabi, S.; Olorundare, O.; Ninomiya, M.; Babatunde, A.; Mukhtar, H.; Koketsu, M. Comparative antileukemic activity of a tetranorditerpene isolated from Polyalthia longifolia leaves and the derivative against human leukemia HL-60 cells. J. Oleo Sci. 2017, 66, 1169–1174. [Google Scholar] [CrossRef]
  168. Hsu, F.Y.; Wang, S.K.; Duh, C.Y. Xeniaphyllane-derived terpenoids from soft coral Sinularia nanolobata. Mar. Drugs 2018, 16, 40. [Google Scholar] [CrossRef]
  169. Zhang, Z.X.; Li, H.H.; Zhi, D.J.; Wu, P.Q.; Hu, Q.L.; Yu, Y.F.; Zhao, Y.; Yu, C.X.; Fei, D.Q. Norcrocrassinone: A novel tetranorditerpenoid possessing a 6/6/5 fused ring system from Croton crassifolius. Tetrahedron Lett. 2018, 59, 4028–4030. [Google Scholar] [CrossRef]
  170. Zhang, Z.X.; Wu, P.Q.; Li, H.H.; Qi, F.M.; Fei, D.Q.; Hu, Q.L.; Liu, Y.H.; Huang, X.L. Norcrassin A, a novel C16 tetranorditerpenoid, and bicrotonol A, an unusual dimeric labdane-type diterpenoid, from the roots of Croton crassifolius. Org. Biomol. Chem. 2018, 16, 1745–1750. [Google Scholar] [CrossRef]
  171. Mofidi Tabatabaei, S.; Salehi, P.; Moridi Farimani, M.; Neuburger, M.; De Mieri, M.; Hamburger, M.; Nejad-Ebrahimi, S. A nor-diterpene from Salvia sahendica leaves. Nat. Prod. Res. 2017, 31, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
  172. Liu, J.Q.; Deng, Y.Y.; Li, T.Z.; Han, Q.; Li, Y.; Qiu, M.H. Three new tetranorditerpenes from aerial parts of acerola cherry (Malpighia emarginata). Molecules 2014, 19, 2629–2636. [Google Scholar] [CrossRef] [PubMed]
  173. Tang, G.H.; Zhang, Y.; Gu, Y.C.; Li, S.F.; Di, Y.T.; Wang, Y.H.; Yang, C.X.; Zuo, G.Y.; Li, S.L.; He, H.P. Trigoflavidols A–C, degraded diterpenoids with antimicrobial activity, from Trigonostemon flavidus. J. Nat. Prod. 2012, 75, 996–1000. [Google Scholar] [CrossRef] [PubMed]
  174. Li, S.F.; Yu, X.Q.; Li, Y.L.; Bai, M.; Lin, B.; Yao, G.D.; Song, S.J. Vibsane-type diterpenoids from Viburnum odoratissimum and their cytotoxic activities. Bioorg. Chem. 2021, 106, 104498. [Google Scholar] [CrossRef]
Figure 1. Basic skeleton of C19 norditerpenes.
Figure 1. Basic skeleton of C19 norditerpenes.
Molecules 29 00060 g001
Figure 2. Structures of labdane-type C19 norditerpenes.
Figure 2. Structures of labdane-type C19 norditerpenes.
Molecules 29 00060 g002
Figure 3. Basic skeletons of clerodane-type C19 norditerpenes.
Figure 3. Basic skeletons of clerodane-type C19 norditerpenes.
Molecules 29 00060 g003
Figure 4. Structures of clerodane-type C19 norditerpenes.
Figure 4. Structures of clerodane-type C19 norditerpenes.
Molecules 29 00060 g004
Figure 5. Basic skeletons of pimarane-type C19 norditerpenes.
Figure 5. Basic skeletons of pimarane-type C19 norditerpenes.
Molecules 29 00060 g005
Figure 6. Structures of pimarane-type C19 norditerpenes.
Figure 6. Structures of pimarane-type C19 norditerpenes.
Molecules 29 00060 g006
Figure 7. Structures of abietane-type C19 norditerpenes.
Figure 7. Structures of abietane-type C19 norditerpenes.
Molecules 29 00060 g007
Figure 8. Structures of kaurane-type C19 norditerpenes.
Figure 8. Structures of kaurane-type C19 norditerpenes.
Molecules 29 00060 g008
Figure 9. Structures of cephalotane-type C19 norditerpenes.
Figure 9. Structures of cephalotane-type C19 norditerpenes.
Molecules 29 00060 g009
Figure 10. Structures of cembranoid-type C19 norditerpenes.
Figure 10. Structures of cembranoid-type C19 norditerpenes.
Molecules 29 00060 g010
Figure 11. Structures of other compounds of C19 norditerpenes.
Figure 11. Structures of other compounds of C19 norditerpenes.
Molecules 29 00060 g011aMolecules 29 00060 g011b
Figure 12. Structures of C18 norditerpenes.
Figure 12. Structures of C18 norditerpenes.
Molecules 29 00060 g012aMolecules 29 00060 g012b
Figure 13. Structures of C17 norditerpenes.
Figure 13. Structures of C17 norditerpenes.
Molecules 29 00060 g013
Figure 14. Structures of C16 norditerpenes.
Figure 14. Structures of C16 norditerpenes.
Molecules 29 00060 g014aMolecules 29 00060 g014b
Table 1. Sources of 557 norditerpenes (families, genera, and species and the corresponding quantity of the compounds).
Table 1. Sources of 557 norditerpenes (families, genera, and species and the corresponding quantity of the compounds).
FamilyGenusSpeciesQuantity of Norditerpenes
Lamiaceae (143)CallicarpaCallicarpa integerrima2
TeucriumTeucrium viscidum3
SideritisSideritis pullulans2
LeucasLeucas zeylanica2
IsodonIsodon rubescens4
Isodon eriocalyx1
Isodon pharicus1
Isodon phyllostachys2
Isodon rosthornii1
Isodon ternifolius1
SalviaSalvia aethiopis1
Salvia deserta5
Salvia miltiorrhiza26
Salvia mirzayanii1
Salvia grandifolia4
Salvia leriifolia1
Salvia yunnanensis3
Salvia digitaloides17
Salvia rhytidea3
Salvia sahendica1
Salvia castanea4
Salvia przewalskii5
PerovskiaPerovskia abrotanoides17
Perovskia atriplicifolia6
Euphorbiaceae (75)CrotonCroton cajucara1
Croton haumanianus1
Croton yanhuii4
Croton euryphyllus7
Croton caudatus2
Croton cascarilloides2
Croton crassifolius4
FlueggeaFlueggea acicularis5
Flueggea virosa2
BaccaureaBaccaurea ramiflora4
JatrophaJatropha podagrica2
TrigonostemonTrigonostemon chinensis11
Trigonostemon flavidus4
Trigonostemon howii1
MalpighiaMalpighia emarginata3
PhyllanthusPhyllanthus flexuosus1
DrypetesDrypetes perreticulata4
AleuritesAleurites moluccanus2
EuphorbiaEuphorbia neriifolia6
Euphorbia royleana1
Euphorbia ebracteolata4
Euphorbia dracunculoides2
Cephalotaxaceae (66)CephalotaxusCephalotaxus sinensis8
Cephalotaxus fortunei56
Cephalotaxus mannii2
Celastraceae (20)Euonymus L.Euonymus verrucosus var. pauciflorus3
Euonymus grandiflflorus Wall1
MaytenusMaytenus senegalensis1
CelastrusCelastrus angulatus9
Celastrus orbiculatus4
TripterygiumTripterygium wilfordii2
Icacinaceae (16)IcacinaIcacina trichantha16
Orchidaceae (16)FlickingeriaFlickingeria fimbriata16
Podocarpaceae (14)PodocarpusPodocarpus nagi9
Podocarpus macrophyllus5
Pinaceae (13)AbiesAbies forrestii2
PinusPinus yunnanensis1
Pinus banksiana Lamb1
PseudotsugaPseudotsuga sinensis9
Picrodendraceae (12)AustrobuxusAustrobuxus carunculatus12
Taxaceae (11)AmentotaxusAmentotaxus argotaenia11
Compositae (10)EupatoriumAustroeupatorium inulifolium10
Chloranthaceae (9)ChloranthusChloranthus serratus2
Chloranthus sessilifolius7
Asteraceae (8)GrazieliaGrazielia gaudichaudeana3
WedeliaWedelia trilobata1
SteviaStevia rebaudiana3
BaccharisBaccharis retusa1
Zingiberaceae (8)AmomumAmomum maximum2
Amomum villosum1
HedychiumHedychium forrestii3
ElettariaElettaria cardamomum2
Salicaceae (7)PopulusPopulus euphratica7
Araucariaceae (5)AgathisAgathis macrophylla5
Leguminosae (5)ErythrophleumErythrophleum fordii2
Erythrophleum suaveolens1
CaesalpiniaCaesalpinia decapetala var. japonica1
Caesalpinia minax1
Menispermaceae (5)TinosporaTinospora capillipes5
Annonaceae (4)AnnonaAnnona squamosa L.2
PolyalthiaPolyalthia longifolia2
Dipterocarpaceae (4)ResinaResina Commiphora4
Pallaviciniaceae (4)PallaviciniaPallavicinia ambigua4
Scrophulariaceae (4)ScrophulariaScrophularia dentata4
Alangiaceae (2)AlangiumAlangium chinense (Lour.) Harms2
Botryosphaeriaceae (2)DiplodiaDiplodia olivarum2
Caprifoliaceae (2)ViburnumViburnum odoratissimum2
Ditrichaceae (2)CeratodonCeratodon purpureus2
Malpighiaceae (2)AspidopterysAspidopterys obcordata2
Paeoniaceae (2)PaeoniaPaeonia veitchii2
Rosaceae (2)CrataegusCrataegus pinnatifida2
Thymelaeaceae (2)AquilariaChinese eaglewood2
Apiaceae (1)AzorellaAzorella compacta1
Cupressaceae (1)ThujaThuja orientalis1
Ericaceae (1)LyoniaLyonia ovalifolia1
Pentaphylacaceae (1)AdinandraAdinandra poilanei1
Ranunculaceae (1)TrolliusTrollius chinensis1
Eurotiaceae (35)PenicilliumPenicillium oxalicum1
Penicillium sp. DT101
Penicillium thomii1
AspergillusAspergillus taichungensis4
Aspergillus aculeatinus1
Aspergillus sp. YXf31
Aspergillus wentii EN-4826
Discellaceae (14)OidiodendronOidiodendron truncatum14
Dematiaceae (3)AlternariaAlternaria brassicicola3
Thermomonosporaceae (2)ActinomaduraActinomadura sp. KC 1912
Carboniaceae (1)XylariaXylaria longipes1
Moniliaceae (1)TrichodermaTrichoderma citrinoviride1
Cortinariaceae (1)CortinariusCortinarius pyromyxa1
Alcyonidae (30)SinulariaSinularia scabra16
Sinularia maxima3
Sinularia nanolobata1
Sinularia siaesensis1
Sinularia hirta2
Sinularia densa7
Choiidae (9)SpongiaSpongia officinalis2
DendrillaDendrilla antarctica2
CacospongiaCacospongia sp.5
Xeniidae (5)CespitulariaCespitularia taeniata2
Cespitularia sp. 3
Chromodorididae (3)GoniobranchusGoniobranchus Mollusks3
Gorgoniaceae (1)JunceellaJunceella fragilis1
Anthoptilidae (1)AnthoptilumAnthoptilum grandiflflorum1
Loliginidae (1)UroteuthisUroteuthis (Photololigo) duvaucelii1
Veneridae (1)PaphiaPaphia malabarica1
Amber (1)-Dominican amber1
Table 2. Chemical constituents of labdane-type C19 norditerpenes.
Table 2. Chemical constituents of labdane-type C19 norditerpenes.
No.NamePlant SourcePlant OrganRef.
1penioxalicinP. oxalicum-[2]
2penitholabeneP. thomii-[3]
3euonymupene CE. verrucosustwigs[4]
4euonymupene AE. verrucosustwigs[4]
53β-hydroxy-15-nor-14-oxo-8(17),12-labdadien-14-alC. serratuswhole plants[5]
63β,6β-dihydroxy-15-nor-14-oxo-8(17),12-labdadien-14-alC. serratuswhole plants[5]
715-nor-14-oxolabda-8(17),12E-dien-19-oic acidA. macrophyllaaerial parts[6]
815-nor-14-oxolabda-8(17),13(16)-dien-19-oic acidT. orientalisleaves and stems[7]
9grazielabdane AG. gaudichaudeanaaerial parts[8]
10grazielabdane BG. gaudichaudeanaaerial parts[8]
11grazielabdane CG. gaudichaudeanaaerial parts[8]
12austroeupatolA. inulifoliumaerial parts[9,10]
13inulifolinone AA. inulifoliumleaves[9,10]
14inulifolinone BA. inulifoliumleaves[9,10]
15inulifolinone CA. inulifoliumleaves[9,10]
16inulifolinone DA. inulifoliumleaves[9,10]
17inulifolinone EA. inulifoliumleaves[9,10]
18inulifolinone FA. inulifoliumleaves[9,10]
19inulifolinone IA. inulifoliumleaves[9,10]
20inulifolinone GA. inulifoliumleaves[9,10]
21inulifolinone HA. inulifoliumleaves[9,10]
22amomaxin BA. maximumroots[11]
23amomaxin AA. maximumroots[11]
24hedychin EH. forrestiirhizomes[12]
25pallambin AP. ambigua-[13]
26pallambin BP. ambigua-[13]
27pallambin CP. ambigua-[13]
28pallambin DP. ambigua-[13]
Table 3. Chemical constituents of clerodane-type C19 norditerpenes.
Table 3. Chemical constituents of clerodane-type C19 norditerpenes.
No.NamePlant SourcePlant OrganRef.
2915-nor-cleroda-3,12-dieneD. amber-[14]
30callinteger AC. integerrimatwigs and leaves[15]
31callinteger BC. integerrimatwigs and leaves[15]
32trans-dehydrocrotoninC. cajucaratree[16]
33croyanoid BC. yanhuiitwigs and leaves[17]
34crotoeurin BC. euryphyllustwigs and leaves[18]
35crocleropene BC. caudatustwigs and leaves[19]
36crocleropene AC. caudatustwigs and leaves[19]
37croyanoid CC. yanhuiitwigs and leaves[17]
38tinocapillin AT. capillipesrhizomes[20]
39tinocallone AT. capillipesrhizomes[20]
40tinocallone CT. capillipesrhizomes[20]
41tinocapillin BT. capillipesrhizomes[20]
42tinocapillin CT. capillipesrhizomes[20]
43crotoeurin CC. euryphyllustwigs and leaves[18]
446-epi-crotoeurin CC. crassifoliusroots[21]
45teucvidinC. euryphyllustwigs and leaves[18]
46isoteucvinC. euryphyllustwigs and leaves[18]
47teucvinC. euryphyllustwigs and leaves[17,18]
48isocrotocaudinC. euryphyllustwigs and leaves[17,18]
49crotocaudinC. crassifoliusroots[21]
50croyanoid DC. yanhuiitwigs and leaves[17]
51teucvisin CT. viscidumwhole plants[22]
52teucvisin DT. viscidumwhole plants[22]
53teucvisin ET. viscidumwhole plants[22]
54croyanoid AC. yanhuiitwigs and leaves[17]
55crotoeurin AC. euryphyllustwigs and leaves[17,18]
Table 4. Chemical constituents of pimarane-type C19 norditerpenes.
Table 4. Chemical constituents of pimarane-type C19 norditerpenes.
No.NamePlant SourcePlant OrganRef.
56fluacinoid DF. acicularisaerial parts[23]
57fluacinoid EF. acicularisaerial parts[23]
58fluacinoid FF. acicularisaerial parts[23]
59fluacinoid GF. acicularisaerial parts[23]
60fluacinoid HF. acicularisaerial parts[23]
61aquilariaene FC. eaglewood-[24]
62aquilariaene HC. eaglewood-[24]
63jbir-65Actinomadura sp. KC 191-[25]
64actinomadurolActinomadura sp. KC 191-[25]
65icatrichanoneI. trichanthatubers[26]
6614-hydroxyicatrichanoneI. trichanthatubers[26]
673-O-methylicatrichanoneI. trichanthatubers[26]
683-O-methyl-14-hydroxyicatrichanoneI. trichanthatubers[26]
697α-hydroxyicacenoneI. trichanthatubers[27]
70icacenoneI. trichanthatubers[27]
7112-hydroxy-icacinlactoneI. trichanthatubers[27]
72icacinlactone HI. trichanthatubers[27]
73icacinlactone AI. trichanthatubers[28]
74icacinlactone BI. trichanthatubers[27,28]
75icacinlactone EI. trichanthatubers[28]
76icacinlactone FI. trichanthatubers[28]
77icacinlactone GI. trichanthatubers[28]
78icacinlactone CI. trichanthatubers[28]
79icacinlactone DI. trichanthatubers[27,28]
80trichanthol BI. trichanthatubers[27]
818β-hydroxy-18-nor-4(5),15-isopimaradien-3-oneE. grandiflflorus Wall.branches and leaves[29]
8218(4→14), 19(4→8)-bis-abeo-nor-isopimarane-1,5-diene-3-yl-3β-methoxy propyl pentanoateP. malabaricaedible portion[30]
83smardaesidin FC. purpureus-[31]
84smardaesidin GC. purpureus-[31]
85sphaeropsidin GD. olivarum-[32]
86taichunin DA. taichungensis-[33]
87aspewentin DA. wentii EN-48-[34]
88aspewentin EA. wentii EN-48-[34]
89aspewentin FA. wentii EN-48-[34]
90aspewentin IA. wentii EN-48-[35]
91aspewentin JA. wentii EN-48-[35]
92aspewentin KA. wentii EN-48-[35]
93aspewentin MA. wentii EN-48-[35]
94aspewentin LA. wentii EN-48-[35]
95aspewentin CA. wentii EN-48-[36]
96aspewentin AA. wentii EN-48-[36]
97aspewentin BA. wentii EN-48-[36]
98aspewentin GA. wentii EN-48-[34]
99aspewentin HA. wentii EN-48-[34]
100xylarilongipin AA. wentii EN-48-[37]
101asperether AA. wentii EN-48-[38]
102asperether BA. wentii EN-48-[38]
103asperether CA. wentii EN-48-[38]
104asperether DA. wentii EN-48-[38]
105asperether EA. wentii EN-48-[38]
106(2S,3S,5S,9S,10S,13S)-2,3-dihydroxy-16-nor-ent-pimar-8(14)-en-15-oic acidF. fimbriataaerial parts[39]
107(3R,5S,9S,10S,13S)-2-hydroxy-16-nor-ent-pimar-8(14)-en-15-oic acidF. fimbriataaerial parts[39]
108(2S,3R,5S,9S,10S,13S)-2-acetoxy-3-hydroxy-16-nor-ent-pimar-8(14)-en-15-oic acidF. fimbriataaerial parts[39]
109norflickinflimiod AF. fimbriataaerial parts[39,40]
110(2S,3R,5S,9S,10S,13S)-2-O-E-cinnamoyl-3-hydroxy-16-nor-ent-pimar-8(14)-en-15-oic acidF. fimbriataaerial parts[39]
1113α,14β-diacetoxy-16-nor-ent-pimar-15α,8-olideF. fimbriataaerial parts[39]
112norflickinflimiod BF. fimbriataaerial parts[39,40]
113norflickinflimiod CF. fimbriataaerial parts[40]
114norflickinflimosideF. fimbriataaerial parts[40]
115norflickinflimiod DF. fimbriataaerial parts[40]
116eupneria KE. neriifoliastem bark[41]
117eupneria LE. neriifoliastem bark[41]
118eupneria JE. neriifoliastem bark[41]
119eupneria ME. neriifoliastem bark[41]
120(3R,4R,5S,9R,10S,12S,13S)-ent-18-nor-8(14),15-isopimaradiene-3β,12β,4α-triolE. neriifoliastems[42]
Table 5. Chemical constituents of abietane-type C19 norditerpenes.
Table 5. Chemical constituents of abietane-type C19 norditerpenes.
No.NamePlant SourcePlant OrganRef.
121dichroanoneS. desertaroots[43]
122salviadesertin AS. desertaroots[43]
123salviadesertin BS. desertaroots[43]
124salviadesertin ES. desertaroots[43]
125salviadesertin FS. desertaroots[43]
126dehydromiltironeS. miltiorrhizacell[44]
127grandifolia DS. grandifoliaroots[45]
1282-isopropyl-8,8-dimethyl-7,8-dihydroph-enanthrene-1,4,5(6H)-trioneS. leriifoliawhole plants[46]
129deoxyneocryptotanshinoneS. rhytidearoots[47]
130(1R,15R)-1β-hydroxyneocryptotanshinone.P. abrotanoidesroots[48]
13119-nor-abieta-4,6,8,11,13-tetraen-3-oneP. euphraticaresins[49]
1324,4α,9,10-tetrahydro-1,4α-dimethyl-7-isopropyl-2(3H)-phenanthroneP. euphraticaresins[49]
13319-nor-abieta-4(18),8,11,13-tetraen-7-oneP. euphraticaresins[49]
134castanol BS. castaneawhole plants[50]
135triptobenzene ST. wilfordiiroots[51]
1361-deoxo aurocadiolS. rhytidearoots[47]
137arucadiolS. rhytidearoots[47]
1381-deoxy-1,2-dien-3-oxoarucadiol.P. abrotanoidesroots[48]
139euphorane CE. dracunculoidespowder[52]
140nagiol AP. nagileaves[53]
14118-norabieta-8,11,13-4-olP. euphraticaresins[49]
142grandifolia AS. grandifoliaroots[45]
143isograndifoliolP. atriplicifoliaroots[45,54]
144grandifolia BS. grandifoliaroots[45]
145przewalskin Y-1P. abrotanoidesroots[48]
146miltipoloneS. grandifoliaroots[45]
147dehydrodanshenol AS. przewalskiiroots[55]
148cryptotanshinoneS. miltiorrhizaseeds[44,56]
149tanshinone IIAS. miltiorrhizaseeds[56]
150methyltanshinoateS. castaneawhole plants[50]
1511-oxocryptotanshinoneP. atriplicifoliaroots[48]
152(1R,15R)-1-acetoxycryptotanshinoneP. atriplicifoliaroots[54]
153(1R)-1-acetoxytanshinone IIAP. atriplicifoliaroots[54]
154(15R)-1-oxoaegyptinone AP. atriplicifoliaroots[54]
155rubesanolide FI. rubescensleaves[57]
156rubesanolide GI. rubescensleaves[57]
157castanol AS. castaneawhole plants[50]
158abieseconordine AA. forrestiitwigs[58]
159abieseconordine BA. forrestiitwigs[58]
1605-(6-isopropyl-2-methylnaphthalen-1-yl)pentan-2-oneP. euphraticaresins[49]
161deacetylsalvianonolS. przewalskiiroots[55]
162sessilifol OC. sessilifoliuswhole plants[59]
163salvialba acidS. miltiorrhizaroots[60]
164salprzelactoneS. przewalskiiroots[55]
Table 6. Chemical constituents of kaurane-type C19 norditerpenes.
Table 6. Chemical constituents of kaurane-type C19 norditerpenes.
No.NamePlant SourcePlant OrganRef.
165laxiflorolide MI. eriocalyxleaves[61]
166ternifolide BI. ternifolius-[62]
167ent-16-oxo-17-nor-kauran-19-oicB. retusaaerial parts[63]
168sideritone AS. pullulansaerial parts and roots[64]
169sideritone BS. pullulansaerial parts and roots[64]
170amentotaxin LA. argotaeniatwigs and leaves[65]
17118-nor-ent-kaur-4(19)-en-17-oic acidM. senegalensisroot bark[66]
17216α,17,19-trihydroxy-18-nor-ent-kauran-4β-olW. trilobatawhole plants[67]
173amentotaxin MA. argotaeniatwigs and leaves[65]
174amentotaxin CA. argotaeniatwigs and leaves[65]
175amentotaxin DA. argotaeniatwigs and leaves[65]
176amentotaxin EA. argotaeniatwigs and leaves[65]
177amentotaxin FA. argotaeniatwigs and leaves[65]
178amentotaxin GA. argotaeniatwigs and leaves[65]
179amentotaxin HA. argotaeniatwigs and leaves[65]
180amentotaxin IA. argotaeniatwigs and leaves[65]
181amentotaxin JA. argotaeniatwigs and leaves[65]
182amentotaxin KA. argotaeniatwigs and leaves[65]
18319-nor-16,17-dihydroxy-ent-kaur-4(18)-eneC. haumanianusleaves and stem bark[68]
184wilkaunoid DT. wilfordiistems[69]
185(4α)-19-nor-ent-kaurane-4,16,17-triolA. squamosa L.stem bark[70]
186(4α,16α)-17-(acetyloxy)-19-nor-ent-kaurane-4,16-diolA. squamosa L.stem bark[70]
187phyllostachysin NI. phyllostachysaerial parts[71]
188phyllostachysin OI. phyllostachysaerial parts[71]
189isorosthin AI. rosthorniiaerial parts[72]
Table 7. Chemical constituents of cephalotane-type C19 norditerpenes.
Table 7. Chemical constituents of cephalotane-type C19 norditerpenes.
No.NamePlant SourcePlant OrganRef.
190cephalotanin AC. sinensisleaves[73]
191cephalotanin BC. sinensisleaves[73]
192cephalotanin CC. sinensisleaves[73]
193ceforalide FC. fortuneiseeds[74]
194ceforalide GC. fortuneiseeds[74]
195ceforalide HC. fortuneiseeds[74]
196cephalotanin DC. sinensisleaves[73]
197cephanolide DC. sinensistwigs and leaves[75]
198ceforalide AC. fortuneiseeds[74]
199ceforalide BC. fortuneiseeds[74]
200ceforalide CC. fortuneiseeds[74]
201ceforalide DC. fortuneiseeds[74]
202ceforalide EC. fortuneiseeds[74]
203fortalpinoid PC. fortuneiseeds[76]
204fortalpinoid QC. fortuneiseeds[76]
20520-oxohainanolidolC. fortuneitwigs and leaves[77]
20620α-hydroxyhainanolidolC. fortuneitwigs and leaves[77]
20710-hydroxyhainanolidolC. fortuneitwigs and leaves[77]
208cephinoid HC. fortuneitwigs and leaves[78]
209cephinoid IC. fortuneitwigs and leaves[78]
210cephinoid JC. fortuneitwigs and leaves[78]
211cephinoid KC. fortuneitwigs and leaves[78]
212cephinoid LC. fortuneitwigs and leaves[78]
213cephinoid MC. fortuneitwigs and leaves[78]
214hainanolidolC. fortuneitwigs and leaves[78]
215fortunolide AC. fortuneitwigs and leaves[78]
216fortalpinoid AC. fortuneiseeds[76]
217fortalpinoid BC. fortuneiseeds[76]
218fortalpinoid CC. fortuneiseeds[76]
219fortalpinoid DC. fortuneiseeds[76]
220fortalpinoid EC. fortuneiseeds[76]
221fortalpinoid FC. fortuneiseeds[76]
2223-deoxyfortalpinoid FC. fortuneiseeds[76]
22310-hydroxyharringtonolideC. manniitwigs and leaves[78,79]
224cephinoid FC. fortuneitwigs and leaves[78]
225cephinoid GC. fortuneitwigs and leaves[78]
226harringtonolideC. fortuneitwigs and leaves[78]
227fortunolide BC. fortuneitwigs and leaves[78]
228fortalpinoid JC. fortuneiseeds[76]
2296-en-harringtonolideC. manniitwigs and leaves[78,79]
230fortalpinoid HC. fortuneiseeds[76]
231fortalpinoid IC. fortuneiseeds[76]
232cephanolide JC. fortuneiseeds[76]
233fortalpinoid GC. fortuneiseeds[76]
234cephinoid NC. fortuneitwigs and leaves[78]
235cephinoid OC. fortuneitwigs and leaves[78]
236fortalpinoid MC. fortuneiseeds[76]
237fortalpinoid NC. fortuneiseeds[76]
238fortalpinoid OC. fortuneiseeds[76]
239cephafortoid AC. fortuneitwigs and leaves[77]
24014-epi-cephafortoid AC. fortuneitwigs and leaves[77]
241cephinoid PC. fortuneitwigs and leaves[78]
242cephinoid QC. fortuneitwigs and leaves[78]
243cephinoid RC. fortuneitwigs and leaves[78]
244cephinoid SC. fortuneitwigs and leaves[78]
245gongshanolideC. fortuneitwigs and leaves[78]
246fortalpinoid KC. fortuneiseeds[76]
247fortalpinoid LC. fortuneiseeds[76]
248ceforalide IC. fortuneiseeds[74]
249cephalodione AC. fortuneiseeds[80]
250cephalodione BC. fortuneiseeds[80]
251cephalodione CC. fortuneiseeds[80]
252cephalodione DC. fortuneiseeds[80]
Table 8. Chemical constituents of cembranoid-type C19 norditerpenes.
Table 8. Chemical constituents of cembranoid-type C19 norditerpenes.
No.NamePlant SourcePlant OrganRef.
253xiguscabrolide HS. scabra-[81]
25410-epi-gyrosanolide ES. scabra-[81]
2555-epi-sinuleptolideS. scabra-[81]
256norcembrene 5S. scabra-[81]
257scabrolide DS. scabra-[81]
258scabrolide GS. scabra-[81]
259sinularcasbane OS. scabra-[81]
260gyrosanolide FS. scabra-[81]
261sinuleptolideS. scabra-[81]
2625-epi-norcembreneS. maxima-[82]
26313-epi-scabrolide CS. maxima-[82]
264sinudenoid AS. densa-[83]
265sinudenoid BS. densa-[83]
266sinudenoid CS. densa-[83]
267sinudenoid DS. densa-[83]
268ineleganolideS. maxima-[81,82,84,85]
269fragilolide AJ. fragilis-[86]
270sinuscalide CS. scabra-[87]
271sinuscalide DS. scabra-[87]
272sinuscalide BS. scabra-[87]
273scabrolide BS. densa-[83]
274scabrolide AS. densa-[83]
275sinudenoid ES. densa-[83]
276sinuscalide AS. scabra-[87]
Table 9. Chemical constituents of other compounds of C19 norditerpenes.
Table 9. Chemical constituents of other compounds of C19 norditerpenes.
No.NamePlant SourcePlant OrganRef.
277japodagricanone AJ. podagricatwigs and leaves[88]
278japodagricanone BJ. podagricatwigs and leaves[88]
2796-((E)-12-(furan-13-yl)-10-methylpent-10-en-9-yl)-6,7,8,8atetrahydro-3H-isochromen-1-(5H)-oneU. (Photololigo) duvaucelii-[89]
280erythro-norcassanoid AE. fordiiroots[90]
281erythro-norcassanoid BE. fordiiroots[90]
282caesalpinoneC. decapetala var. japonicaroots[91]
283aspidoptoid AA. obcordatavine[92]
284aspidoptoid BA. obcordatavine[92]
285phyllanflexoid CP. flexuosusroots[93]
286olicleistanoneD. olivarum-[32]
287alterbrassicicene BA. brassicicola-[94]
2881β-hydroxy-brassicicene QA. brassicicola-[94]
2893-ketobrassicicene WA. brassicicola-[94]
290aculeaterpene AA. aculeatinus-[95]
291dongtingnoid CP. sp. DT10-[96]
292crotocascarin αC. cascarilloidesstems[97]
293crotocascarin βC. cascarilloidesstems[97]
294(+)-paeoveitolP. veitchiiroots[98]
295(−)-paeoveitolP. veitchiiroots[98]
296eurifoloid ME. neriifoliatwigs and leaves[99]
297eurifoloid PE. neriifoliatwigs and leaves[99]
298adipoilosideA. poilaneileaves[100]
299citrinovirinT. citrinoviride-[101]
30016-deacetoxy-9,11-dihydrogracilin AG. Mollusks-[102]
30115,16-deacetoxy-15-hydroxy-9,11-dihydrogracilin AG. Mollusks-[102]
302verrielactoneG. Mollusks-[102]
3033-nor-spongiolide AS. officinalis-[103]
3043-nor-spongiolide BS. officinalis-[103]
305scrodentoid FS. dentatawhole plants[104]
306scrodentoid GS. dentatawhole plants[104]
307scrodentoid HS. dentatawhole plants[104,105]
308scrodentoid IS. dentatawhole plants[104,105]
309normulin-11-en-13-oxo-20-oic acidA. compactaaerial part[106]
310pyromyxone DC. pyromyxafruiting bodies[107]
311adenicaL. zeylanicawhole plants[108]
3126β-acetoxy-9α,13-epoxy-16-norlabd-13E-en-15-alL. zeylanicawhole plants[108]
313scabrolide AS. scabra-[81]
314yonarolideS. scabra-[81]
31512-hydroxy-scabrolide AS. scabra-[81]
316sinusiaetone AS. siaesensis-[109]
317cespitaenin AC. taeniata-[110]
318cespitaenin BC. taeniata-[110]
319cespitulin QCespitularia sp.-[111]
320cespitulin RCespitularia sp.-[111]
321cespitulin PCespitularia sp.-[111]
322norhawthornoid AC. pinnatifidaleaves[112]
323norhawthornoid BC. pinnatifidaleaves[112]
324ebractenoid AE. ebracteolataroots[113]
325ebractenoid BE. ebracteolataroots[113]
326(2S,7S,11S)-(8E,12Z)-2, 10-dihydroxy-pellialactoneA. chinenseroots[114]
327(2S,4S,7S,11S)-(8E,12Z)-2,4,10-trihydroxy-pellialactoneA. chinenseroots[114]
328miltiolactone AS. miltiorrhizaroots[115]
329miltiolactone BS. miltiorrhizaroots[115]
330taichunin AA. taichungensis-[33]
331taichunin BA. taichungensis-[33]
332taichunin CA. taichungensis-[33]
333PR 1388O. truncatum-[116]
334oidiolactone DO. truncatum-[116]
335oidiolactone CO. truncatum-[116]
336oidiolactone GO. truncatum-[116]
337epi-oidiolactone GO. truncatum-[116]
338oidiolactone HO. truncatum-[116]
339oidiolactone IO. truncatum-[116]
340oidiodendronic acidO. truncatum-[116]
341oidiolactone EO. truncatum-[116]
342LL-Z1271αO. truncatum-[116]
343oidiolactone JO. truncatum-[116]
344oidiolactone KO. truncatum-[116]
345oidiolactone LO. truncatum-[116]
346LL-Z1271βO. truncatum-[116]
34716-epi-pretoxinA. carunculatusfruits[117]
348austrobuxusin FA. carunculatusfruits[117]
349austrobuxusin GA. carunculatusfruits[117]
350austrobuxusin HA. carunculatusfruits[117]
35116-epi-austrobuxusin HA. carunculatusfruits[117]
35216-epi-austrobuxusin GA. carunculatusfruits[117]
353austrobuxusin IA. carunculatusfruits[117]
354austrobuxusin JA. carunculatusfruits[117]
35516-epi-austrobuxusin BA. carunculatusfruits[117]
356austrobuxusin KA. carunculatusfruits[117]
357austrobuxusin LA. carunculatusfruits[117]
358austrobuxusin MA. carunculatusfruits[117]
359methyl-13-acetyl-podocarpa-8,11,13-trien-18-oateP. euphraticaresins[49]
360sinuhirtone BS. hirta-[118]
3619,11-dihydrogracilin AD. antarctica-[119]
3629,11-dihydrogracillinone AD. antarctica-[119]
363eupractenoid AE. ebracteolataroots[120]
364eupractenoid BE. ebracteolataroots[120]
Table 10. Chemical constituents of C18 norditerpenes.
Table 10. Chemical constituents of C18 norditerpenes.
No.NamePlant SourcePlant OrganRef.
365salyunnanin FS. yunnanensisroots[121]
36616,17-dinorpisferal AS. digitaloidesroots[122]
367militibetin AS. miltiorrhizadry roots[48]
368(5S,8S,10R)-militibetinAP. abrotanoidesroots[48]
369normiltioaneS. miltiorrhizacell cultures[44]
370yunnannin AS. miltiorrhizadry roots[123]
371(5S,6S,7R,10R)-16,17-bis-nor-7α-hydroxy-18,6-epoxyferruginolP. abrotanoidesroots[48]
372(5S,6S,7S)-16,17-bis-nor-7α-hydroxyferruginol-18,6-olideP. abrotanoidesroots[48]
373przewalskinS. digitaloidesroots[122]
374(5S,6S,7R,10R)-16,17-bis-nor-6β-hydroxy-18,7-epoxyferruginolP. abrotanoidesroots[48]
375(5R,7S,10R)-3-oxoprzewalskinP. abrotanoidesroots[48]
376grandifolia CP. abrotanoidesroots[48]
3772-isopropyl-8-methylphenan-threne-3,4-dioneS. miltiorrhizacell cultures[44]
378(5S,10R)-16,17-bis-nor-pisiferanolP. abrotanoidesroots[48]
3795S-1,2-dihydroheudelotinolT. chinensisstem bark and wood[124]
380deoxofavelineP. abrotanoidesroots[48]
381trigonostemon AT. chinensisstem bark and wood[124]
382trigonostemon BT. chinensisstem bark and wood[124]
3835S-heudelotinoneT. chinensisstem bark and wood[124]
384trigonostemon CT. chinensisstem bark and wood[124]
385trigonostemon DT. chinensisstem bark and wood[124]
386heudelotinoneT. howiistems and leaves[124]
387norperovskatoneP. atriplicifoliaflowers[125]
388salvioloneP. abrotanoidesroots[48]
389epi-castanolideP. abrotanoidesroots[48]
390cryptoacetalideS. miltiorrhizacell cultures[44]
391epicryptoacetalideS. miltiorrhizacell cultures[44]
392epi-danshenspiroketallactone AS. miltiorrhizacell cultures[44]
393tanshinone IS. digitaloidescell cultures[56,122]
394dihydrotanshinone IS. miltiorrhizacell cultures[56]
395dihydrotanshinoneS. digitaloidesroots[122]
396dihydroisotanshinone IS. miltiorrhizacell cultures[44]
397tanshinketolactoneS. miltiorrhizacell cultures[44]
398trigonostemon GT. chinensisstem bark[126]
399trigonostemon HT. chinensisstem bark[126]
400flueggenoid ES. miltiorrhizaroots and rhizomes[127]
40112-hydroxy-20(10→5)-abeo-4,5-seco-podocarpa-5(10),6,8,11,13-pentaen-3-oneS. miltiorrhizaroots and rhizomes[127]
4023β,12-dihydroxy-13-methylpodocarpa-6,8,11,13-tetraeneS. digitaloidesroots[128]
4033α-hydroxy-12-methoxy-13-methyl-ent-podocar-6,8,11,13-tetraeneS. digitaloidesroots[128]
40412-hydroxy-13-methyl-ent-podocarp-6,8,11,13-tetraen-3-oneS. digitaloidesroots[128]
40512-methoxy-13-methyl-ent-podocarp-6,8,11,13-tetraen-3-oneS. digitaloidesroots[128]
406jatromulone AT. chinensisstem bark and wood[129]
407gossweiloneT. chinensisstem bark and wood[129]
408flueggenoid CS. miltiorrhizaroots and rhizomes[127]
4093β,12-dihydroxy-13-methylpodocarpane-8,10,13-trieneT. chinensisstem bark and wood[129]
4103β,12-dihydroxy-13-methylpodocarpa-8,11,13-trieneS. digitaloidesroots[128]
4113α-hydroxy-12-methoxy-13-methyl-ent-podocarpa-6,8,11,13-tetraeneS. miltiorrhizaroots and rhizomes[127]
4123α,12-dihydroxy-13-methyl-ent-podocarpa-6,8,11,13-tetraeneS. miltiorrhizaroots and rhizomes[127]
4136β,12-dihydroxy-13-methyl-ent-podocarp-8,11,13-trien-3-oneS. digitaloidesroots[128]
414rel-(5β,8α,10α)-8-hydroxy-13-methylpodocarpa-9(11),13-diene-3,12-dioneA. moluccanustwigs[130]
4153α-hydroxy-13-hydroxymethyl-12-methoxy-ent-podocarp-6,8,11,13-tetraeneS. digitaloidesroots[128]
4163β-hydroxy-13-hydroxymethyl-12-methoxy-ent-podocarp-6,8,11,13-tetraeneS. digitaloidesroots[128]
41710α,12-dihydroxy-13-methyl-9(10→20)-abeo-ent-podocarpa-6,8,11,13-tetraen-3-oneS. miltiorrhizaroots and rhizomes[127]
418flueggenoid AS. miltiorrhizaroots and rhizomes[127]
419flueggenoid.BS. miltiorrhizaroots and rhizomes[127]
420flueggenoid DS. miltiorrhizaroots and rhizomes[127]
4216,12-dihydroxy-13-methyl-7-oxo-ent-podocarpa-5,8,11,13-tetraeno-20,3α-lactoneS. miltiorrhizaroots and rhizomes[127]
4223α,20-epoxy-3β-hydroxy-12-methoxy-13-methyl-ent-podocarp-8,11,13-trieneS. digitaloidesroots[128]
4237α,20-epoxy-3α-hydroxy-12-methoxy-13-methyl-ent-podocarp-8,11,13-trieneS. digitaloidesroots[128]
4243β-hydroxymakilactone AP. macrophyllusroots[131]
4252β-hydroxymakilactone AP. macrophyllusroots[131]
426inumakilactone AP. macrophyllusroots[131]
427makilactone MP. macrophyllusroots[131]
428inumakilactone BP. macrophyllusroots[131]
429(4S,5R,9S,10R)-methyl-19-hydroxy-15,16-dinorlabda-8(17),11E-dien-13-oxo-18-oateA. macrophylla-[6]
430pseudosinin CP. sinensisneedles and twigs[132]
431pseudosinin BP. sinensisneedles and twigs[132]
4328α-hydroxy-11(E)-en-13-oxo-14,15-dinorlabdan-18-oicS. mirzayanii-[133]
433austroinulinS. rebaudianaaerial parts[134]
434sterebin AS. rebaudianaaerial parts[134]
435sterebin DS. rebaudianaaerial parts[134]
436hedychin AH. forrestiirhizomes[12]
437hedychin FH. forrestiirhizomes[12]
438lyonivaloside IL. ovalifoliatwigs and leaves[135]
439dryperrein AD. perreticulatatwigs and leaves[136]
440dryperrein BD. perreticulatatwigs and leaves[136]
441dryperrein CD. perreticulatatwigs and leaves[136]
442dryperrein DD. perreticulatatwigs and leaves[136]
443(2S,3R,5S,10R)-2,3-dihydroxy-15,16-dinor-ent-pimar-8,11,13-trieneF. fimbriataaerial parts[39]
444(2S,3R,5S,10R)-2-acetoxy-3-hydroxy-15,16-dinor-ent-pimar-8,11,13-trieneF. fimbriataaerial parts[39]
445flickinflimilin BF. fimbriataleaves[137]
446flickinflimilin AF. fimbriataleaves[137]
447norflickinflimiod EF. fimbriatastems[40]
448norflickinflimiod FF. fimbriatastems[40]
4494β-carbometoxy-14-methyltotarolE. suaveolensstems[138]
450aspergiloid IAspergillus sp.culture broth[139]
451aleuritinA. moluccanustwigs[130]
452salviprolin AS. przewalskiiroots[140]
453salviprolin BS. przewalskiiroots[140]
454commiphorane AR. Commiphora-[141]
455commiphorane BR. Commiphora-[141]
456commiphoranoid CR. Commiphora-[142]
457commiphorane KR. Commiphora-[143]
4587β-hydroxynagilactone DP. nagiseeds[144]
4593-epi-15-hydroxynagilactoneDP. nagiseeds[144]
460nagilactone KP. nagiseeds[144]
461nagilactone L P. nagiseeds[144]
4623β-hydroxynagilactone LP. nagiseeds[144]
4632β-hydroxynagilactone LP. nagiseeds[144]
4641α-chloro-2β,3β,15-trihydroxynagilactoneP. nagiseeds[144]
46515-hydroxynagilactone LP. nagiseeds[144]
466cephanolide AC. sinensis-[75,145]
467cephanolide BC. sinensis-[75,145]
468cephanolide CC. sinensis-[75,145]
469sinuhirtone AS. hirta-[118]
Table 11. Chemical constituents of C17 norditerpenes.
Table 11. Chemical constituents of C17 norditerpenes.
No.NamePlant SourcePlant OrganRef.
470baccaramione AB. ramifloratwigs[146]
471baccaramione BB. ramifloratwigs[146]
472baccaramione CB. ramifloratwigs[146]
473baccaramione DB. ramifloratwigs[146]
474euphorane BE. dracunculoideswhole plants[52]
47512-hydroxy-16,17-bis-nor-simonelliteP. abrotanoidesroots[48]
476nimbidiolP. abrotanoidesroots[48]
47716,17-bis-nor-multicaulineP. abrotanoidesroots[48]
478salyunnanin DS. yunnanensisroots[121]
479salyunnanin ES. yunnanensisroots[121]
480(5S,8R,10S)-20-nor-militibetin AP. abrotanoidesroots[48]
481sessilifol PC. sessilifolius-[59]
482sessilifol QC. sessilifolius-[59]
483(5S,7S,10R)-7-deoxy-7,18-epoxynimbidiolC. sessilifolius-[48]
484dihydroneotanshinlactoneS. digitaloidesroots[122]
485neotanshinlactoneS. digitaloidesroots[122]
486danshenspiroketallactoneS. digitaloidesroots[122]
487rubesanolides FI. rubescensleaves[57]
488rubesanolide GI. rubescensleaves[57]
489pinuyunnanacid OP. yunnanensisresins[147]
490flueggrene AF. virosaroots[148]
491flueggrene BF. virosaroots[148]
492epi-6-oxonimbidiolC. angulatusroot bark and leaves[149]
493(+)-7-deoxynimbidiolC. sessilifolius-[150]
494celaphanol AC. orbiculatus-[150,151]
495angulatusphenol CC. angulatusroot bark and leaves[149]
496angulatusphenol DC. angulatusroot bark and leaves[149]
497angulatusphenol EC. angulatusroot bark and leaves[149]
4985-nimbidiolC. angulatusroot bark and leaves[149]
499margosoloneC. angulatusroot bark and leaves[149]
500demethylnimbionolC. angulatusroot bark and leaves[149]
50113,15-dihydroxypodocarpa-8,11,13-trieneP. banksiana Lambbuds[152]
502(3R,5S,9R,10S)-3-hydroxy-ent-podocarpa-8(14)-ene-13-oneC. sessilifolius-[153]
503(4R,5R,9R,10R,13S)-13-hydroxypodocarp-8(14)-en-19-oic acidA. macrophylla-[6]
504(4R,5R,9R,10R,13R)-13-hydroxypodocarp-8(14)-en-19-oic acidA. macrophylla-[6]
50513-oxo-podocarp-8(14)-en-19-oic acidA. macrophylla-[6]
506angulatusphenol AC. angulatusroot bark and leaves[149]
507angulatusphenol BC. angulatusroot bark and leaves[149]
5087′,8′-threo-guaiacylglycerol-α,γ-O-nimbidiol dietherC. sessilifolius-[150]
509(M)-bicelaphanol AC. orbiculatusroot bark[151,154]
510(P)-bicelaphanol AC. orbiculatusroot bark[151,154]
511angulatusdiphenol AC. angulatusroot bark and leaves[149]
512trolliusditerpenoside NT. chinensisflowers[155]
513enbepeanone AA. grandiflflorum-[156]
514caesalminaxin MC. minaxseeds[157]
515populusoneP. euphraticaexudates[158]
516pharicusin BI. pharicusaerial
parts
[159]
517(±)-8,13-secoepicavernosineCacospongia sp.-[160]
518(+)-8,13-secocavernosineCacospongia sp.-[160]
519(−)-8,13-secocavernosineCacospongia sp.-[160]
520(+)-cavernosineCacospongia sp.-[160]
521(−)-cavernosineCacospongia sp.-[160]
Table 12. Chemical constituents of C16 norditerpenes.
Table 12. Chemical constituents of C16 norditerpenes.
No.NamePlant SourcePlant OrganRef.
522acrostalic acidP. sinensisneedles and twigs[132,161]
523LL-Z1271-βA. wentii EN-48-[161,162]
52413,14,15,16-tetranorlabda-8(17)-en-12-carboxylic acidE. verrucosus-[4]
5253α-hydroxy-8α-acetoxy-13,14,15,16-tetranorlabdan-12-oeic acidS. aethiopisaerial parts[163]
526avxanthin AA. villosumrhizomes[164]
527elettarin AE. cardamomumfruits[165]
528elettarin BE. cardamomumfruits[165]
529asperolide CA. wentii EN-48-[162]
530botryosphaerin BP. sinensisneedles and twigs[162]
531asperolide AA. wentii EN-48-[162,166]
532asperolide BA. wentii EN-48-[162,166]
533asperolide EA. wentii EN-48culture extract[166]
534tetranorditerpenoid derivativeA. wentii EN-48-[162]
535wentilactone AA. wentii EN-48-[162]
536wentilactone BA. wentii EN-48culture extract[162]
53713,14,15,16-tetranorlabd-7-en-19,6β:12,17-diolideP. sinensisneedles and twigs[161]
538botryosphaerin GP. sinensisneedles and twigs[161]
539botryosphaerin HP. sinensisneedles and twigs[161]
5403α,10β-dimethyl-1,2,3,3a,5a,7,10b,10c-octahydro-5,8-dioxa-acephenanthrylene-4,9-dioneP. sinensisneedles and twigs[161]
541botryosphaerin AP. sinensisneedles and twigs[161]
5421-naphthaleneacetic-7-oxo-1,2,3,4,4a,7,8,8a-octahydro1,2,4a,5-tetramethyl acidP. longifolialeaves[167]
543methyl-7-oxo-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-1-naph-thaleneacetateP. longifolialeaves[167]
544castanol CS. castaneaflowers[50]
545sinubatin AS. nanolobata-[168]
546norcrocrassinoneC. crassifoliusroots[169]
547norcrassin AC. crassifoliusroots[170]
548(3aR,5S,5aR,6R,9aS,9bR)-methyl5-hydroxy-3α,6,9α-trimethyl-2oxododecahydronaphtho[21-b]furan-6-carboxylateS. sahendicaleaves[171]
549acerolanin AM. emarginataaerial parts[172]
550acerolanin BM. emarginataaerial parts[172]
551acerolanin CM. emarginataaerial parts[172]
552trigonochinene ET. flavidusstems[173]
553vibsanolide FV. odoratissimumleaves[174]
554vibsanolide GV. odoratissimumleaves[174]
555trigoflavidol AT. flavidusstems[173]
556trigoflavidol BT. flavidusstems[173]
557neoboutomanninT. flavidusstems[173]
Table 13. Cytotoxic activity of norditerpenes.
Table 13. Cytotoxic activity of norditerpenes.
NameExtraction SolventCancer TypesCancer CellsActivities (IC50)Ref.
tinocapillin A (38)95% EtOHliver cancer
cervical cancer
HepG-2
Hela
9.9 ± 1.5 μM
9.7 ± 3.4 μM
[20]
tinocallone C (40)95% EtOHlung cancerA54914.0 ± 0.9 μM[20]
tinocapillin B (41)95% EtOHlung cancer
liver cancer
cervical cancer
A549
HepG-2
Hela
9.6 ± 1.2 μM
10.1 ± 1.1 μM
12.0 ± 1.0 μM
[20]
icacinlactone F (76)80% aqueous MeOHbreast cancerMDA-MB-435
MDA-MB-231
6.16 μM
8.94 μM
[28]
asperether A (101)EtOAcbreast duct cancerT-47D10 μM[38]
asperether B (102)EtOAcbreast cancer
liver cancer
MCF-7
SMMC-7721
14 μM
12 μM
[38]
cryptotanshinone (148)80% EtOHcolon cancer
gastric cancer
lung cancer
HCT-8
BGC-823
A549
3.9 μM
8.3 μM
2.6 μM
[44]
euphorane C (139)95% EtOHliver cancerHepG-26.95 μM[52]
methyltanshinoate (150)acetoneliver cancer
lung cancer
breast cancer
colon cancer
SMMC-7721
A549
MCF-7
SW-480
4.07 μM
5.26 μM
3.44 μM
6.35 μM
[50]
amentotaxin C (174)MeOHcervical cancer
lung cancer
breast cancer
ovarian cancer
liver cancer
colon cancer
HeLa
A549
MDA-MB-231
SKOV3
Huh-7
HCT-116
5.1 μM
9.8 μM
6.8 μM
2.9 μM
4.1 μM
1.9 μM
[65]
20-oxohainanolidol (205)95% EtOHleukemia
lung cancer
HL-60
A549
0.77 ± 0.05 μM
1.129 ± 0.057 μM
[77]
cephinoid H (208)MeOHlung cancer
cervical cancer
gastric cancer
A549
HeLa
SGC-7901
0.10 μM
0.13 μM
0.14 μM
[78]
10-hydroxyharringtonolide (223)-lung cancer
oral epidermoid cancer
leukemia
colon cancer
A549
KB

HL-60
HT-29
3.683 ± 0.947 μM
2.325 ± 0.040 μM

1.038 ± 0.002 μM
2.108 ± 0.108 μM
[79]
6-en-harringtonolide (229)-lung cancer
oral epidermoid cancer
leukemia
colon cancer
A549
KB

HL-60
HT-29
7.804 ± 3.797 μM
5.115 ± 0.148 μM

2.319 ± 0.247 μM
4.890 ± 0.622 μM
[79]
tanshinone I (393)acetoneleukemia
lung cancer
breast cancer
pancreatic cancer
HL-60
A549
SK-BR-3
PANC-1
3.19 μM
6.64 μM
3.40 μM
3.67 μM
[56,122]
dihydroisotanshinone I (394)80% EtOHlung cancerA5492.7 μM[44]
dihydrotanshinone (395)acetoneleukemia
liver cancer
lung cancer
breast cancer
pancreatic cancer
HL-60
SMMC-7721
A549
SK-BR-3
PANC-1
2.36 μM
3.03 μM
5.15 μM
3.97 μM
2.75 μM
[122]
3β-hydroxymakilactone A (424)acetonegastric cancer
breast cancer
liver cancer
pancreatic cancer
AGS
MDA-MB-231
HepG-2
PANC-1
0.88 ± 0.01 μM
5.46 ± 1.12 μM
5.56 ± 1.73 μM
1.35 ± 0.08 μM
[131]
2β-hydroxymakilactone A (425)MeOHcervical cancer
gastric cancer
breast cancer
Hela
AGS
MDA-MB-231
0.87 ± 0.04 μM
0.38 ± 0.03 μM
4.23 ± 2.06 μM
[131]
inumakilactone A (426)MeOHcervical cancer
gastric cancer
breast cancer
Hela
AGS
MDA-MB-231
1.77 ± 0.69 μM
1.33 ± 0.05 μM
2.98 ± 1.06 μM
[131]
inumakilactone B (428)MeOHcervical cancer
gastric cancer
breast cancer
liver cancer
pancreatic cancer
Hela
AGS
MDA-MB-231
HepG-2
PANC-1
0.62 ± 0.18 μM
0.55 ± 0.21 μM
0.66 ± 0.15 μM
3.54 ± 1.45 μM
8.51 ± 2.65 μM
[131]
dryperrein C (441)95% EtOHlung cancer
leukemia
A549
HL-60
8.50 μM
1.95 μM
[136]
dryperrein D (442)95% EtOHleukemiaHL-601.37 μM[136]
salyunnanin E (479)acetonecervical cancerHeLa0.86 μM[121]
neotanshinlactone (485)acetonebreast cancerSK-BR-34.07 μM[122]
Table 14. Anti-inflammatory activity of norditerpenes.
Table 14. Anti-inflammatory activity of norditerpenes.
NamePathwaysActivities (IC50)Ref.
callinteger B (31)Inhibited IL-1β secretion and maturations of caspase-1 in a dose-dependent manner9.9 ± 1.5 μM[15]
18(4→14), 19(4→8)-bis-abeo-nor-isopimarane-1,5-diene-3-yl-3β-methoxy propyl pentanoate (82)Inhibited of pro-inflammatory cyclooxygenases (COX-2, COX-1) and 5-lipoxygenase (5-LOX) enzymes0.75 mg/mL[30]
6-((E)-12-(furan-13-yl)-10-methylpent-10-en-9-yl)-6,7,8,8atetrahydro-3H-isochromen-1-(5H)-one (279)Inhibited of 5-LOX enzymes0.92 mg/mL[89]
(2S,3R,5S,9S,10S,13S)-2-O-E-cinnamoyl-3-hydroxy-16-nor-ent-pimar-8(14)-en-15-oic acid (110)Inhibited the NF-κB pathway in LPS-stimulated RAW264.7 cells14.7 ± 1.8 μM[39]
cephalotanin A (190)Evaluated in an NF-kB pathway luciferase assay for inhibitory effects4.12 ± 0.61 µM[73]
salvialba acid (163)Lowered the levels of ICAM-1 and VCAM-1 in HAECs induced by TNF-α20 µM caused significant reductions in cell viability; 0.05, 0.5, 5, and 10 µM did not affect cell viability[60]
cephinoid H (208)Inhibited TNF-α-induced NF-κB activation0.10 μM[78]
5-epi-sinuleptolide (255)Activated ARE expression and inhibited NO production and NF-κB expression in RAW264.7 macrophage cells5.6 ± 0.2 µM
57.9 ± 0.4 µM
28.6 ± 0.2 µM
[82,86]
sinuleptolide (261)Activated ARE expression and inhibited NO production and NF-κB expression in RAW264.7 macrophage cells3.6 ± 0.3 µM
56.0 ± 0.3 µM
25.1 ± 0.5 µM
[82,86]
fragilolide A (269)Activated ARE expression and inhibited NO production and NF-κB expression in RAW264.7 macrophage cells1.2 ± 0.2 µM
27.8 ± 0.6 µM
12.5 ± 0.2 µM
[82,86]
celaphanol A (494)Demonstrated moderate inhibitory activities against NF-κB activation in RAW264.7 macrophages15 μM[149,150,151]
angulatusphenol C (495)Demonstrated moderate inhibitory activities against NF-κB activation in RAW264.7 macrophages25 μM[149,150,151]
angulatusphenol D (496)Demonstrated moderate inhibitory activities against NF-κB activation in RAW264.7 macrophages19 μM[149,150,151]
demethylnimbionol (500)Demonstrated moderate inhibitory activities against NF-κB activation in RAW264.7 macrophages4 μM[149,150,151]
15-nor-14-oxolabda-8(17),13(16)-dien-19-oic acid (8)Inhibited LPS-induced nitric oxide (NO) production. Attenuated the expression of iNOS and COX-2 at both mRNA and protein levels by inhibiting the LPS-induced degradation of I-κBα and the activation of NF-κB, as well as reducing ERK phosphorylation3.56 μM[7]
ebractenoid A (324)Inhibited the production of NO in LPS-induced macrophages7.50 μM[113]
ebractenoid B (325)Inhibited the production of NO in LPS-induced macrophages6.49 μM[113]
hedychin F (437)Inhibited the production of NO in LPS-induced macrophages21.0 μM[12]
flickinflimilin B (445)Inhibited the production of NO and TNF-α in LPS-induced macrophages<25.0 μM[40,137]
flickinflimilin A (446)Inhibited the production of NO and TNF-α in LPS-induced macrophages<25.0 μM[40,137]
norflickinflimiod E (447)Inhibited the production of NO and TNF-α in LPS-induced macrophages<25.0 μM[40,137]
norflickinflimiod F (448)Inhibited the production of NO and TNF-α in LPS-induced macrophages<25.0 μM[40,137]
przewalskin (373)Inhibited iNOS expression in J774A.1 macrophages stimulated with LPS-[48]
(5S,6S,7R,10R)-16,17-bis-nor-6β-hydroxy-18,7-epoxyferruginol (374)Inhibited iNOS expression in J774A.1 macrophages stimulated with LPS-[48]
(5S,10R)-16,17-bis-nor-pisiferanol (378)Inhibited iNOS expression in J774A.1 macrophages stimulated with LPS-[48]
(5S,8R,10S)-20-nor-militibetin A (480)Inhibited iNOS expression in J774A.1 macrophages stimulated with LPS-[48]
(+)-7-deoxynimbidiol (493)Inhibited LPS-stimulated NO releases and pro-inflammatory mediators and suppressed iNOS and COX-2 expressions to prevent NO production4.9 μM[139]
7′,8′-threo-guaiacylglycerol-α,γ-O-nimbidiol diether (508)Inhibited LPS-stimulated NO releases and pro-inflammatory mediators, suppressed iNOS and COX-2 expressions to prevent NO production12.6 μM[139]
13-epi-scabrolide C (263)Inhibited the production of IL-12 and IL-6 in LPS-stimulated BMDCs5.30 ± 0.21 μM
13.12 ± 0.64 μM
[82]
scrodentoid H (307)Reduced LPS-induced inflammation and inhibited the JNK/STAT3 pathway in macrophages-[105]
scrodentoid I (308)Reduced LPS-induced inflammation and inhibited the JNK/STAT3 pathway in macrophages-[105]
sinusiaetone A (316)Inhibited LPS-induced inflammation in BV-2 microglia at a concentration of 20 μM and decreased the mRNA levels of pro-inflammatory cytokines IL-6 and IL-1β-[109]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zeng, N.; Zhang, Q.; Yao, Q.; Fu, G.; Su, W.; Wang, W.; Li, B. A Comprehensive Review of the Classification, Sources, Phytochemistry, and Pharmacology of Norditerpenes. Molecules 2024, 29, 60. https://doi.org/10.3390/molecules29010060

AMA Style

Zeng N, Zhang Q, Yao Q, Fu G, Su W, Wang W, Li B. A Comprehensive Review of the Classification, Sources, Phytochemistry, and Pharmacology of Norditerpenes. Molecules. 2024; 29(1):60. https://doi.org/10.3390/molecules29010060

Chicago/Turabian Style

Zeng, Ni, Qiongdan Zhang, Qingying Yao, Gang Fu, Wei Su, Wei Wang, and Bin Li. 2024. "A Comprehensive Review of the Classification, Sources, Phytochemistry, and Pharmacology of Norditerpenes" Molecules 29, no. 1: 60. https://doi.org/10.3390/molecules29010060

Article Metrics

Back to TopTop