Next Article in Journal
Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Gene Family Involved in Wood Formation and Response to Exogenous Hormone Treatment in Populus trichocarpa
Next Article in Special Issue
The Integrated mRNA and miRNA Approach Reveals Potential Regulators of Flowering Time in Arundina graminifolia
Previous Article in Journal
Improvement of Seed Germination under Salt Stress via Overexpressing Caffeic Acid O-methyltransferase 1 (SlCOMT1) in Solanum lycopersicum L.
Previous Article in Special Issue
A Comparison of the Flavonoid Biosynthesis Mechanisms of Dendrobium Species by Analyzing the Transcriptome and Metabolome
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Active Compounds with Medicinal Potential Found in Maxillariinae Benth. (Orchidaceae Juss.) Representatives—A Review

by
Monika M. Lipińska
1,2,*,
Łukasz P. Haliński
3,
Marek Gołębiowski
3 and
Agnieszka K. Kowalkowska
4
1
Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
2
Foundation Polish Orchid Association, 81-825 Sopot, Poland
3
Laboratory of Analysis of Natural Compounds, Department of Environmental Analytics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
4
Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2023, 24(1), 739; https://doi.org/10.3390/ijms24010739
Submission received: 28 November 2022 / Revised: 19 December 2022 / Accepted: 20 December 2022 / Published: 1 January 2023
(This article belongs to the Special Issue Orchid Biochemistry)

Abstract

:
Orchids are widely used in traditional medicine for the treatment of a whole range of different health conditions, and representatives of the Neotropical subtribe Maxillariinae are not an exception. They are utilized, for instance, for their spasmolytic and anti-inflammatory activities. In this work, we analyze the literature concerning the chemical composition of the plant extracts and secretions of this subtribe’s representatives published between 1991 and 2022. Maxillariinae is one of the biggest taxa within the orchid family; however, to date, only 19 species have been investigated in this regard and, as we report, they produce 62 semiochemicals of medical potential. The presented review is the first summary of biologically active compounds found in Maxillariinae.

1. Introduction

Subtribe Maxillariinae Benth. counting ca. 420 [1] to 750 taxa [2] is one of the richest species groups within the orchid family. It is also one of the most controversial since its taxonomy has been under ongoing discussion for the past 200 years. According to different authors, it has been divided into practically a single genus [3], through 17 [4,5] to 36 genera [6], with the genus Maxillaria Ruiz & Pav. always being the core of the subtribe. Its distribution range is exclusively Neotropical as it covers both Central and South America (with the Caribbean). A large number of taxa and a wide distribution range make Maxillariinae an important Neotropical flora compound and an excellent candidate for further phytochemical studies with potential commercial outcomes.
Studies conducted since the middle of the 20th century revealed a great diversity of labellar epidermis in many groups of orchids. The first attempts to investigate the micromorphological features in Maxillaria sensu lato were conducted in 1998 [7], and, since then, several dozen papers have been published (e.g., [8,9,10,11,12,13]). Glabrous labella are not common in Maxillaria and tend to occur mainly in species assigned to the M. cucullata alliance [14]. The labellar papillae and trichomes of Maxillaria show great diversity as they may be conical, obpyriform, villiform, fusiform, or clavate. Labellar papillae may contain protein, lipids, and starch. Many papillae contain pigment or act as osmophores, which may play a role in attracting insects. Some of them may have a protective role in preventing desiccation [14]. Papillae are largely responsible for the production of labellar secretions that may have different chemical compositions. These secretions may contain active compounds of potential medical importance.
While preparing the presented review we analyzed the literature published between 1991 and 2022 that concerned the chemical composition of extracts and labellar secretions produced by the Maxillariinae subtribe members. To date, only several species have been investigated in this regard: Brasiliorchis gracilis (G. Lodd.) R.B. Singer, S. Koehler & Carnevali [15] (Figure 1a), B. marginata (Lindl.) R.B. Singer, S. Koehler & Carnevali [15] (Figure 1b,c), B. picta (Hook.) R.B. Singer S. Koehler & Carnevali [15,16,17,18] (Figure 1d), B. porphyrostele (Rchb. f.) R.B. Singer, S. Koehler & Carnevali [19] (Figure 1e,f), B. schunkeana (Campacci & Kautsky) R.B. Singer, S. Koehler & Carnevali [20] (Figure 2a), Chelyella densa (Lindl.) Szlach. & Sitko [21], Ch. jenischiana (Rchb. f.) Szlach. & Sitko [15] (Figure 2b), Heterotaxis discolor (G. Lodd. ex Lindl.) Ojeda & Carnevali (Lipińska & Haliński, unpbl. data) (Figure 2c,d), H. superflua (Rchb. f.) F. Barros [22], Maxillaria nigrescens Lindl. [17] (Figure 2e), M. splendens Poepp. & Endl. (Lipińska & Haliński, unpbl. data) (Figure 3b), Maxillariella sanguinea (Rolfe) M.A. Blanco & Carnevali [23] (Figure 3a), M. tenuifolia (Lindl.) M.A. Blanco & Carnevali [16,17,24,25,26] (Figure 3c), M. variabilis (Bateman ex Lindl.) M.A. Blanco & Carnevali [17,23] (Figure 3d), M. vulcanica (F. Lehm. & Kraenzl.) M.A. Blanco & Carnevali [23] (Figure 3e), Mormolyca ringens (Lindl.) Schltr. [27] (Figure 2f), Trigonidium obtusum Lindl.[15], Trigonidium cf. turbinatum Rchb. f. [15], and Xanthoxerampellia rufescens (Lindl.) Szlach. & Sitko [15, Lipińska & Haliński, unpbl. data] (Figure 3f) (classification sensu Szlachetko [6]).
Orchids are widely used in traditional medicine for the treatment of a whole range of different health conditions: skin issues, infectious diseases, digestive problems, respiratory issues, reproduction malfunctions, circulation and heart problems, tumors, pain, and fever. Indeed, throughout the ages, orchid extracts were attributed to some activities such as diuretic, anti-inflammatory, or antimicrobial. For example, Ecuadorian healers (los curanderos) use stem and flower extracts of Epidendrum secundum Jacq. to heal nervous disorders and liver diseases [28]. Stanhopea anfracta Rolfe is utilized in treating cough and lung diseases thanks to the presence of eucalyptol in its flowers [28]. Some species are used as emetics, aphrodisiacs, vermifuges, bronchodilators, and sex stimulators or to treat scorpion stings and snake bites [29]. Representatives of Maxillaria sensu lato are not an exception and are also widely used in traditional medicine for instance for their antispasmodic and anti-inflammatory activities [30].
Within the compounds detected with the use of gas chromatography/mass spectrometry (GC–MS) and liquid chromatography/tandem mass spectrometry (LC–MS/MS) in the tissues of different Maxillariinae representatives (mainly lip secretions), several of them have already been investigated for their medicinal uses (see Table 1). The presented work aimed to summarize published data on semiochemicals that have therapeutic potential and that could be sourced from representatives of Maxillariinae. Additionally, we add information on examples of other sources of these substances (see Appendix A). We hope that this review will lead specialists in the field to design further studies to better understand and exploit orchids, especially Maxillariinae, as sources of biologically active compounds.

2. Active Compounds Found in Maxillariinae

2.1. Aldehydes

  • Nonanal
(Pelargonaldehyde, 1-nonanal, nonanaldehyde, pelargonic aldehyde, nonylic aldehyde, n-nonanal, 9Ald)
CAS Number: 124-19-6
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata [15], B. picta [18], Chelyella jenischiana [15], Heterotaxis discolor, Maxillaria splendens (Lipińska & Haliński, unpbl. data), Maxillariella tenuifolia [25], Mormolyca ringens [27], Trigonidium cf. turbinatum [15], Xanthoxerampellia rufescens [15], Lipińska & Haliński, unpbl. data.
Activity: antidiarrheal activity [31]; antimicrobial activity against Gram-positive and Gram-negative bacteria; antifungal activity [32].

2.2. Aromatics

  • Benzaldehyde
(Benzoic aldehyde, phenylmethanal, benzenecarboxaldehyde, benzenecarbonal, benzene carbaldehyde, benzaldehyde FFC, benzoic acid aldehyde)
CAS Number: 100-52-7
Occurrence in Maxillariinae: Brasiliorchis picta [16,17,18], Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17], Xanthoxerampellia rufescens [15].
Activity: antitumor activity [33]; antibacterial activity against Staphylococcus aureus; toxic action against Drosophila melanogaster [34].
2.
Benzoic acid, 3-methoxy-4-hydroxy
(Vanillic acid, p-Vanillic acid, Acide vanillique, 3-Methoxy-4-hydroxybenzoic acid, Vanillate, VA, VAN)
CAS Number: 121-34-6
Occurrence in Maxillariinae: Maxillariella sanguinea [23], M. tenuifolia [26], M. variabilis [23].
Activity: antioxidative and antimicrobial activity [35,36]; beneficial effect on DSS-induced ulcerative colitis, usefulness in the regulation of chronic intestinal inflammation and effectiveness in the management of immune or inflammatory responses [37]; immunomodulating activities and suppressing effect on hepatic fibrosis in chronic liver injury [38]; neuroprotective agent in the treatment of vascular dementia and cerebrovascular insufficiency states, inflammation, and neurological diseases (e.g., Alzheimer’s disease and Parkinson’s Disease) [39]; significant α-glucosidase-inhibitory activity [26].
3.
Benzoic acid, 4-ethoxy-, ethyl ester
(Ethyl 4-ethoxybenzoate; benzoic acid, 4-ethoxy-, ethyl ester; 4-ethoxybenzoic acid ethyl ester; 4-ethoxy ethylbenzoate; benzoic acid, p-ethoxy-, ethyl ester; ethyl p-ethoxybenzoate; ethyl-4-ethoxybenzoate; PEEB; Ethyl para-ethoxybenzoate)
CAS Number: 23676-09-7
Occurrence in Maxillariinae: Maxillariella sanguinea, M. vulcanica [23].
Activity: antimicrobial and preservative properties [40]; antioxidant and anti-inflammatory properties [41].
4.
Butylated hydroxytoluene
(2,6-Di-tert-butyl-4-methylphenol; butylhydroxytoluene; 2,6-di-tert-butyl-p-cresol; 2,6-di-t-butyl-4-methylphenol; BHT; DBPC)
CAS Number: 128-37-0
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata, Chelyella jenischiana, Trigonidium cf. turbinatum [15]
Activity: antioxidant activity and antiatherogenic effect [42]; induced resistance against Botryosphaeria dothidea [43].
5.
Cinnamic acid
(3-Phenyl-2-propenoic acid; trans-cinnamic acid; 3-phenylacrylic acid; (E)-cinnamic acid; trans-3-phenylacrylic acid; E-cinnamic acid; phenylacrylic acid; trans-cinnamate; (2E)-3-phenylprop-2-enoic acid)
CAS Number: 621-82-9
Occurrence in Maxillariinae: Maxillariella sanguinea [23], Mormolyca ringens [27].
Activity: antitumor activity [44]; cytotoxic, cytostatic, antiproliferative, antiangiogenic, and antileukemic; active against solid tumors; inhibit different enzymes, e.g., transglutaminase, aminopeptidase N, and histone deacetylase; cause DNA-damage [45]; inhibitory activity against several Gram-positive and Gram-negative bacteria; antiviral and antifungal properties [46]; antimicrobial [47].
6.
Cinnamic acid, 4-hydroxy-3-methoxy
(Ferulic acid; trans-ferulic acid; 4-hydroxy-3-methoxycinnamic acid; trans-4-hydroxy-3-methoxycinnamic acid; 3-(4-hydroxy-3-methoxyphenyl)acrylic acid; (E)-ferulic acid; ferulate; coniferic acid)
CAS Number: 537-98-4
Occurrence in Maxillariinae: Maxillariella sanguinea [23].
Activity: antioxidant potential [48]; antioxidant, antimicrobial, anti-inflammatory, anti-thrombosis, and anticancer activities; protection against coronary disease; lowers cholesterol and increases sperm viability ([49] and references therein); potent antitumor agent ([45] and references therein); potent function in muscle cell proliferation, differentiation, and development [50].
7.
Indole
(1H- indole)
CAS Number: 120-72-9
Occurrence in Maxillariinae: Brasiliorchis picta [17], Heterotaxis discolor (Lipińska & Haliński, unpbl. data), Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis [17].
Activity: antibacterial and anticancer activities [51].
8.
p-Anisaldehyde
(4-Methoxybenzaldehyde; anisic aldehyde; anisaldehyde; p-methoxybenzaldehyde; 4-anisaldehyde; benzaldehyde, 4-methoxy-; p-formylanisole)
CAS Number: 123-11-5
Occurrence in Maxillariinae: Brasiliorchis picta [17], Chelyella jenischiana [15], Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis [17].
Activity: acaricidal activity against Dermatophagoides farinae and D. pteronyssinus [52]; repellent effects [53]; antimicrobial [54]; antibacterial and antioxidant activity [55].

2.3. Carboxylic Acids

  • Azelaic acid
(Nonanedioic acid; anchoic acid; 1,7-heptanedicarboxylic acid; 1,9-nonanedioic acid; heptanedicarboxylic acid; n-nonanedioic acid)
CAS Number: 123-99-9
Occurrence in Maxillariinae: Brasiliorchis schunkeana [20], Chelyella jenischiana [15], Maxillariella sanguinea, M. variabilis, M. vulcanica [23].
Activity: bacteriostatic and bactericidal properties against a variety of aerobic and anaerobic microorganisms; effective in the treatment of comedonal acne and inflammatory (papulopustular, nodular, and nodulocystic) acne, as well as various cutaneous hyperpigmentary disorders characterized by hyperactive/abnormal melanocyte function, including melasma and, possibly, lentigo maligna; antiproliferative and cytotoxic effect on the human malignant melanocyte; preliminary findings indicate that it may arrest the progression of cutaneous malignant melanoma [56].
2.
Nonanoic acid
(Pelargonic acid; n-nonanoic acid; nonoic acid; nonylic acid; 1-octanecarboxylic acid; pelargon)
CAS Number: 112-05-0
Occurrence in Maxillariinae: Maxillariella sanguinea, M. vulcanica [23].
Activity: antibiofilm [57]; antifungal activity [57,58].
3.
Octanoic acid
(Caprylic acid; n-octanoic acid; octylic acid; n-caprylic acid; octoic acid; n-octylic acid; n-octoic acid; 1-heptanecarboxylic acid; enantic acid; octic acid)
CAS Number: 124-07-2
Occurrence in Maxillariinae: Maxillariella sanguinea, M. vulcanica [23].
Activity: effective in inactivating infant pathogens such as herpes simplex virus, respiratory syncytial virus, Haemophilus influenzae, and Group B streptococci [59]; bactericidal against the major bovine mastitis pathogens Streptococcus agalactiae, S. dysgalactiae, S. uberis, S. aureus, and E. coli [60]; potential fatty acid chemotherapeutic for glioblastoma [61]; antifungal properties [62].
4.
Suberic acid
(Octanedioic acid; 1,8-octanedioic acid; 1,6-hexanedicarboxylic acid; hexamethylenedicarboxylic acid; octane-1,8-dioic acid; 1,6-dicarboxyhexane; cork acid)
CAS Number: 505-48-6
Occurrence in Maxillariinae: Brasiliorchis schunkeana [20], Maxillariella sanguinea, M. variabilis, M vulcanica [23].
Activity: anti-photoaging agent [63].

2.4. Fatty Acids and Their Esters

  • Oleic acid
(9-Octadecenoic acid; (Z)-9-octadecenoic acid; cis-9-octadecenoic acid; oleate; (Z)-octadec-9-enoic acid; elaidoic acid; cis-oleic acid)
CAS Number: 112-80-1
Occurrence in Maxillariinae: Maxillariella sanguinea [23], M. tenuifolia [25], M. vulcanica [23].
Activity: inhibition of Streptococcus aureus primary adhesion [64]; strong antibacterial and antibiofilm activities against Porphyromonas gingivalis, a bacterial pathogen involved in chronic periodontitis; inhibits the early stage of biofilm formation by this organism [65]; cytotoxic to bacteria, with a potentially strong effect against Gram-negative bacterium Klebsiella pneumonia [66].
2.
Heptadecanoic acid
(Margaric acid; n-Heptadecanoic acid; n-heptadecylic acid; heptadecylic acid; n-heptadecoic acid)
CAS Number: 506-12-7
Occurrence in Maxillariinae: Maxillariella sanguinea [23].
Activity: a biomarker for coronary heart disease (CHD) risk and type 2 diabetes mellitus (T2D) risk; evidence for theories of alternate endogenous metabolic pathways [67].
3.
Hexadecanoic acid
(Palmitic acid; 1-pentadecanecarboxylic acid; pentadecanecarboxylic acid; hexadecanoate; hexaectylic acid; 1-hexyldecanoic acid; hexadecoic acid)
CAS Number: 57-10-3
Occurrence in Maxillariinae: Maxillariella sanguinea, M. variabilis, M. vulcanica [23].
Activity: anti-inflammatory activity [68]; anticancer cytotoxic potential [69]; potential antioxidant and anticancer activity [70].
4.
Tetradecanoic acid
(Myristic acid; n-tetradecanoic acid; n-tetradecan-1-oic acid)
CAS Number: 544-63-8
Occurrence in Maxillariinae: Maxillariella sanguinea, M. variabilis, M. vulcanica [23].
Activity: larvicidal and repellent activity against Aedes aegypti and Culex quinquefasciatus [71].
5.
Octadecanoic acid, methyl ester
(Methyl stearate; methyl octadecanoate; stearic acid methyl ester; methyl n-octadecanoate)
CAS Number: 112-61-8
Occurrence in Maxillariinae: Brasiliorchis schunkeana [20], Maxillariella variabilis, M. vulcanica [23].
Activity: antiviral activity [72].

2.5. Hydrocarbons

  • 4,8,8-Trimethyl-2-methylene-4-vinylbicyclo[5.2.0]nonane
(2-methylene-4,8,8-trimethyl-4-vinyl-bicyclo[5.2.0]nonane; Bicyclo[5.2.0]nonane, 2-methylene-4,8,8-trimethyl-4-vinyl-)
CAS Number: lack; PubChem CID: 564746
Occurrence in Maxillariinae: Maxillariella tenuifolia [25].
Activity: heat-clearing and detoxifying effects; potential anti-influenza activity [73].
2.
Heptacosane
(n-Heptacosane; 27Hy)
CAS Number: 593-49-7
Occurrence in Maxillariinae: Maxillariella sanguinea [23].
Activity: modulator of P-gp in a model of AML multidrug resistant HL-60R [74].

2.6. Ketones

  • 2-Pentadecanone
(Pentadecan-2-one; methyl tridecyl ketone)
CAS Number: 2345-28-0
Occurrence in Maxillariinae: Maxillariella tenuifolia [25].
Activity: antibacterial activity against Staphylococcus aureus; wound closure; collagen deposition; fibroblast proliferation effects; potency to be used as an active ingredient in the formulation of a diabetic wound-healing cream [75]; positive effect on the skin wound healing process; inhibition of ethanol-induced mucosal ulceration based on antioxidant activity; diminishing inflammation; upregulation of Hsp70 and downregulation of Bax protein in skin and stomach tissue; support collagen synthesis in skin tissue and mucus production in the stomach [76].
2.
2-Undecanone
(Undecan-2-one; methyl nonyl ketone; 2-hendecanone; undecanone; rue ketone; ketone, methyl nonyl)
CAS Number: 112-12-9
Occurrence in Maxillariinae: Maxillaria tenuifolia [24,25].
Activity: cytotoxicity against human carcinoma cells [77]; cytotoxicity against Leishmania protozoans [78]; causes plasma membrane malformations and intensive vacuolation of cytoplasm in Aspergillus flavus [79]; activity against Caenorhabditis elegans, Drosophila melanogaster, and Rhizoctonia solani [80]; can significantly reduce B[a]P-induced DNA damage and inflammation to prevent lung tumorigenesis by activating the Nrf2/HO-1/NQO-1 signaling pathway; may exert beneficial effects against cigarette smoke-induced lung inflammation and oxidative DNA damage in the human body and, thus, could be an effective candidate agent for the chemoprevention of lung cancer [81]; anti-inflammatory properties; can induce kidney inflammation; by inducing mitophagy, may play a protective role against renal inflammation [82]; insect repellent; antibiofilm and anti-hyphal potential [83].

2.7. Monoterpenes

  • 4-Terpineol
(4-Carvomenthenol; terpene-4-ol; terpinen-4-ol; 1-terpinen-4-ol; terpinenol-4; p-menth-1-en-4-ol; 1-p-menthen-4-ol)
CAS Number: 562-74-3
Occurrence in Maxillariinae: Heterotaxis discolor, Xanthoxerampellia rufescens (Lipińska & Haliński, unpbl. data).
Activity: anticancer effects in Hep-G2 [84]; activity against various microorganisms, such as Streptococcus aureus, Pseudomonas aeruginosa, and coagulase-negative staphylococci (CoNS); antifungal effect against fungi such as Candida spp., Saccharomyces cerevisiae, Trichophyton rubru, and Penicillium spp.; miticidal effect against Demodex mites, which play a role in blepharitis, unexplained keratitis, superficial corneal vascularization, marginal infiltration, phlyctenule-like lesions, nodular scarring, and rosacea; anti-inflammatory properties by suppressing superoxide production and proinflammatory cytokines ([85] and references therein).
2.
cis-β-Ocimene
((Z)-3,7-Dimethyl-1,3,6-octatriene; (3Z)-3,7-dimethylocta-1,3,6-triene; (Z)-beta-ocimene; beta-cis-ocimene; cis-3,7-dimethyl-1,3,6-octatriene)
CAS Number: 3338-55-4
Occurrence in Maxillariinae: Brasiliorchis gracilis [15], B. picta [16,17,18], Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17], M. variabilis [16].
Activity: potential as an antifungal agent against a wide spectrum of fungal species frequently implicated in human mycoses, particularly candidiasis, cryptococcosis, and dermatophytosis [86].
3.
Limonene
(1-Methyl-4-(1-methylethenyl)-cyclohexene; p-mentha-1,8-diene; 1,8-p-menthadiene; cyclohexene, 1-methyl-4-(1-methylethenyl)-; dipentene)
CAS Number: 138-86-3
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata [15], B. picta [16,17,18], Heterotaxis discolor (Lipińska & Haliński, unpbl. data), Maxillaria nigrescens [17], M. splendens (Lipińska & Haliński, unpbl. data), Maxillariella sanguinea [23], M. tenuifolia [16,17,24,25], M. variabilis [17], Trigonidium cf. turbinatum [17], Xanthoxerampellia rufescens (Lipińska & Haliński, unpbl. data).
Activity: dissolving gallstones [87]; antimicrobial properties against various bacteria, e.g., Escherichia coli and Bacillus cereus, and yeast Cryptococcus neoformans [88]; chemotherapeutic agent for breast cancer [89]; preventive and ameliorating effects on dyslipidemia and hyperglycemia [90]; antibiofilm potential against Streptococcus spp. [91]; gastroprotection through local mucosal defense mechanisms, such as increased mucus production, modulation of the oxidative stress and inflammatory response [92]; potent anticancer agent against human bladder cancer [93]; anti-inflammatory and antioxidant properties [94].
4.
Eucalyptol
(1,3,3-Trimethyl-2-oxabicyclo[2.2.2.]octane; cineole; 1,8-cineole; 1,8-cineol)
CAS Number: 470-82-6
Ocurrence in Maxillariinae: Brasiliorchis picta [16,17,18], Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17,24,25], M. variabilis [17].
Activity: dehumidification, insecticide, and analgesia activity [95]; attenuation of cerulein-induced acute pancreatitis via an anti-inflammatory mechanism and by combating oxidative stress [96]; anti-inflammatory and antioxidant activity mainly via the regulation of NF-κB and Nrf2, an important role in the treatment of cardiovascular illness, cancers, digestive disorders, Alzheimer’s disease (AD); respiratory ailments such as bronchitis, asthma, and chronic obstructive pulmonary disease (COPD); bacilli ([97] and references therein).
5.
γ-terpinene
(gamma-Terpinene; 1,4-p-menthadiene; 1-isopropyl-4-methyl-1,4-cyclohexadiene; 1-isopropyl-4-methylcyclohexa-1,4-diene;1-methyl-4-(1-methylethyl)-1,4 cyclohexadiene; 1-methyl-4-(propan-2-yl)cyclohexa-1,4-diene; 4-Isopropyl-1-methyl-1,4-cyclohexadiene)
CAS Number: 99-85-4
Occurrence in Maxillariinae: Brasiliorchis picta [17,18], Heterotaxis discolor (Lipińska & Haliński, unpbl. data), Maxillaria nigrescens [17], Maxillariella tenuifolia [17,24], M. variabilis [17], Xanthoxerampellia rufescens (Lipińska & Haliński, unpbl. data).
Activity: anti-inflammatory properties [98]; antibacterial, antifungal, and anticancer properties [99].
6.
Linalool
(2,6-Dimethyl-2,7-octadien-6-ol; 3,7-dimethylocta-1,6-dien-3-ol; linalol; 3,7-dimethyl-1,6-octadien-3-ol; allo-ocimenol; beta-linalool; 1,6-octadien-3-ol, 3,7-dimethyl-)
CAS Number: 78-70-6
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. maginata [15], B. picta [15,16,17,18], Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17], M. variabilis [17].
Activity: analgesic activity [100]; antibacterial, antifungal, antioxidant, anti-inflammatory, and anticancer activities [101].
7.
p-Cymene
(1-Methyl-4-(1-methylethyl)-benzene; 1-isopropyl-4-methylbenzene; 4-isopropyltoluene; p-isopropyltoluene; para-cymene; p-cymol)
CAS Number: 99-87-6
Occurrence in Maxillariinae: Brasiliorchis gracilis [15], B. picta [16,17], Chelyella jenischiana [15], Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17], M. variabilis [17], Trigonidium cf. turbinatum [15].
Activity: analgesic-like property ([102] and references therein); antioxidant, anti-inflammatory, antinociceptive, anxiolytic, anticancer, and antimicrobial effects ([103] and references therein); antidiabetic, anti-enzymatic, antiparasitic, immunomodulatory, vasorelaxant, and neuroprotective agent ([104] and references therein).
8.
α-Pinene
(Alpha-pinene; 2-pinene; acintene a; .alpha.-pinene; 2,6,6-trimethylbicyclo[3.1.1]hept-2-ene; (+/−)-alpha-pinene; bicyclo[3.1.1]hept-2-ene, 2,6,6-trimethyl-)
CAS Number: 80-56-8
Occurrence in Maxillariinae: Brasiliorchis marginata [15], B. picta [15,16,17,18], Heterotaxis discolor (Lipińska & Haliński, unpbl. data), Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17,24], M. variabilis [17], Xanthoxerampellia rufescens (Lipińska & Haliński, unpbl. data).
Activity: antimicrobial and antibiofilm formation; activity against Candida albicans, Cryptococcus neoformans, Rhizopus oryzae, and Staphylococcus aureus MRSA [105]; antimicrobial, anticancer, anti-inflammatory, and antiallergic properties; cytogenetic, gastroprotective, anxiolytic, cytoprotective, anticonvulsant, and neuroprotective effects, as well as effects against H2O2-stimulated oxidative stress, pancreatitis, stress-stimulated hyperthermia, and pulpal pain [106].
9.
α-Terpineol
((.+/−.)-.alpha.-Terpineol; .alpha.,.alpha.,4-trimethyl-3-cyclohexene-1-methanol; 1-p-menthen-8-ol; 2-(4-methyl-3-cyclohexen-1-yl)-2-propanol; 2-(4-methylcyclohex-3-enyl)-propan-2-ol; 3-cyclohexene-1-methanol, .alpha.,.alpha.4-trimethyl-; 4-(2-hydroxy-2-propyl)-1-methylcyclohexene)
CAS Number: 98-55-5
Occurrence in Maxillariinae: Brasiliorchis picta [16,17,18], Heterotaxis discolor (Lipińska & Haliński, unpbl. data), Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17], M. variabilis [17], Xanthoxerampellia rufescens (Lipińska & Haliński, unpbl. data).
Activity: cardiovascular and antihypertensive effects; antioxidant, anticancer, antinociceptive, antiulcer, anticonvulsant, sedative, anti-bronchitis, skin penetration enhancing, and insecticidal activities [107,108].
10.
β-Pinene
(6,6-Dimethyl-2-methylenebicyclo[3.1.1]heptane)
CAS Number: 127-91-3
Occurrence in Maxillariinae: Brasiliorchis picta [16,17,18], Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17,24,25], M. variabilis [17], Trigonidium cf. turbinatum [15].
Activity: antimicrobial and antibiofilm formation activity against Candida albicans, Cryptococcus neoformans, Rhizopus oryzae, and Staphylococcus aureus MRSA [105]; antimicrobial, anticancer, anti-inflammatory, and antiallergic properties; cytogenetic, gastroprotective, anxiolytic, cytoprotective, anticonvulsant, and neuroprotective effects, as well as effects against H2O2-stimulated oxidative stress, pancreatitis, stress-stimulated hyperthermia, and pulpal pain [106].

2.8. Sesquiterpenes

  • ar-Curcumene
(1-Methyl-4-(6-methylhept-5-en-2-yl)-benzene)
CAS Number: 4176-17-4
Occurrence in Maxillariinae: Brasiliorchis marginata, Chelyella jenischiana [15], Mormolyca ringens [27], Trigonidium cf. turbinatum, Xanthoxerampellia rufescens [15].
Activity: potential protective effect on LPS-stimulated BEAS-2B cells regarding IL-8 and RANTES secretion and might serve as drugs against inflammatory airway diseases [109].
2.
Aromadendrene
(1,1,7-Trimethyl-4-methylenedecahydro-1H-cyclopropa[e]azulene; alloaromadendrene)
CAS Number: 109119-91-7
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata [15], B. picta [16,17], Chelyella jenischiana [15], Heterotaxis discolor (Lipińska & Haliński, unpbl. data), Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17,24,25], M. variabilis [17], Mormolyca ringens [27], Trigonidium cf. turbinatum [15], Xanthoxerampellia rufescens [15] (Lipińska & Haliński, unpbl. data).
Activity: antimicrobial activity [95].
3.
Calarene
CAS Number: 13466-78-9
Occurrence in Maxillariinae: Maxillariella tenuifolia [24].
Activity: larvicidal activity against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (against malaria, dengue, yellow fever, and filariasis mosquitos) [110].
4.
Caryophylladienol II
(Caryophylla-2(12);6(13)-dien-5beta-ol)
CAS Number: 19431-79-9
Occurrence in Maxillariinae: Maxillariella tenuifolia [25].
Activity: probable antimicrobial activity against the Gram-positive bacteria Staphylococcus aureus and Bacillus cereus [111].
5.
Caryophyllene oxide
CAS Number: 1139-30-6
Occurrence in Maxillariinae: Brasiliorchis picta [16,17], Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17,25], M. variabilis [17].
Activity: analgesic and anti-inflammatory activity [112]; anticancer, enhancing the efficacy of some chemotherapeutics [113]; anticholinesterase and antioxidant capacities [114]; treatment of onychomycosis [115]; induction of apoptotic cell death in prostate cancer cells [116].
6.
Caryophyllene
(Decahydro-2,2,4,8-tetramethyl-4,8-methanoazulen-9-ol)
CAS Number: 4586-22-5
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata [15], B. picta [16,17,18], Chelyella jenischiana [15], Maxillaria nigrescens [17], M. splendens (Lipińska & Haliński, unpbl. data), Maxillariella tenuifolia [16,17,24,25], M. variabilis [17].
Activity: significantly increasing the anticancer activity of α-humulene and isocaryophyllene on MCF-7 cells; anticarcinogenic activity [117]; selective antibacterial activity against S. aureus, antifungal activity, strong antioxidant effects, and selective antiproliferative effects against colorectal cancer cells [118]; anti-inflammatory, anticarcinogenic, antimicrobial, antioxidative, and analgesic activities; strong cytotoxicity against cancer cell lines (HCT-116, HT-29, colon cancer; PANC-1, pancreatic cancer) [113].
7.
epi-Cubebol
CAS Number: 38230-60-3
Occurrence in Maxillariinae: Maxillariella tenuifolia [25].
Activity: potential as a source for natural larvicides (activity against Aedes aegypti and A. albopictus) [119].
8.
α-Copaene
(8-Isopropyl-1,3-dimethyl-tricyclo[4.4.0.0(2,7)]dec-3-ene)
CAS Number: 3856-25-5
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata, B. picta [16,17], Chelyella jenischiana [15], Maxillaria nigrescens [17], Maxillariella sanguinea [23], M. tenuifolia [16,17,24,25], M. variabilis [17], Mormolyca ringens [27], Trigonidium cf. turbinatum, Xanthoxerampellia rufescens [15].
Activity: nongenotoxic/mutagenic feature, weak antioxidant, and cytotoxic activity; potential in application in anticancer therapy; anticarcinogenic, antioxidant, hepatoprotective, and anti-inflammatory potential; antigenotoxic and antioxidant activity ([120] and references therein).
9.
α-Humulene
(α-Caryophyllene, trans,trans,trans-2,6,6,9-tetramethyl-1,4,8-cycloundecatriene)
CAS Number: 6753-98-6
Occurrence in Maxillariinae: Brasiliorchis gracilis [15], B. picta [16,17], Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17,24], M. variabilis [17].
Activity: inhibition of tumor cell growth [121]; anti-inflammatory properties; potential in the treatment of asthma and related inflammatory and allergic diseases ([122] and references therein); inhibition of the growth of Bacteroides fragilis cells and biofilms [123]; antitumor and cytotoxic activity against cancer cells; effective against a wide range of microorganisms, in addition to acting as anti-inflammatories by activating or inactivating several factors involved in the inflammatory process; gastroprotective, cicatrizing, analgesic, and antioxidant potentials [124].
10.
β-Elemene
(2,4-Diisopropenyl-1-methyl-1-vinylcyclohexane)
CAS Number: 515-13-9
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata [15], B. picta [17], Chelyella jenischiana [15], Maxillaria nigrescens [17], Maxillariela tenuifolia [17,24,25], M. variabilis [17], Trigonidium cf. turbinatum, Xanthoxerampellia rufescens [15].
Activity: excellent antitumor activity against several cancer cell lines (PC-3, A549, U87MG, U251, and HCT116); inhibition of tumor cell migration; relatively minor adverse effects [125,126].
11.
β-Gurjunene
CAS Number: 17334-55-3
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata, Chelyella jenischiana [15].
Activity: antibacterial activity [127].
12.
β-Myrcene
(7-methyl-3-methylene-1,6-octadiene)
CAS Number: 123-35-3
Occurrence in Maxillariinae: Brasiliorchis picta [16,17], Heterotaxis discolor (Lipińska & Haliński, unpbl. data), Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17], M. variabilis [17], Xanthoxerampellia rufescens (Lipińska & Haliński, unpbl. data).
Activity: antioxidant activity [128].
13.
δ-Cadinene
((1S,8aR)-4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene)
CAS Number: 483-76-1
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata [15], B. picta [15,17], Chelyella jenischiana [15], Maxillaria nigrescens [17], Maxillariella tenuifolia [17,24,25], M. variabilis [17], Trigonidium cf. turbinatum, Xanthoxerampellia rufescens [15].
Activity: antimicrobial activity against Streptococcus pneumoniae [129].
14.
δ-Elemene
(3-Isopropenyl-1-isopropyl-4-methyl-4-vinyl-1-cyclohexene)
CAS Number: 20307-84-0
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata, Chelyella jenischiana, Trigonidium cf. turbinatum [15].
Activity: inducer of cell apoptosis in human lung carcinoma cells by inhibiting the NF-κB pathway [130].
15.
Isocaryophyllene
((Z,1S,9R)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene)
CAS Number: 118-65-0
Occurrence in Maxillariinae: Brasiliorchis picta [16,17], Maxillaria nigrescens [17], Maxillariella tenuifolia [16,17,24], M. variabilis [17].
Activity: antimicrobial [131]; anticancer activity [117].

2.9. Phenanthrene Derivatives

  • Erianthridin
(9,10-dihydro-2,7-dihydroxy-3,4-dimethoxyphenanthrene)
CAS Number: 101508-48-9
Occurrence in Maxillariinae: Chelyella densa [21,132].
Activity: spasmolytic activity [29,132]; antinociceptive [133] and anti-inflammatory effect [133,134]; vasorelaxant activity [135]; antitumor effect on lung cancer cell apoptosis [136,137].
2.
Fimbriol A
(3,4,9-Trimethoxyphenanthrene-2,5-diol; 2,5-dihydroxy-3,4,9-trimethoxyphenanthrene)
CAS Number: 152841-83-3
Occurrence in Maxillariinae: Chelyella densa [21].
Activity: spasmolytic activity [29,132]; antinociceptive [133]; anti-inflammatory effect [133,134]; vasorelaxant activity [135]; significant anti-aggregation activity [138].
3.
Flavanthridin
(3,7-dihydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene)
CAS number: 4773-96-0
Occurrence in Maxillariinae: Maxillariella tenuifolia [26].
Activity: significant α-glucosidase-inhibitory activity [26].
4.
Gymnopusin
(2,7-Dihydro-3,4,9-trimethoxy-phenanthrene; 3,4,9-trimethoxy-2,7-phenanthrenediol; 2,7-phenanthrenediol, 3,4,9-trimethoxy-; 3,4,9-trimethoxyphenanthrene-2,7-diol)
CAS Number: 113476-61-2
Occurrence in Maxillariinae: Chelyella densa [21].
Activity: spasmolytic activity [29,139]; vasorelaxant activity [135].
5.
Nudol
(2,7-Phenanthrenediol, 3,4-dimethoxy-; 3,4-dimethoxyphenanthrene-2,7-diol; 2,7-dihydroxy-3,4-dimethoxyphenanthrene)
CAS Number: 86630-46-8
Occurrence in Maxillariinae: Chelyella densa [21,132].
Activity: spasmolytic activity [29]; potential against osteosarcoma [140].
6.
2,5-dihydroxy-3,4-dimethoxyphenanthrene
CAS Number: not available
Occurrence in Maxillariinae: Chelyella densa [21,132].
Activity: spasmolytic activity [132].

2.10. Phenol Derivatives

  • 2-Methoxy-4-vinylphenol
(2M4VP; 4-vinylguaiacol; p-vinylguaiacol)
CAS Number: 7786-61-0
Occurrence in Maxillariinae: Maxillariella sanguinea, M. variabilis [23].
Activity: potent anti-inflammatory effects by inhibiting LPS-induced NO, PGE2, iNOS, and COX-2 in RAW264.7 cells [141]; anticancer effects on pancreatic cancer cell lines (Panc-1 and SNU-213) by reducing their viability by inhibiting the expression of the cell nuclear antigen (PCNA) protein and suppressing the migratory activity of both cell lines [142].
2.
Luteolin-6-C-glucoside
(isoorientin; homoorientin)
CAS Number: 4261-42-1
Occurrence in Maxillariinae: Heterotaxis superflua [22].
Activity: myolytic activity on smooth muscle-containing preparations from the rat and the guinea pig [143]; certain antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa [144]; anticancer and antioxidant activity [145].
3.
Gigantol
(5-[2-(3-hydroxy-5-methoxyphenyl)ethyl]-2-methoxyphenol)
CAS Number: 67884-30-4
Occurrence in Maxillariinae: Chelyella densa [21].
Activity: inhibition of the LPS-induced iNOS and COX-2 expression via NF-κB inactivation in RAW 264.7 macrophages cells [146]; spasmolytic activity [139]; protective effects against high glucose-evoked nephrotoxicity [147]; attenuates the metastasis of human bladder cancer cells, possibly through Wnt/EMT signaling [148].

2.11. Sterols

  • Campesterol
((24R)-24-Methylcholest-5-en-3b-ol)
CAS Number: 474-62-4
Occurrence in Maxillariinae: Maxillareilla sanguinea [23].
Activity: cholesterol-lowering and anticarcinogenic effects; antiangiogenic action of campesterol via inhibition of endothelial cell proliferation and capillary differentiation; exhibits chemopreventive effects against many cancers, including prostate, lung, and breast cancers ([149] and references therein).
2.
Stigmasterol
(Stigmasta-5,22-dien-3b-ol)
CAS Number: 83-48-7
Occurrence in Maxillariinae: Maxillareilla sanguinea [23].
Activity: thyroid-inhibitory and insulin-stimulatory nature; antidiabetic and antiperoxidative properties [150]; potential anti-inflammatory and anticatabolic properties [151].

2.12. Others

  • 2,5-di-tert-Butyl-1,4-benzoquinone
CAS Number: 2460-77-7
Occurrence in Maxillariinae: Brasiliorchis schunkeana [20], Maxillariella vulcanica [23].
Activity: potent antibacterial agent which inhibits the RNA polymerase enzyme [152,153]; potent antiplasmodial activity [154].
2.
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione
CAS Number: 82304-66-3
Occurrence in Maxillariinae: Brasiliorchis schunkeana [20], Maxillariella sanguinea [23], M. tenuifolia [25], M. vulcanica [23].
Activity: steroidal anti-mineralocorticoid activity and anti-androgen, weak progesterone properties, with some indirect estrogen and glucocorticoid effects [155]; used primarily as a diuretic and antihypertensive, to treat heart failure and ascites in patients with liver disease, lowering hypertension, hypokalemia, secondary hyperaldosteronism (such as occurs with hepatic cirrhosis), and Conn’s syndrome (primary hyperaldosteronism); frequently used to treat a variety of skin conditions including hirsutism, androgenic alopecia, acne, and seborrhea in females and male pattern baldness [156]; antioxidant activity; acetylcholinesterase inhibitory potential [157].
3.
Geranylacetone
((E)-6,10-Dimethyl-5,9-undecadien-2-one)
CAS Number: 3796-70-1
Occurrence in Maxillariinae: Brasiliorchis gracilis, B. marginata, Chelyella jenischiana [15], Maxillariella tenuifolia [17,24], Xanthoxerampellia rufescens [15].
Activity: antitrypanosomal activity; strong repellent against ticks; acts as a deterrent against the Asian larch bark beetle ([158] and references therein); trypanostatic activity [159].
4.
Mangiferin
(1,3,6,7-tetrahydroxy-2-[(2S,3R,4R,5S,6R)3,4,5-trihydroxy-6(hydroxymethyl)oxan-2-yl]xanthen-9-one)
CAS number: 4773-96-0
Occurrence in Maxillariinae: Maxillariella tenuifolia [26].
Activity: antidiabetic and anti-inflammatory abilities; effective inhibitor of NF-κB signaling pathway; probable anticancer effects [160]; antibacterial, antitumor, antiviral, and immunomodulatory activities ([26] and references therein).

3. Conclusions

In the presented paper, on the basis of a literature review, we reported the presence of 62 biologically active compounds produced by Maxillariinae representatives. We divided them into 12 categories: aldehydes (one), aromatics (eight), carboxylic acids (four), fatty acids and their esters (five), hydrocarbons (two), ketones (two), monoterpenes (10), sesquiterpenes (15), phenanthrene derivatives (six), phenol derivatives (three), sterols (two), and others (four). Even though the number of species examined to date is extremely scarce (19 species investigated of ca. 600 belonging to the subtribe), it can already be noted that Maxillariinae representatives are a promising source of biologically active compounds with medical potential, and further investigations are urgently needed.

Author Contributions

M.M.L. designed and supervised the study; M.M.L. and A.K.K. wrote the manuscript and collected the background information; Ł.P.H. and M.G. revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This review paper was supported by a subvention of the Faculty of Biology, University of Gdańsk: 531-D110-D585-23 (M.M.L.) and 531-DO30-D847-23 (A.K.K.).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Examples of the general occurrence of the identified compounds.
Table A1. Examples of the general occurrence of the identified compounds.
CompoundNatural Occurrence
(Examples)
FamilySource of Data
NonanalCitrus limon (L.) OsbeckRutaceae Juss.[161]
Artemisia ludoviciana Nutt.Asteraceae Bercht. & J. Presl[31]
Brassica napus L. var. napusBrassicaceae Burnett[32]
Glycine max (L.) Merr.Fabaceae Lindl.
Senecio laetus Edgew.Asteraceae Bercht. & J. Presl
Haplophyllum tuberculatum (Forssk.) A. Juss.Rutaceae Juss.
Minuartia meyeri (Boiss.) Bornm.Caryophyllaceae Juss.
Apium graveolens L.Apiaceae Lindl.
BenzaldehydePrunus armeniaca L.Rosaceae Juss.[162]
Prunus serotina Ehrh.Rosaceae Juss.
Tagetes erecta L.Asteraceae Bercht. & J. Presl[163]
Anacardium occidentale L.Anacardiaceae R. Br.[164]
Prunus persica (L.) BatschRosaceae Juss.[165]
Dendrobium candidum Wall. ex Lindl.Orchidaceae Juss.[166]
Dendrobium chrysotoxum Lindl.Orchidaceae Juss.[167]
Benzoic acid, 3-methoxy-4-hydroxyVitis vinifera L.Vitaceae Juss.[168]
Ginkgo biloba L.Ginkgoaceae Engl.[169]
Camellia sinensis (L.) KuntzeTheaceae Mirb.[170]
Arachis hypogaea L.Fabaceae Lindl.[36]
Hovenia dulcis Thunb.Rhamnaceae Juss.[35]
Zizyphus mauritiana Lam.Rhamnaceae Juss.[171]
Angelica sinensis (Oliv.) DielsApiaceae Lindl.[37]
Lentinula edodes (Berk.) Pegler (fungus)Omphalotaceae Besl & Bresinsky[38]
Benzoic acid, 4-ethoxy-, ethyl esterCurculigo orchioides Gaertn.Hypoxidaceae R. Br.[172]
Sesuvium portulacastrum (L.) L.Aizoaceae Martinov[40]
Salix caprea L.Salicaceae Mirb.[41]
Butylated hydroxytolueneBetula platyphylla var. japonica (Miq.) HaraBetulaceae Gray[173]
Cinnamic acidAlnus firma Siebold & Zucc.Betulaceae Gray[174]
Litchi chinesis Sonn.Sapindaceae Juss.[175]
Myroxylon balsamum var. pereirae (Royle) HarmsFabaceae Lindl.[176]
Syzygium alternifolium (Wight) Walp.Myrtaceae Juss.[177]
Pinus densiflora Siebold & Zucc.Pinaceae Spreng. ex Rudolphi[47]
Pinus thunbergii Lamb.Pinaceae Spreng. ex Rudolphi
Pinus rigida Mill.Pinaceae Spreng. ex Rudolphi
Vanilla planifolia AndrewsOrchidaceae Juss.[178]
Cinnamic acid, 4-hydroxy-3-methoxyAngelica sinensis (Oliv.) DielsApiaceae Lindl.[49]
Cimicifuga heracleifolia Kom.Ranunculaceae Juss.
Ligusticum chuanxiong S.H. Qiu, Y.Q. Zeng, K.Y. Pan, Y.C. Tang & J.M. XuApiaceae Lindl.
IndoleCycnoches loddigesii Lindl.Orchidaceae Juss.[179]
Gongora cassidea Rchb. f.,Orchidaceae Juss.
Gongora quinquenervis Ruiz & Pav.Orchidaceae Juss.
Gongora tricolor (Lindl.) Rchb. f.Orchidaceae Juss.
Stanhopea candida Barb. Rodr.Orchidaceae Juss.
Stanhopea aff. impressa RolfeOrchidaceae Juss.
Stanhopea tigrina Bateman ex Lindl.Orchidaceae Juss.
p-AnisaldehydeFoeniculum vulgare subsp. vulgare var. dulce (Mill.) ThellungApiaceae Lindl.[180]
Pimpinella anisum L.Apiaceae Lindl.[52]
Mangifera indica L.Anacardiaceae R. Br.[181]
Allium sativum L.Amaryllidaceae J. St.-Hil. [53]
Cuminum cyminum L.Apiaceae Lindl.
Foeniculum vulgare Mill.Apiaceae Lindl.
Azelaic acidTriticum L. spp.Poaceae Barnhart[182]
Oryza sativa L.Poaceae Barnhart
Hordeum vulgare L.Poaceae Barnhart
Malassezia furfur (C.P. Robin) Baill.Malasseziaceae Denchev & R.T. Moore
Nonanoic acidOphrys sphegodes Mill.Orchidaceae Juss.[183]
Ophrys fusca groupOrchidaceae Juss.[184]
Hibiscus syriacus L.Malvaceae Juss.[58]
Anacamptis pyramidalis (L.) Rich.Orchidaceae Juss.[185]
Serapias vomeracea (Burm. f.) Briq.Orchidaceae Juss.
Dactylorhiza fuchsii (Druce) SoóOrchidaceae Juss.[186]
Dactylorhiza incarnata var. incarnataOrchidaceae Juss.
Dactylorhiza incarnata var. ochroleuca Jagiello & KuuskOrchidaceae Juss.
Dactylorhiza majalis (Rchb. f.) P.F. Hunt & Summerh.Orchidaceae Juss.
Orchis provincialis Balb.Orchidaceae Juss.[187]
Orchis × fallaxOrchidaceae Juss.
Octanoic acidVitex mollis KunthLamiaceae Martinov[62]
Cocos nucifera L.Arecaceae Bercht. & J. Presl
Suberic acidHibiscus syriacus L.Malvaceae Juss.[63]
Vernonia galamensis (Cass.) Less.Asteraceae Bercht. & J. Presl
Oleic acidClusia burchellii Engl.Clusiaceae Lindl.[188]
Clusia spiritu-sanctensis G. Mariz & B. Weinb.Clusiaceae Lindl.
Laurus nobilis L.Lauraceae Juss.[189]
Ophrys exaltata Ten.Orchidaceae Juss.[190]
Rosa damascena Mill.Rosaceae Juss.[40]
Sesuvium portulacastrum L.Aizoaceae Martinov
Heptadecanoic acidDiplotaxis harra Forsk.Brassicaceae Burnett[191]
Erucaria microcarpa Boiss.Brassicaceae Burnett
Populus tremula L.Salicaceae Mirb.[192]
Hexadecanoic acidKigelia pinnata (Jacq.) DC.Bignoniaceae Juss.[69]
Turbinaria ornata (Turner) J.Agardh (algae)Sargassaceae Kützing[70]
Tetradecanoic acidCucumis melo L.Cucurbitaceae Juss.[193]
Cistus creticus L.Cistaceae Juss.[194]
Elaeis guineensis Jacq.Arecaceae Bercht. & J. Presl[195]
Octadecanoic acid, methyl esterCymbopogon nardus (L.) RendlePoaceae Barnhart[72]
4,8,8-Trimethyl-2-methylene-4-vinylbicyclo[5.2.0]nonaneElsholtzia blanda (Benth.) Benth.Lamiaceae Martinov[73]
Elsholtzia bodinieri VaniotLamiaceae Martinov
Elsholtzia densa Benth.Lamiaceae Martinov
Elsholtzia communis (Collett & Hemsl.) DielsLamiaceae Martinov
Mosla chinensis Maxim.Lamiaceae Martinov
Mosla dianthera (Buch.-Ham. ex Roxb.) Maxim.Lamiaceae Martinov
Mosla cavaleriei H. Lév.Lamiaceae Martinov
Mosla scabra (Thunb.) C.Y. Wu & H.W. LiLamiaceae Martinov
HeptacosaneEuphorbia intisy DrakeEuphorbiaceae Juss.[74]
2-PentadecanonePilocarpus microphyllus Stapf ex Wardlew.Rutaceae Juss.[196]
Marantodes pumilum (Blume) KuntzePrimulaceae Batsch[75]
2-UndecanoneRuta chalepensis L.Rutaceae Juss.[78]
Zanthoxylum molle RehderRutaceae Juss.[79]
Houttuynia cordata Thunb.Saururaceae Rich. ex T. Lestib.[81]
[82]
Lactobacillus plantarum (Orla-Jensen 1919) Zheng et al. 2020Lactobacillaceae Winslow et al. 1917[83]
4-TerpineolMelaleuca alternifolia (Maiden & Betche) CheelMyrtaceae Juss.[85]
Juniperus communis L.Cupressaceae Gray[197]
cis-β-OcimeneOrchis mascula L.Orchidaceae Juss.[198]
Solanum lycopersicum L.Solanaceae Juss.[199]
Magnolia kwangsiensis Figlar & Noot.Magnoliaceae Juss.[200]
LimoneneCitrus medica L.Rutaceae Juss.[201]
Thymus vulgaris L.Lamiaceae Martinov
Citrus L. spp.Rutaceae Juss.[202]
Cannabis sativa L.Cannabaceae Martinov[203]
EucalyptolCoriandrum sativum L.Apiaceae Lindl.[201]
Origanum vulgare L.Lamiaceae Martinov
Rosmarinus officinalis L.Lamiaceae Martinov
Thymus vulgaris L.Lamiaceae Martinov
Zingiber officinale RoscoeZingiberaceae Martinov
Stanhopea anfracta RolfeOrchidaceae Juss.[28]
Croton rhamnifolioides Pax & K. Hoffm.Euphorbiaceae Juss.[204]
Eucalyptus L’Hér.Myrtaceae Juss.[97]
Salvia lavandulifolia Vahl.Lamiaceae Martinov
Melaleuca quinquenervia (Cav.) S.T. BlakeMyrtaceae Juss.
Elsholtzia blanda (Benth.) Benth.Lamiaceae Martinov[73]
γ-TerpineneLippia gracilis SchauerVerbenaceae J. St.-Hil.[205]
Melaleuca alternifolia (Maiden & Betche) CheelMyrtaceae Juss.[206]
Lippia multiflora MoldenkeVerbenaceae J. St.-Hil.[207]
LinaloolSalvia sclarea L.Lamiaceae Martinov[100]
Salvia desoleana Atzei & PicciLamiaceae Martinov
p-CymeneThymus vulgaris L.Lamiaceae Martinov[208]
Protium Burm. f. spp.Burseraceae Kunth[102]
Artemisia L. spp.Asteraceae Bercht. & J. Presl[103]
Eucalyptus L’Hér. spp.Myrtaceae Juss.
Ocimum L. spp.Lamiaceae Martinov
Protium Burm. f. spp.Burseraceae Kunth
α-PineneSalvia officinalis L.Lamiaceae Martinov[209]
Pinus L. spp.Pinaceae Spreng. ex Rudolphi[105]
Cinnamomum verum J. PreslLauraceae Juss.[106]
Coriandrum sativum L.Apiaceae Lindl.
Cuminum cyminum L.Apiaceae Lindl.
Juniperus communis L.Cupressaceae Gray
Lavandula stoechas L.Lamiaceae Martinov
Melaleuca alternifolia Cheel.Myrtaceae Juss.
Ocimum menthaefolium Benth.Lamiaceae Martinov
Rosmarinus officinalis L.Lamiaceae Martinov
α-TerpineolSalvia officinalis L.Lamiaceae Martinov[209]
Origanum vulgare L.Lamiaceae Martinov[107]
Ocimum canum SimsLamiaceae Martinov
Artemisia rupestris L.Asteraceae Bercht. & J. Presl[108]
Juniperus communis L.Cupressaceae Gray
Myristica fragrans Houtt.Myristicaceae R. Br.
Salvia sclarea L.Lamiaceae Martinov
β-PineneSalvia officinalis L.Lamiaceae Martinov[209]
Pinus L. spp.Pinaceae Spreng. ex Rudolphi[105]
Cinnamomum verum J. PreslLauraceae Juss.[106]
Coriandrum sativum L.Apiaceae Lindl.
Cuminum cyminum L.Apiaceae Lindl.
Juniperus communis L.Cupressaceae Gray
Lavandula stoechas L.Lamiaceae Martinov
Melaleuca alternifolia Cheel.Myrtaceae Juss.
Ocimum menthaefolium Benth.Lamiaceae Martinov
Rosmarinus officinalis L.Lamiaceae Martinov
ar-CurcumeneCurcuma aromatica Salisb.Zingiberaceae Martinov[210]
Curcuma xanthorrhiza Roxb.Zingiberaceae Martinov
Zingiber officinale RoscoeZingiberaceae Martinov[109]
Pogostemon cablin (Blanco) Benth.Lamiaceae Martinov[211]
AromadendreneEucalyptus globulus Labill.Myrtaceae Juss.[95]
CalareneKadsura heteroclita (Roxb.) CraibSchisandraceae Blume[110]
Caryophylladienol IIAchillea cretica L.Asteraceae Bercht. & J. Presl[111]
Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm.Lamiaceae Martinov[114]
Caryophyllene oxidePilocarpus microphyllus Stapf ex Wardlew.Rutaceae Juss. [196]
Annona squamosa L.Annonaceae Juss.[112]
Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm.Lamiaceae Martinov[114]
CaryophyllenePilocarpus microphyllus Stapf ex Wardlew.Rutaceae Juss. [196]
Piper cubeba L.Piperaceae Giseke[212]
Cannabis sativa L.Cannabaceae Martinov[113]
Cinnamomum Scheffer spp.Lauraceae Juss.
Lavandula angustifolia Mill.Lamiaceae Martinov
Ocimum L. spp.Lamiaceae Martinov
Origanum vulgare L.Lamiaceae Martinov
Piper nigrum L.Piperaceae Giseke
Rosmarinus officinalis L.Lamiaceae Martinov
Syzygium aromaticum (L.) Merr. & L.M. PerryMyrtaceae Juss.
epi-CubebolPiper cubeba L.Piperaceae Giseke[212]
Cryptomeria japonica (Thunb. ex L. f.) D. DonCupressaceae Gray[119]
Chromolaena odorata (L.) R. M. King & H. RobAsteraceae Bercht. & J. Presl[213]
α-CopaeneAnnona reticulate L.Annonaceae Juss.[120]
Cedrelopsis grevei Baill.Rutaceae Juss.
Ceratitis capitata (Wiedemann, 1824) (medfly)Tephritidae Newman
Xylopia laevigata (Mart.) R.E. Fr.Annonaceae Juss.
α-HumuleneAbies balsamea (L.) Mill.Pinaceae Spreng. ex Rudolphi[121]
Cordia verbenacea DC.Cordiaceae R. Br. ex Dumort.[122]
Piper aduncum L.Piperaceae Giseke
Polyalthia cerasoides (Roxb.) Benth. & Hook. f. ex Bedd.Annonaceae Juss.
Salvia officinalis L.Lamiaceae Martinov[209]
Mentha spicata L.Lamiaceae Martinov[123]
Zingiberaceae MartinovZingiberaceae Martinov
β-ElemenePiper cubeba L.Piperaceae Giseke[212]
Curcuma L. spp.Zingiberaceae Martinov[214]
β-GurjuneneDipterocarpus alatus Roxb.Dipterocarpaceae Blume[127]
β-MyrceneCymbopogon citratus (DC.) StapfPoaceae Barnhart[128]
Humulus lupulus L.Cannabaceae Martinov
Laurus L. spp.Lauraceae Juss.
Verbena L. spp.Verbenaceae J. St.-Hil.
δ-CadineneXylopia laevigata (Mart.) R.E. Fr.Annonaceae Juss.[102]
Uncaria rhynchophylla (Miq.) Miq. ex Havil.Rubiaceae Juss.[215]
Piper trioicum Roxb.Piperaceae Giseke[216]
Marrubium friwaldskyanum Boiss.Lamiaceae Martinov[217]
Neuropeltis acuminata (P.Beauv.) Benth.Convolvulaceae Juss.[218]
Centaurea cyanus L.Asteraceae Bercht. & J. Presl[219]
δ-ElemenePelargonium endlicherianum FenzlGeraniaceae Juss.[220]
Achillea millefolium L.Asteraceae Bercht. & J. Presl[221]
Commiphora holtziana Engl.Burseraceae Kunth[222]
IsocaryophylleneCouroupita guianensis Aubl.Lecythidaceae A. Rich.[223]
Ficus carica L.Moraceae Gaudich.[224]
Teucrium marum L.Lamiaceae Martinov[131]
ErianthridinEria convallarioides Lindl.Orchidaceae Juss.[225]
Dendrobium plicatile Lindl.Orchidaceae Juss.[226]
Fimbriol AScaphyglottis livida (Lindl.) Schltr.Orchidaceae Juss.[133]
GymnopusinBulbophyllum gymnopus Hook. f.Orchidaceae Juss.[227]
NudolEria convallarioides Lindl.Orchidaceae Juss.[225]
Dendrobium nobile Lindl.Orchidaceae Juss.[140]
2,5-Dihydroxy-3,4-dimethoxyphenanthreneDendrobium candidum Wall. ex Lindl.Orchidaceae Juss.[228]
2-Methoxy-4-vinylphenolFagopyrum esculentum MoenchPolygonaceae Juss.[142]
Malus Mill. spp.Rosaceae Juss.
Arachis hypogaea L.Fabaceae Lindl.
Syzygium aromaticum (L.) Merr. & L.M.PerryMyrtaceae Juss.
Luteolin-6-C-glucosideArum palaestinum Boiss.Araceae Juss.[143]
Bryonia L. spp.Cucurbitaceae Juss.[144]
Gentiana L. spp.Gentianaceae Juss.
Piptadenia Benth. spp.Fabaceae Lindl.
Tamarindus L. spp.Fabaceae Lindl.
Mauritia flexuosa L. f.Arecaceae Bercht. & J. Presl[98]
Achillea oligocephala DCAsteraceae Bercht. & J. Presl[145]
Callisia fragrans (Lindl.) WoodsonCommelinaceae Mirb.[229]
GigantolCymbidium goeringii (Rchb. f.) Rchb. f.Orchidaceae Juss.[146]
CampesterolChrysanthemum coronarium L.Asteraceae Bercht. & J. Presl[149]
Argania spinosa (L.) SkeelsSapotaceae Juss.[230]
Wrightia tinctoria (Roxb.) R. Br.Apocynaceae Juss.[231]
StigmasterolButea monosperma (Lam.) Taub.Fabaceae Lindl.[150]
2,5-Di-tert-Butyl-1,4-benzoquinoneBacillus Cohn spp. (bacteria)Bacillaceae Garrity et al. 2001[152]
Streptomyces sp. VITVSK1 (bacteria)Streptomycetaceae Waksman and Henrici 1943
Bulbophyllum echinolabium J.J. Sm.Orchidaceae Juss.[232]
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dioneMangifera indica L.Anacardiaceae R. Br.[233]
Gmelina asiatica LinnLamiaceae Martinov[234]
Cordia sebestena L.Cordiaceae R. Br. ex Dumort.[235]
Cyperus rotundus L.Cyperaceae Juss.[236]
Cyathea nilgirensis HolttumCyatheaceae Kaulf.[237]
Cuscuta reflexa Roxb.Convolvulaceae Juss.[238]
Bulbophyllum echinolabium J.J. Sm.Orchidaceae Juss.[232]
Geranyl-
acetone
Lycopersicon esculentum Mill.Solanaceae Juss.[239]
Conyza bonariensis L.Asteraceae Bercht. & J. Presl[158]
Equisetum arvense L.Equisetaceae Michx. ex DC.
Ononis natrix L.Fabaceae Lindl.
MangiferinMangifera indica L.Anacardiaceae R. Br.[160]

References

  1. Dressler, R.L. Phylogeny and Classification of the Orchid Family; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
  2. Senghas, K. Maxillaria (Orchidaceae), un genre chaotique. Richardiana 2002, 2, 29–38. [Google Scholar]
  3. Christenson, E.A. Maxillaria: An Unfinished Monograph; P.A. Harding for R. Christenson: Lebanon, OR, USA, 2013. [Google Scholar]
  4. Blanco, M.A.; Carnevali, G.; Whitten, W.M.; Singer, R.B.; Koehler, S.; Williams, N.H.; Ojeda, I.; Neubig, K.M.; Endara, L. Generic realignments in Maxillariinae (Orchidaceae). Lankesteriana 2007, 7, 515–537. [Google Scholar]
  5. Whitten, W.M.; Blanco, M.A.; Williams, N.H.; Koehler, S.; Carnevali, G.; Singer, R.B.; Endara, L.; Neubig, K.M. Molecular phylogenetics of Maxillaria and related genera (Orchidaceae: Cymbidieae) based on combined molecular data sets. Am. J. Bot. 2007, 94, 1860–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Szlachetko, D.L.; Sitko, M.; Tukałło, P.; Mytnik-Ejsmont, J. Taxonomy of the subtribe Maxillariinae (Orchidaceae, Vandoideae) revised. Biodiv. Res. Conserv. 2012, 25, 13–38. [Google Scholar] [CrossRef]
  7. Davies, K.L.; Winters, C. Ultrastructure of the labellar epidermis in selected Maxillaria species (Orchidaceae). Bot. J. Linn. Soc. 1998, 126, 349–361. [Google Scholar] [CrossRef]
  8. Davies, K.L.; Winters, C.; Turner, M.P. Pseudopollen: Its structure and development in Maxillaria (Orchidaceae). Ann. Bot. 2000, 85, 887–895. [Google Scholar] [CrossRef] [Green Version]
  9. Davies, K.L.; Turner, M.P.; Gregg, A. Atypical pseudopollen-forming hairs in Maxillaria (Orchidaceae). Bot. J. Linn. Soc. 2003, 143, 151–158. [Google Scholar] [CrossRef] [Green Version]
  10. Stpiczyńska, M.; Davies, K.L.; Gregg, A. Nectary structure and nectar secretion in Maxillaria coccinea (Jacq.) L.O.Williams ex Hodge (Orchidaceae). Ann. Bot. 2004, 93, 87–95. [Google Scholar] [CrossRef] [Green Version]
  11. Singer, R.B.; Koehler, S. Pollinarium morphology and floral rewards in Brazilian Maxillariinae (Orchidaceae). Ann. Bot. 2004, 93, 39–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  12. Lipińska, M.M.; Kowalkowska, A.K. Floral morphology and micromorphology of selected Maxillaria species (Maxillariinae, Orchidaceae). Wulfenia 2018, 25, 242–272. [Google Scholar]
  13. Lipińska, M.M.; Archila, F.L.; Haliński, Ł.P.; Łuszczek, D.; Szlachetko, D.L.; Kowalkowska, A.K. Ornithophily in the subtribe Maxillariinae (Orchidaceae) proven with a case study of Ornithidium fulgens in Guatemala. Sci. Rep. 2022, 12, 5273. [Google Scholar] [CrossRef] [PubMed]
  14. Davies, K.L.; Turner, M.P. Morphology of floral papillae in Maxillaria Ruiz & Pav. (Orchidaceae). Ann. Bot. 2004, 93, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Flach, A.; Dondon, R.C.; Singer, R.B.; Koehler, S.; Amaral, M.D.C.E.; Marsaioli, A.J. The chemistry of pollination in selected Brazilian Maxillariinae orchids: Floral rewards and fragrance. J. Chem. Ecol. 2004, 30, 1045–1056. [Google Scholar] [CrossRef]
  16. Gerlach, G.; Schill, R. Composition of orchid scents attracting euglossine bees. Bot. Acta 1991, 104, 379–384. [Google Scholar] [CrossRef]
  17. Kaiser, R. The Scent of Orchids: Olfactory and Chemical Investigations; Elsevier Science Publishers BV: Amsterdam, The Netherlands, 1993. [Google Scholar]
  18. Pansarin, E.R.; Pedro, S.R.; Davies, K.L.; Stpiczyńska, M. Evidence of floral rewards in Brasiliorchis supports the convergent evolution of food-hairs in Maxillariinae. Am. J. Bot. 2022, 109, 806–820. [Google Scholar] [CrossRef] [PubMed]
  19. Schwikkard, S.L.; Waratchareeyakul, W.; Knirsch, W.; Mulholland, D.A. Chemical constituents from Maxillaria porphyrostele (Orchidaceae). Planta Med. 2014, 80, PD117. [Google Scholar] [CrossRef]
  20. Lipińska, M.M.; Gołębiowski, M.; Szlachetko, D.L.; Kowalkowska, A.K. Floral attractants in the black orchid Brasiliorchis schunkeana (Orchidaceae, Maxillariinae): Clues for presumed sapromyophily and potential antimicrobial activity. BMC Plant Biol. 2022, 22, 575. [Google Scholar] [CrossRef]
  21. Radice, M.; Scalvenzi, L.; Gutiérrez, D. Ethnopharmacology, bioactivity and phytochemistry of Maxillaria densa Lindl. Scientific review and Biotrading in the neotropics. Colomb. For. 2020, 23, 20–33. [Google Scholar] [CrossRef]
  22. Krahl, A.H.; de Holanda, A.S.; Krahl, D.R.; Martucci, M.E.; Gobbo-Neto, L.; Webber, A.C.; Pansarin, E.R. Study of the reproductive biology of an Amazonian Heterotaxis (Orchidaceae) demonstrates the collection of resin-like material by stingless bees. Plant Syst. Evol. 2019, 305, 281–291. [Google Scholar] [CrossRef]
  23. Lipińska, M.M.; Wiśniewska, N.; Gołębiowski, M.; Narajczyk, M.; Kowalkowska, A.K. Floral micromorphology, histochemistry, ultrastructure and chemical composition of floral secretions in three Neotropical Maxillariella species (Orchidaceae). Bot. J. Linn. Soc. 2021, 196, 53–80. [Google Scholar] [CrossRef]
  24. Perraudin, F.; Popovici, J.; Bertrand, C. Analysis of headspace-solid microextracts from flowers of Maxillaria tenuifolia Lindl. by GC-MS. Electron. J. Nat. Subst. 2006, 1, 1–5. [Google Scholar]
  25. Kim, S.Y.; Ramya, M.; An, H.R.; Park, P.M.; Lee, S.Y.; Park, S.Y.; Park, P.H. Floral volatile compound accumulation and gene expression analysis of Maxillaria tenuifolia. Korean J. Hortic. Sci. Technol. 2019, 37, 756–766. [Google Scholar] [CrossRef]
  26. Li, C.Y. Constituents of the flower of Maxillaria tenuifolia and their anti-diabetic activity. Rec. Nat. Prod. 2022, 16, 247–252. [Google Scholar] [CrossRef]
  27. Flach, A.; Marsaioli, A.J.; Singer, R.B.; Amaral, M.D.C.E.; Menezes, C.; Kerr, W.E.; Batista-Pereira, L.G.; Corrêa, A.G. Pollination by sexual mimicry in Mormolyca ringens: A floral chemistry that remarkably matches the pheromones of virgin queens of Scaptotrigona sp. J. Chem. Ecol. 2006, 32, 59–70. [Google Scholar] [CrossRef]
  28. Koopowitz, H. Orchids and Their Conservation; Timber Press: Portland, OR, USA, 2001. [Google Scholar]
  29. Estrada, S.; López-Guerrero, J.J.; Villalobos-Molina, R.; Mata, R. Spasmolytic stilbenoids from Maxillaria densa. Fitoterapia 2004, 75, 690–695. [Google Scholar] [CrossRef] [PubMed]
  30. Kovács, A.; Vasas, A.; Hohmann, J. Natural phenanthrenes and their biological activity. Phytochemistry 2008, 69, 1084–1110. [Google Scholar] [CrossRef] [PubMed]
  31. Zavala-Sanchez, M.A.; Pérez-Gutiérrez, S.; Perez-González, C.; Sánchez-Saldivar, D.; Arias-García, L. Antidiarrhoeal activity of nonanal, an aldehyde isolated from Artemisia ludoviciana. Pharm. Biol. 2002, 40, 263–268. [Google Scholar] [CrossRef]
  32. Zhang, J.H.; Sun, H.L.; Chen, S.Y.; Zeng, L.; Wang, T.T. Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Bot. Stud. 2017, 58, 13. [Google Scholar] [CrossRef] [Green Version]
  33. Kochi, M.; Takeuchi, S.; Mizutani, T.; Mochizuki, K.; Matsumoto, Y.; Saito, Y. Antitumor activity of benzaldehyde. Cancer Treat. Rep. 1980, 64, 21–23. [Google Scholar]
  34. Neto, L.J.L.; Ramos, A.G.B.; Freitas, T.S.; Barbosa, C.R.D.S.; de Sousa Júnior, D.L.; Siyadatpanah, A.; Nejat, M.; Wilairatana, P.; Coutinho, H.D.M.; da Cunha, F.A.B. Evaluation of benzaldehyde as an antibiotic modulator and its toxic effect against Drosophila melanogaster. Molecules 2021, 26, 5570. [Google Scholar] [CrossRef]
  35. Cho, J.Y.; Moon, J.H.; Park, K.H. Isolation and identification of 3-methoxy-4-hydroxybenzoic acid and 3-methoxy-4-hydroxycinnamic acid from hot water extracts of Hovenia dulcis Thunb and confirmation of their antioxidative and antimicrobial activity. Korean J. Food Sci. Technol. 2000, 32, 1403–1408. [Google Scholar]
  36. Ji-Hyang, W. Identification of 3-methoxy-4-hydroxybenzoic acid and 4-hydroxybenzoic acid with antioxidative and antimicrobial activity from Arachis hypogaea Shell. Korean J. Biotechnol. Bioeng. 2000, 15, 464–468. [Google Scholar]
  37. Kim, S.J.; Kim, M.C.; Um, J.Y.; Hong, S.H. The beneficial effect of vanillic acid on ulcerative colitis. Molecules 2010, 15, 7208–7217. [Google Scholar] [CrossRef] [PubMed]
  38. Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Watari, A.; Kobayashi, M.; Tamesada, M.; Yagi, K. Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury. Biol. Pharm. Bull. 2010, 33, 983–987. [Google Scholar] [CrossRef] [Green Version]
  39. Sharma, N.; Tiwari, N.; Vyas, M.; Khurana, N.; Muthuraman, A.; Utreja, P. An overview of therapeutic effects of vanillic acid. Plant Arch. 2020, 20 (Suppl. S2), 3053–3059. [Google Scholar]
  40. Sheela, D.; Uthayakumari, F. GC-MS analysis of bioactive constituents from coastal sand dune taxon Sesuvium portulacastrum (L.) L. Biosci. Discov. 2013, 4, 47–53. [Google Scholar]
  41. Ahmed, A.; Akbar, S.; Shah, W.A. Chemical composition and pharmacological potential of aromatic water from Salix caprea inflorescence. Chin. J. Integr. Med. 2017, 1–5. [Google Scholar] [CrossRef] [PubMed]
  42. Björkhem, I.; Henriksson-Freyschuss, A.; Breuer, O.; Diczfalusy, U.; Berglund, L.; Henriksson, P. The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler. Thromb. J. Vasc. Biol. 1991, 11, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Huang, Y.; Sun, C.; Guan, X.; Lian, S.; Li, B.; Wang, C. Butylated hydroxytoluene induced resistance against Botryosphaeria dothidea in apple fruit. Front. Microbiol. 2021, 11, 599062. [Google Scholar] [CrossRef]
  44. Liu, L.; Hudgins, W.R.; Shack, S.; Yin, M.Q.; Samid, D. Cinnamic acid: A natural product with potential use in cancer intervention. Int. J. Cancer 1995, 62, 345–350. [Google Scholar] [CrossRef]
  45. De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents-a review. Curr. Med. Chem. 2011, 18, 1672–1703. [Google Scholar] [CrossRef] [PubMed]
  46. Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
  47. Kim, H.; Lee, B.; Yun, K.W. Comparison of chemical composition and antimicrobial activity of essential oils from three Pinus species. Ind. Crops Prod. 2013, 44, 323–329. [Google Scholar] [CrossRef]
  48. Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992, 13, 435–448. [Google Scholar] [CrossRef] [PubMed]
  49. Ou, S.; Kwok, K.C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 2004, 84, 1261–1269. [Google Scholar] [CrossRef]
  50. Kuppusamy, P.; Soundharrajan, I.; Kim, D.H.; Hwang, I.; Choi, K.C. 4-hydroxy-3-methoxy cinnamic acid accelerate myoblasts differentiation on C2C12 mouse skeletal muscle cells via AKT and ERK 1/2 activation. Phytomedicine 2014, 60, 152873. [Google Scholar] [CrossRef]
  51. Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini Rev. Med. Chem. 2018, 18, 9–25. [Google Scholar] [CrossRef]
  52. Lee, H.S. p-Anisaldehyde: Acaricidal component of Pimpinella anisum seed oil against the house dust mites Dermatophagoides farinae and Dermatophagoides pteronyssinus. Planta Med. 2004, 70, 279–281. [Google Scholar] [CrossRef]
  53. Showler, A.T.; Harlien, J.L. Lethal and repellent effects of the botanical p-anisaldehyde on Musca domestica (Diptera: Muscidae). J. Econ. Entomol. 2019, 112, 485–493. [Google Scholar] [CrossRef]
  54. Adewunmi, Y.; Namjilsuren, S.; Walker, W.D.; Amato, D.N.; Amato, D.V.; Mavrodi, O.V.; Patton, D.L.; Mavrodi, D.V. Antimicrobial activity of, and cellular pathways targeted by, p-anisaldehyde and epigallocatechin gallate in the opportunistic human pathogen Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2020, 86, e02482-19. [Google Scholar] [CrossRef]
  55. Lin, Y.; Huang, R.; Sun, X.; Yu, X.; Xiao, Y.; Wang, L.; Hu, W.; Zhong, T. The p-Anisaldehyde/β-cyclodextrin inclusion complexes as a sustained release agent: Characterization, storage stability, antibacterial and antioxidant activity. Food Control 2022, 132, 108561. [Google Scholar] [CrossRef]
  56. Fitton, A.; Goa, K.L. Azelaic acid. Drugs 1991, 41, 780–798. [Google Scholar] [CrossRef]
  57. Lee, J.H.; Kim, Y.G.; Khadke, S.K.; Lee, J. Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol. Microb. Biotechnol. 2021, 14, 1353–1366. [Google Scholar] [CrossRef] [PubMed]
  58. Jang, Y.W.; Jung, J.Y.; Lee, I.K.; Kang, S.Y.; Yun, B.S. Nonanoic acid, an antifungal compound from Hibiscus syriacus Ggoma. Mycobiology 2012, 40, 145–146. [Google Scholar] [CrossRef] [Green Version]
  59. Isaacs, C.E.; Litov, R.E.; Thormar, H. Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. J. Nutr. Biochem. 1995, 6, 362–366. [Google Scholar] [CrossRef]
  60. Nair, M.K.M.; Joy, J.; Vasudevan, P.; Hinckley, L.; Hoagland, T.A.; Venkitanarayanan, K.S. Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. J. Dairy Sci. 2005, 88, 3488–3495. [Google Scholar] [CrossRef] [PubMed]
  61. Altinoz, M.A.; Ozpinar, A.; Seyfried, T.N. Caprylic (Octanoic) Acid as a potential fatty acid chemotherapeutic for glioblastoma. Prostaglandins Leukot. Essent. Fatty Acids 2020, 159, 102142. [Google Scholar] [CrossRef]
  62. López-Velázquez, J.G.; Ayón-Reyna, L.E.; Vega-García, M.O.; López-Angulo, G.; López-López, M.E.; López-Zazueta, B.A.; Delgado-Vargas, F. Caprylic acid in Vitex mollis fruit and its inhibitory activity against a thiabendazole-resistant Colletotrichum gloeosporioides strain. Pest. Manag. Sci. 2022, 78, 5271–5280. [Google Scholar] [CrossRef]
  63. Kang, W.; Choi, D.; Park, T. Dietary suberic acid protects against UVB-induced skin photoaging in hairless mice. Nutrients 2019, 11, 2948. [Google Scholar] [CrossRef]
  64. Stenz, L.; François, P.; Fischer, A.; Huyghe, A.; Tangomo, M.; Hernandez, D.; Cassat, J.; Linder, P.; Schrenzel, J. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol. Lett. 2008, 287, 149–155. [Google Scholar] [CrossRef] [Green Version]
  65. Pan, S.W.; Li, Y.G.; Su, H.; Li, X.; Zhang, Y.B. Oleic acid impedes adhesion of Porphyromonas gingivalis during the early stages of biofilm formation. Int. J. Clin. Exp. Med. 2019, 12, 9881–9889. [Google Scholar]
  66. Ghavam, M.; Afzali, A.; Manca, M.L. Chemotype of damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. Sci. Rep. 2021, 11, 8027. [Google Scholar] [CrossRef] [PubMed]
  67. Jenkins, B.; West, J.A.; Koulman, A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15: 0) and heptadecanoic acid (C17: 0) in health and disease. Molecules 2015, 20, 2425–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  68. Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef] [PubMed]
  69. Ravi, L.; Krishnan, K. Research article cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J. Cell Biol. 2017, 12, 20–27. [Google Scholar] [CrossRef] [Green Version]
  70. Bharath, B.; Perinbam, K.; Devanesan, S.; AlSalhi, M.S.; Saravanan, M. Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. J. Mol. Struct. 2021, 1235, 130229. [Google Scholar] [CrossRef]
  71. Sivakumar, R.; Jebanesan, A.; Govindarajan, M.; Rajasekar, P. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) (Diptera: Culicidae). Asian Pac. J. Trop. Med. 2011, 4, 706–710. [Google Scholar] [CrossRef] [Green Version]
  72. Linton, R.E.A.; Jerah, S.L.; Bin Ahmad, I. The effect of combination of octadecanoic acid, methyl ester and ribavirin against measles virus. Int. J. Sci. Tech. Res. 2013, 2, 181–184. [Google Scholar]
  73. Zhou, X.; Chen, B.; Li, R.; Xiang, Z. Determination of terpenes in traditional chinese medicine (TCM) by comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC) coupled to high-resolution quadrupole time-of-flight mass spectrometry (QTOFMS) with orthogonal partial least squares–discrimination analysis (OPLS-DA). Anal. Lett. 2022, 55, 2621–2638. [Google Scholar] [CrossRef]
  74. Labbozzetta, M.; Poma, P.; Tutone, M.; McCubrey, J.A.; Sajeva, M.; Notarbartolo, M. Phytol and heptacosane are possible tools to overcome multidrug resistance in an in vitro model of acute myeloid leukemia. Pharmaceuticals 2022, 15, 356. [Google Scholar] [CrossRef]
  75. Siyumbwa, S.N.; Ekeuku, S.O.; Amini, F.; Emerald, N.M.; Sharma, D.; Okechukwu, P.N. Wound healing and antibacterial activities of 2-Pentadecanone in streptozotocin-induced Type 2 diabetic rats. Pharmacogn. Mag. 2019, 15, 71–77. [Google Scholar]
  76. Sareh, K. Evaluation of Wound Healing Potential, Antioxidant Activity, Acute Toxicity and Gastro Protective Effect of 2-pentadecanone in Ethanol Induced Gastric Mucosal Ulceration in Rats. Doctoral Dissertation, Universiti Malaya, Kuala Lumpur, Malaya, 2020. [Google Scholar]
  77. Castaneda, F.; Zimmermann, D.; Nolte, J.; Baumbach, J.I. Role of undecan-2-one on ethanol-induced apoptosis in HepG2 cells. Cell Biol. Toxicol. 2007, 23, 477–485. [Google Scholar] [CrossRef] [PubMed]
  78. Ahmed, S.B.H.; Sghaier, R.M.; Guesmi, F.; Kaabi, B.; Mejri, M.; Attia, H.; Laouini, D.; Smaali, I. Evaluation of antileishmanial, cytotoxic and antioxidant activities of essential oils extracted from plants issued from the leishmaniasis-endemic region of Sned (Tunisia). Nat. Prod. Res. 2011, 25, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
  79. Tian, J.; Zeng, X.; Feng, Z.; Miaoa, X.; Peng, X.; Wang, Y. Zanthoxylum molle Rehd. essential oil as a potential natural preservative in management of Aspergillus flavus. Ind. Crops Prod. 2014, 60, 151–159. [Google Scholar] [CrossRef]
  80. Popova, A.A.; Koksharova, O.A.; Lipasova, V.A.; Zaitseva, J.V.; Katkova-Zhukotskaya, O.A.; Eremina, S.I.; Mironov, A.S.; Chernin, L.S.; Khmel, I.A. Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. Biomed. Res. Int. 2014, 2014, 125704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  81. Lou, Y.; Guo, Z.; Zhu, Y.; Kong, M.; Zhang, R.; Lu, L.; Wu, F.; Liu, Z.; Wu, J. Houttuynia cordata Thunb. and its bioactive compound 2-undecanone significantly suppress benzo (a) pyrene-induced lung tumorigenesis by activating the Nrf2-HO-1/NQO-1 signaling pathway. J. Exp. Clin. Cancer. Res. 2019, 38, 242. [Google Scholar] [CrossRef]
  82. Wu, X.; Li, J.; Wang, S.; Jiang, L.; Sun, X.; Liu, X.; Yao, X.; Zhang, C.; Wang, N.; Yang, G. 2-Undecanone protects against fine particle-induced kidney inflammation via inducing mitophagy. J. Agric. Food Chem. 2021, 69, 5206–5215. [Google Scholar] [CrossRef]
  83. Rajasekharan, S.K.; Shemesh, M. The bacillary postbiotics, including 2-Undecanone, suppress the virulence of pathogenic microorganisms. Pharmaceutics 2022, 14, 962. [Google Scholar] [CrossRef]
  84. Liu, S.; Zhao, Y.; Cui, H.F.; Cao, C.Y.; Zhang, Y.B. 4-Terpineol exhibits potent in vitro and in vivo anticancer effects in Hep-G2 hepatocellular carcinoma cells by suppressing cell migration and inducing apoptosis and sub-G1 cell cycle arrest. J. Buon. 2016, 21, 1195–1202. [Google Scholar]
  85. Su, C.W.; Tighe, S.; Sheha, H.; Cheng, A.M.; Tseng, S.C. Safety and efficacy of 4-terpineol against microorganisms associated with blepharitis and common ocular diseases. BMJ Open Ophthalmol. 2018, 3, e000094. [Google Scholar] [CrossRef] [Green Version]
  86. Cavaleiro, C.; Salgueiro, L.; Gonçalves, M.J.; Hrimpeng, K.; Pinto, J.; Pinto, E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J. Nat. Med. 2015, 69, 241–248. [Google Scholar] [CrossRef] [PubMed]
  87. Igimi, H.; Tamura, R.; Toraishi, K.; Yamamoto, F.; Kataoka, A.; Ikejiri, Y.; Hisatsugu, T.; Shimura, H. Medical dissolution of gallstones. Digest. Dis. Sci. 1991, 36, 200–208. [Google Scholar] [CrossRef] [PubMed]
  88. Vuuren, S.V.; Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1, 8-cineole alone and in combination. Flavour Fragr. J. 2007, 22, 540–544. [Google Scholar] [CrossRef]
  89. Miller, J.A.; Thompson, P.A.; Hakim, I.A.; Chow, H.H.S.; Thomson, C.A. d-Limonene: A bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment. Oncol. Rev. 2011, 5, 31–42. [Google Scholar] [CrossRef]
  90. Jing, L.; Zhang, Y.; Fan, S.; Gu, M.; Guan, Y.; Lu, X.; Huang, C.; Zhou, Z. Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity. Eur. J. Pharmacol. 2013, 715, 46–55. [Google Scholar] [CrossRef]
  91. Subramenium, G.A.; Vijayakumar, K.; Pandian, S.K. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J. Med. Microbiol. 2015, 64, 879–890. [Google Scholar] [CrossRef]
  92. De Souza, M.C.; Vieira, A.J.; Beserra, F.P.; Pellizzon, C.H.; Nóbrega, R.H.; Rozza, A.L. Gastroprotective effect of limonene in rats: Influence on oxidative stress, inflammation and gene expression. Phytomedicine 2019, 53, 37–42. [Google Scholar] [CrossRef]
  93. Ye, Z.; Liang, Z.; Mi, Q.; Guo, Y. Limonene terpenoid obstructs human bladder cancer cell (T24 cell line) growth by inducing cellular apoptosis, caspase activation, G2/M phase cell cycle arrest and stops cancer metastasis. J. Buon. 2020, 25, 280–285. [Google Scholar]
  94. Yu, L.; Yan, J.; Sun, Z. D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways. Mol. Med. Rep. 2017, 15, 2339–2346. [Google Scholar] [CrossRef] [Green Version]
  95. Mulyaningsih, S.; Sporer, F.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic properties of the terpenoids aromadendrene and 1, 8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 2010, 17, 1061–1066. [Google Scholar] [CrossRef]
  96. Lima, P.R.; de Melo, T.S.; Carvalho, K.M.; de Oliveira, Í.B.; Arruda, B.R.; de Castro Brito, G.A.; Rao, V.S.; Santos, F.A. 1,8-cineole (eucalyptol) ameliorates cerulein-induced acute pancreatitis via modulation of cytokines, oxidative stress and NF-κB activity in mice. Life Sci. 2013, 92, 1195–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Cai, Z.M.; Peng, J.Q.; Chen, Y.; Tao, L.; Zhang, Y.Y.; Fu, L.Y.; Long, Q.D.; Shen, X.C. 1, 8-Cineole: A review of source, biological activities, and application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef] [PubMed]
  98. De Oliveira Ramalho, T.R.; de Oliveira, M.T.P.; de Araujo Lima, A.L.; Bezerra-Santos, C.R.; Piuvezam, M.R. Gamma-terpinene modulates acute inflammatory response in mice. Planta Med. 2015, 81, 1248–1254. [Google Scholar] [CrossRef] [Green Version]
  99. Zochedh, A.; Priya, M.; Shunmuganarayanan, A.; Thandavarayan, K.; Sultan, A.B. Investigation on structural, spectroscopic, DFT, biological activity and molecular docking simulation of essential oil Gamma-Terpinene. J. Mol. Struct. 2022, 1268, 133651. [Google Scholar] [CrossRef]
  100. Peana, A.T.; Paolo, S.D.; Chessa, M.L.; Moretti, M.D.; Serra, G.; Pippia, P. (−)-Linalool produces antinociception in two experimental models of pain. Eur. J. Pharmacol. 2003, 460, 37–41. [Google Scholar] [CrossRef]
  101. Herman, A.; Tambor, K.; Herman, A. Linalool affects the antimicrobial efficacy of essential oils. Curr. Microbiol. 2016, 72, 165–172. [Google Scholar] [CrossRef]
  102. Quintans, J.D.S.S.; Menezes, P.P.; Santos, M.R.V.; Bonjardim, L.R.; Almeida, J.R.G.S.; Gelain, D.P.; de Souza Araújo, A.A.; Quintans-Júnior, L.J. Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin. Phytomedicine 2013, 20, 436–440. [Google Scholar] [CrossRef] [Green Version]
  103. Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef]
  104. Balahbib, A.; El Omari, N.; Hachlafi, N.E.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Naceiri Mrabtig, H.; Bakrimh, S.; Zengini, G.; Bouyahya, A. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef]
  105. da Silva Rivas, A.C.; Lopes, P.M.; de Azevedo Barros, M.M.; Costa Machado, D.C.; Alviano, C.S.; Alviano, D.S. Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [Green Version]
  106. Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.L.D.; Jayaweera, S.A.; Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.C.; et al. Therapeutic potential of α- and β-Pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  107. Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
  108. Sales, A.; Felipe, L.D.O.; Bicas, J.L. Production, properties, and applications of α-terpineol. Food Bioproc. Tech. 2020, 13, 1261–1279. [Google Scholar] [CrossRef]
  109. Podlogar, J.A.; Verspohl, E.J. Antiinflammatory effects of ginger and some of its components in human bronchial epithelial (BEAS-2B) cells. Phytother. Res. 2012, 26, 333–336. [Google Scholar] [CrossRef] [PubMed]
  110. Govindarajan, M.; Rajeswary, M.; Benelli, G. δ-Cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb. Chem. High Throughput Screen. 2016, 19, 565–571. [Google Scholar] [CrossRef] [PubMed]
  111. Küçükbay, F.Z.; Kuyumcu, E.; Bilenler, T.; Yıldız, B. Chemical composition and antimicrobial activity of essential oil of Achillea cretica L. (Asteraceae) from Turkey. Nat. Prod. Res. 2012, 26, 1668–1675. [Google Scholar] [CrossRef]
  112. Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine 2010, 17, 149–151. [Google Scholar] [CrossRef]
  113. Fidyt, K.; Fiedorowicz, A.; Strzadala, L.; Szumny, S. β-caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef]
  114. Karakaya, S.; Yilmaz, S.V.; Özdemir, Ö.; Koca, M.; Pınar, N.M.; Demirci, B.; Yıldırım, K.; Sytar, O.; Turkez, H.; Baser, K.H.C. A caryophyllene oxide and other potential anticholinesterase and anticancer agent in Salvia verticillata subsp. amasiaca (Freyn & Bornm.) Bornm.(Lamiaceae). J. Essent. Oil Res. 2020, 32, 512–525. [Google Scholar] [CrossRef]
  115. Yang, D.; Michel, L.; Chaumont, J.P.; Millet-Clerc, J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia 2000, 148, 79–82. [Google Scholar] [CrossRef]
  116. Delgado, C.; Mendez-Callejas, G.; Celis, C. Caryophyllene oxide, the active compound isolated from leaves of Hymenaea courbaril L. (Fabaceae) with antiproliferative and apoptotic effects on PC-3 androgen-independent prostate cancer cell line. Molecules 2021, 26, 6142. [Google Scholar] [CrossRef] [PubMed]
  117. Legault, J.; Pichette, A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol. 2007, 59, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
  118. Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
  119. Gu, H.J.; Cheng, S.S.; Huang, C.G.; Chen, W.J.; Chang, S.T. Mosquito larvicidal activities of extractives from black heartwood-type Cryptomeria japonica. Parasitol. Res. 2009, 105, 1455–1458. [Google Scholar] [CrossRef] [PubMed]
  120. Turkez, H.; Togar, B.; Tatar, A.; Geyıkoglu, F.; Hacımuftuoglu, A. Cytotoxic and cytogenetic effects of α-copaene on rat neuron and N2a neuroblastoma cell lines. Biologia 2014, 69, 936–942. [Google Scholar] [CrossRef]
  121. Legault, J.; Dahl, W.; Debiton, E.; Pichette, A.; Madelmont, J.C. Antitumor activity of balsam fir oil: Production of reactive oxygen species induced by α-humulene as possible mechanism of action. Planta Med. 2003, 69, 402–407. [Google Scholar] [CrossRef]
  122. Rogerio, A.P.; Andrade, E.L.; Leite, D.F.; Figueiredo, C.P.; Calixto, J.B. Preventive and therapeutic anti-inflammatory properties of the sesquiterpene α-humulene in experimental airways allergic inflammation. Br. J. Pharmacol. 2009, 158, 1074–1087. [Google Scholar] [CrossRef] [Green Version]
  123. Jang, H.I.; Rhee, K.J.; Eom, Y.B. Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Can. J. Microbiol. 2020, 66, 389–399. [Google Scholar] [CrossRef]
  124. De Lacerda Leite, G.M.; de Oliveira Barbosa, M.; Lopes, M.J.P.; de Araújo Delmondes, G.; Bezerra, D.S.; Araújo, I.M.; de Alencara, C.D.C.; Coutinhoa, H.D.M.; Peixotob, L.R.; Filhob, J.M.B.; et al. Pharmacological and toxicological activities of α-humulene and its isomers: A systematic review. Trends Food Sci. Technol. 2021, 115, 255–274. [Google Scholar] [CrossRef]
  125. Chen, X.; Huang, C.; Li, K.; Liu, J.; Zheng, Y.; Feng, Y.; Kai, G. Recent advances in biosynthesis and pharmacology of β-elemene. Phytochem. Rev. 2022, 1–18. [Google Scholar] [CrossRef]
  126. Qi, X.; Jiang, S.; Hui, Z.; Gao, Y.; Ye, Y.; Lirussi, F.; Garrido, C.; Xu, L.; He, X.; Bai, R.; et al. Design, synthesis and antitumor efficacy evaluation of a series of novel β-elemene-based macrocycles. Bioorg. Med. Chem. 2022, 74, 117049. [Google Scholar] [CrossRef] [PubMed]
  127. Chatuphonprasert, W.; Tatiya-aphiradee, N.; Thammawat, S.; Yongram, C.; Puthongking, P.; Jarukamjorn, K. Antibacterial and wound healing activity of Dipterocarpus alatus Crude extract against methicillin-resistant Staphylococcus aureus-induced superficial skin infection in mice. J. Skin Stem Cell 2019, 6, e99579. [Google Scholar] [CrossRef] [Green Version]
  128. Ciftci, O.; Ozdemir, I.; Tanyildizi, S.; Yildiz, S.; Oguzturk, H. Antioxidative effects of curcumin, β-myrcene and 1, 8-cineole against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol. Ind. Health 2011, 27, 447–453. [Google Scholar] [CrossRef] [PubMed]
  129. Pérez-López, A.; Torres Cirio, A.; Rivas-Galindo, A.M.; Salazar Aranda, R.; Waksman de Torres, N. Activity against Streptococcus pneumoniae of the essential oil and δ-Cadinene isolated from Schinus molle fruit. J. Essent. Oil Res. 2011, 23, 25–28. [Google Scholar] [CrossRef]
  130. Xie, C.Y.; Yang, W.; Ying, J.; Ni, Q.C.; Pan, X.D.; Dong, J.H.; Li, K.; Wang, X.S. B-cell lymphoma-2 over-expression protects δ-elemene-induced apoptosis in human lung carcinoma mucoepidermoid cells via a nuclear factor kappa B-related pathway. Biol. Pharm. Bull. 2011, 34, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
  131. Ricci, D.; Fraternale, D.; Giamperi, L.; Bucchini, A.; Epifano, F.; Burini, G.; Curini, M. Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). J. Ethnopharmacol. 2004, 98, 195–200. [Google Scholar] [CrossRef]
  132. Estrada, S.; Toscano, R.A.; Mata, R. New phenanthrene derivatives from Maxillaria densa. J. Nat. Prod. 1999, 62, 1175–1178. [Google Scholar] [CrossRef]
  133. Déciga-Campos, M.; Palacios-Espinosa, J.F.; Reyes Ramírez, A.; Mata, R. Antinociceptive and anti-inflammatory effects of compounds isolated from Scaphyglottis livida and Maxillaria densa. J. Ethnopharmacol. 2007, 114, 161–168. [Google Scholar] [CrossRef]
  134. Bodnar, J.R. Endogenous opiates and behavior: 2007. Peptides 2008, 29, 2292–2375. [Google Scholar] [CrossRef]
  135. Rendón-Vallejo, P.; Hernández-Abreu, O.; Vergara-Galicia, J.; Millán-Pacheco, C.; Mejia, A.; Ibarra-Barajas, M.; Estrada-Soto, S. Ex vivo study of the vasorelaxant activity induced by phenanthrene derivatives isolated from Maxillaria densa. J. Nat. Prod. 2012, 75, 2241–2245. [Google Scholar] [CrossRef]
  136. Boonjing, S.; Pothongsrisit, S.; Wattanathamsan, O.; Sritularak, B.; Pongrakhananon, V. Erianthridin induces non-small cell lung cancer cell apoptosis through the suppression of extracellular signal-regulated kinase activity. Planta Med. 2021, 87, 283–293. [Google Scholar] [CrossRef] [PubMed]
  137. Pothongsrisit, S.; Arunrungvichian, K.; Hayakawa, Y.; Sritularak, B.; Mangmool, S.; Pongrakhananon, V. Erianthridin suppresses non-small-cell lung cancer cell metastasis through inhibition of Akt/mTOR/p70S6K signaling pathway. Sci. Rep. 2021, 11, 6618. [Google Scholar] [CrossRef] [PubMed]
  138. Chen, C.C.; Huang, Y.L.; Teng, C.M. Antiplatelet aggregation principles from Ephemerantha lonchophylla. Planta Med. 2000, 66, 372–374. [Google Scholar] [CrossRef]
  139. Mata, R.; Figueroa, M.; Gonzáez-Andrade, M.; Rivera-Cháez, J.A.; Madariaga-Mazón, A.; Del Valle, P. Calmodulin inhibitors from natural sources: An Update. J. Nat. Prod. 2014, 78, 576–586. [Google Scholar] [CrossRef] [PubMed]
  140. Zhang, Y.; Zhang, Q.; Xin, W.; Liu, N.; Zhang, H. Nudol, a phenanthrene derivative from Dendrobium nobile, induces cell cycle arrest and apoptosis and inhibits migration in osteosarcoma cells. Drug Des. Devel. Ther. 2019, 13, 2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  141. Jeong, J.B.; Hong, S.C.; Jeong, H.J.; Koo, J.S. Anti-inflammatory effect of 2-methoxy-4-vinylphenol via the suppression of NF-κB and MAPK activation, and acetylation of histone H3. Arch. Pharm. Res. 2011, 34, 2109–2116. [Google Scholar] [CrossRef]
  142. Kim, D.H.; Han, S.I.; Go, B.; Oh, U.H.; Kim, C.S.; Jung, Y.H.; Lee, J.; Kim, J.H. 2-methoxy-4-vinylphenol attenuates migration of human pancreatic cancer cells via blockade of fak and akt signaling. Anticancer Res. 2019, 39, 6685–6691. [Google Scholar] [CrossRef]
  143. Afifi, F.U.; Shervington, A.; Darwish, R. Phytochemical and biological evaluation of Arum palaestinum. Part. 1: Flavone C-glycosides. Acta Tech. Leg. Med. 1997, 8, 105–112. [Google Scholar]
  144. Afifi, F.U.; Khalil, E.; Abdalla, S. Effect of isoorientin isolated from Arum palaestinum on uterine smooth muscle of rats and guinea pigs. J. Ethnopharmacol. 1999, 65, 173–177. [Google Scholar] [CrossRef]
  145. Mohammedamin, H. The main bioactive constituents of traditional kurdish plant Achellia oligocephala DC.: Their antiproliferative and antioxidant activities. Zanco J. Pure Appl. Sci. 2020, 32, 106–117. [Google Scholar] [CrossRef]
  146. Won, J.H.; Kim, J.Y.; Yun, K.J.; Lee, J.H.; Back, N.I.; Chung, H.G.; Chung, S.A.; Jeong, T.S.; Choi, M.S.; Lee, K.T. Gigantol isolated from the whole plants of Cymbidium goeringii inhibits the LPS-induced iNOS and COX-2 expression via NF-κB inactivation in RAW 264.7 macrophages cells. Planta Med. 2006, 72, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
  147. Chen, M.-F.; Liou, S.-S.; Hong, T.-Y.; Kao, S.-T.; Liu, I.-M. Gigantol has protective effects against high glucose-evoked nephrotoxicity in mouse Glomerulus mesangial cells by suppressing ROS/MAPK/NF-κB signaling pathways. Molecules 2019, 24, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  148. Zhao, M.; Sun, Y.; Gao, Z.; Cui, H.; Chen, J.; Wang, M.; Wang, Z. Gigantol attenuates the metastasis of human bladder cancer cells, possibly through Wnt/EMT signaling. Onco Targets Ther. 2020, 13, 11337. [Google Scholar] [CrossRef] [PubMed]
  149. Choi, J.M.; Lee, E.O.; Lee, H.J.; Kim, K.H.; Ahn, K.S.; Shim, B.S.; Kim, N.-I.; Song, M.-C.; Baek, N.-I.; Kim, S.H. Identification of campesterol from Chrysanthemum coronarium L. and its antiangiogenic activities. Phytother. Res. 2007, 21, 954–959. [Google Scholar] [CrossRef] [PubMed]
  150. Panda, S.; Jafri, M.; Kar, A.; Meheta, B.K. Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia 2009, 80, 123–126. [Google Scholar] [CrossRef] [PubMed]
  151. Gabay, O.; Sanchez, C.; Salvat, C.; Chevy, F.; Breton, M.; Nourissat, G.; Wolf, C.; Jacques, C.; Berenbaum, F. Stigmasterol: A phytosterol with potential anti-osteoarthritic properties. Osteoarthr. Cartil. 2010, 18, 106–116. [Google Scholar] [CrossRef] [PubMed]
  152. Gopal, J.V.; Kannabiran, K. Interaction of 2, 5-Di-tert-butyl-1, 4-benzoquinone with selected antibacterial drug target enzymes by in silico molecular docking studies. Am. J. Drug. Discov. Dev. 2013, 3, 200–205. [Google Scholar] [CrossRef] [Green Version]
  153. Gopal, J.V.; Sanjenbam, P.; Kannabiran, K. Preclinical evaluation and molecular docking of 2, 5–di–tert–butyl–1, 4–benzoquinone (DTBBQ) from Streptomyces sp. VITVSK1 as a potent antibacterial agent. Int. J. Bioinform. Res. Appl. 2015, 11, 142–152. [Google Scholar] [CrossRef]
  154. Johnson-Ajinwo, O.R.; Ullah, I.; Mbye, H.; Richardson, A.; Horrocks, P.; Li, W.W. The synthesis and evaluation of thymoquinone analogues as anti-ovarian cancer and antimalarial agents. Bioorg. Med. Chem. Lett. 2018, 28, 1219–1222. [Google Scholar] [CrossRef]
  155. Rukhsana, K.; Varghese, V.; Akhilesh, V.P.; Jisha Krishnan, E.K.; Priya Bhaskaran, K.P.; Bindu, P.U.; Sebastian, C.D. GC-MS determination of chemical components in the bioactive secretion of Anoplodesmus saussurii (Humbert, 1865). Int. J. Pharm. Sci. Res. 2015, 6, 650–653. [Google Scholar]
  156. Rao, M.R.K.; Ravi, A.; Narayanan, S.; Prabhu, K.; Kalaiselvi, V.S.; Dinakar, S.; Rajan, G.; Kotteeswaran, N. Antioxidant study and GC MS analysis of an ayurvedic medicine ‘Talisapatradi choornam’. Int. J. Pharm. Sci. Rev. Res. 2016, 36, 158–166. [Google Scholar]
  157. Osama, A.; Awadelkarim, S.; Ali, A. Antioxidant activity, acetylcholinesterase inhibitory potential and phytochemical analysis of Sarcocephalus latifolius Sm. bark used in traditional medicine in Sudan. BMC Complement. Altern. Med. 2017, 17, 270. [Google Scholar] [CrossRef] [Green Version]
  158. Bonikowski, R.; Świtakowska, P.; Kula, J. Synthesis, odour evaluation and antimicrobial activity of some geranyl acetone and nerolidol analogues. Flavour Fragr. J. 2015, 30, 238–244. [Google Scholar] [CrossRef]
  159. Saad, S.B.; Ibrahim, M.A.; Jatau, I.D.; Shuaibu, M.N. Trypanostatic activity of geranylacetone: Mitigation of Trypanosoma congolense-associated pathological pertubations and insight into the mechanism of anaemia amelioration using in vitro and in silico models. Exp. Parasitol. 2019, 201, 49–56. [Google Scholar] [CrossRef] [PubMed]
  160. Vyas, A.; Syeda, K.; Ahmad, A.; Padhye, S.; Sarkar, F. Perspectives on medicinal properties of mangiferin. Mini Rev. Med. Chem. 2012, 12, 412–425. [Google Scholar] [CrossRef]
  161. Schieberle, P.; Grosch, W. Identification of potent flavor compounds formed in an aqueous lemon oil/citric acid emulsion. J. Agric. Food Chem. 1988, 36, 797–800. [Google Scholar] [CrossRef]
  162. Takeoka, G.R.; Flath, R.A.; Mon, T.R.; Teranishi, R.; Guentert, M. Volatile constituents of apricot (Prunus armeniaca). J. Agric. Food Chem. 1990, 38, 471–477. [Google Scholar] [CrossRef]
  163. Bruce, T.J.; Cork, A. Electrophysiological and behavioral responses of female Helicoverpa armigera to compounds identified in flowers of African marigold, Tagetes erecta. J. Chem. Ecol. 2001, 27, 1119–1131. [Google Scholar] [CrossRef]
  164. Valim, M.F.; Rouseff, R.L.; Lin, J. Gas chromatographic-olfactometric characterization of aroma compounds in two types of cashew apple nectar. J. Agric. Food Chem. 2003, 51, 1010–1015. [Google Scholar] [CrossRef]
  165. Verma, R.S.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Chauhan, A.; Bhukya, B. Natural benzaldehyde from Prunus persica (L.) Batsch. Int. J. Food Prop. 2017, 20, 1259–1263. [Google Scholar]
  166. Lei, W.; Luo, J.; Wu, K.; Chen, Q.; Hao, L.; Zhou, X.; Wang, X.; Liu, C.; Zhou, H. Dendrobium candidum extract on the bioactive and fermentation properties of Lactobacillus rhamnosus GG in fermented milk. Food Biosci. 2021, 41, 100987. [Google Scholar] [CrossRef]
  167. Robustelli della Cuna, F.S.; Calevo, J.; Bazzicalupo, M.; Sottani, C.; Grignani, E.; Preda, S. Chemical composition of essential oil from flowers of five fragrant Dendrobium (Orchidaceae). Plants 2021, 10, 1718. [Google Scholar] [CrossRef] [PubMed]
  168. Zapata, J.M.; Calderón, A.A.; Muñoz, R.; Barceló, A.R. Oxidation of natural hydroxybenzoic acids by grapevine peroxidases: Kinetic characteristics and substrate specificity. Am. J. Enol. Vitic. 1992, 43, 134–138. [Google Scholar]
  169. Pietta, P.G.; Gardana, C.; Mauri, P.L. Identification of Ginkgo biloba flavonol metabolites after oral administration to humans. J. Chromatogr. B Biomed. Sci. Appl. 1997, 693, 249–255. [Google Scholar] [CrossRef]
  170. Pietta, P.G.; Simonetti, P.; Gardana, C.; Brusamolino, A.; Morazzoni, P.; Bombardelli, E. Catechin metabolites after intake of green tea infusions. Biofactors 1998, 8, 111–118. [Google Scholar] [CrossRef]
  171. Alves, R.J.V.; Pinto, A.C.; Da Costa, A.V.M.; Rezende, C.M. Zizyphus mauritiana Lam. (Rhamnaceae) and the chemical composition of its floral fecal odor. J. Braz. Chem. Soc. 2005, 16, 654–656. [Google Scholar] [CrossRef] [Green Version]
  172. Daffodil, E.D.; Uthayakumari, F.K.; Mohan, V.R. GC-MS determination of bioactive compounds of Curculigo orchioides Gaertn. Sci. Res. Repot. 2012, 2, 198–201. [Google Scholar]
  173. Matsuda, H.; Ishikado, A.; Nishida, N.; Ninomiya, K.; Fujiwara, H.; Kobayashi, Y.; Yoshikawa, M. Hepatoprotective, superoxide scavenging, and antioxidative activities of aromatic constituents from the bark of Betula platyphylla var. japonica. Bioorg. Med. Chem. Lett. 1998, 8, 2939–2944. [Google Scholar] [CrossRef]
  174. Asakawa, Y. Chemical constituents of Alnus firma (Betulaceae). I. Phenyl propane derivatives isolated from Alnus firma. Bull. Chem. Soc. Jpn. 1970, 43, 2223–2229. [Google Scholar]
  175. Ong, P.K.; Acree, T.E. Similarities in the aroma chemistry of Gewürztraminer variety wines and lychee (Litchi chinesis Sonn.) fruit. J. Agric. Food. Chem. 1999, 47, 665–670. [Google Scholar] [CrossRef]
  176. Typek, J. Od natury do receptury—Balsam z królestwa Peru. Farm. Krak. 2008, 11, 30–32. [Google Scholar]
  177. Kasetti, R.B.; Nabi, S.A.; Swapna, S.; Apparao, C. Cinnamic acid as one of the antidiabetic active principle (s) from the seeds of Syzygium alternifolium. Food Chem. Toxicol. 2012, 50, 1425–1431. [Google Scholar] [PubMed]
  178. Gallage, N.J.; Møller, B.L. Vanilla: The most popular flavour. In Biotechnology of Natural Products; Schwab, W., Lange, B., Wüst, M., Eds.; Springer: Cham, Switzerland, 2018; Part 1; pp. 3–24. [Google Scholar]
  179. Williams, N.H.; Whitten, W.M. Orchid floral fragrances and male euglossine bees: Methods and advances in the last sesquidecade. Biol. Bull. 1983, 164, 355–395. [Google Scholar] [CrossRef]
  180. Bilia, A.R.; Flamini, G.; Tagliolia, V.; Morelli, I.; Vincieria, F.F. GC–MS analysis of essential oil of some commercial fennel teas. Food Chem. 2002, 76, 307–310. [Google Scholar] [CrossRef]
  181. Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R. Volatile components from mango (Mangifera indica L.) cultivars. J. Agric. Food Chem. 2005, 53, 2213–2223. [Google Scholar] [CrossRef] [PubMed]
  182. Utreja, P. Pharmacological activities of azelaic acid: A recent update. Plant Arch. 2020, 20, 3048–3052. [Google Scholar]
  183. Ayasse, M.; Schiestl, F.P.; Paulus, H.F.; Löfstedt, C.; Hansson, B.; Ibarra, F.; Francke, W. Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: How does flower-specific variation of odor signals influence reproductive success? Evolution 2000, 54, 1995–2006. [Google Scholar]
  184. Stökl, J.; Paulus, H.; Dafni, A.; Schulz, C.; Francke, W.; Ayasse, M. Pollinator attracting odour signals in sexually deceptive orchids of the Ophrys fusca group. Plant Syst. Evol. 2005, 254, 105–120. [Google Scholar] [CrossRef]
  185. Robustelli della Cuna, F.S.; Calevo, J.; Bari, E.; Giovannini, A.; Boselli, C.; Tava, A. Characterization and antioxidant activity of essential oil of four sympatric orchid species. Molecules 2019, 24, 3878. [Google Scholar] [CrossRef] [Green Version]
  186. Wróblewska, A.; Szczepaniak, L.; Bajguz, A.; Jędrzejczyk, I.; Tałałaj, I.; Ostrowiecka, B.; Brzosko, E.; Jermakowicz, E.; Mirski, P. Deceptive strategy in Dactylorhiza orchids: Multidirectional evolution of floral chemistry. Ann. Bot. 2019, 123, 1005–1016. [Google Scholar] [CrossRef]
  187. Calevo, J.; Bazzicalupo, M.; Adamo, M.; Robustelli della Cuna, F.S.; Voyron, S.; Girlanda, M.; Duffy, K.J.; Giovannini, A.; Cornara, L. Floral trait and mycorrhizal similarity between an endangered orchid and its natural hybrid. Diversity 2021, 13, 550. [Google Scholar] [CrossRef]
  188. De Nogueira, P.C.L.; Bittrich, V.; Shepherd, G.J.; Lopes, A.V.; Marsaiolia, A.J. The ecological and taxonomic importance of flower volatiles of Clusia species (Guttiferae). Phytochem. 2001, 56, 443–452. [Google Scholar] [CrossRef] [PubMed]
  189. Flamini, G.; Cioni, P.L.; Morelli, I. Differences in the fragrances of pollen and different floral parts of male and female flowers of Laurus nobilis. J. Agric. Food Chem. 2002, 50, 4647–4652. [Google Scholar] [CrossRef] [PubMed]
  190. Mant, J.; Brandli, C.; Vereecken, N.J.; Schulz, C.M.; Francke, W.; Schiestl, F.P. Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata. J. Chem. Ecol. 2005, 31, 1765–1787. [Google Scholar] [CrossRef]
  191. Hashem, F.A.; Saleh, M.M. Antimicrobial components of some cruciferae plants (Diplotaxis harra Forsk. and Erucaria microcarpa Boiss.). Phytother. Res. 1999, 13, 329–332. [Google Scholar] [CrossRef]
  192. Abreu, I.N.; Johansson, A.I.; Sokołowska, K.; Niittylä, T.; Sundberg, B.; Hvidsten, T.R.; Street, N.R.; Moritz, T. A metabolite roadmap of the wood-forming tissue in Populus tremula. New Phytol. 2020, 228, 1559–1572. [Google Scholar] [CrossRef]
  193. Halder, T.; Gadgil, V.N. Comparison of fatty acid patterns in plant parts and respective callus cultures of Cucumis melo. Phytochemistry 1984, 23, 1790–1791. [Google Scholar] [CrossRef]
  194. Paolini, J.; Falchi, A.; Quilichini, Y.; Desjobert, J.M.; De Cian, M.C.; Varesi, L.; Costa, J. Morphological, chemical and genetic differentiation of two subspecies of Cistus creticus L. (C. creticus subsp. eriocephalus and C. creticus subsp. corsicus). Phytochemistry 2009, 70, 1146–1160. [Google Scholar] [CrossRef]
  195. Kamatou, G.P.P.; Viljoen, A.M. Comparison of fatty acid methyl esters of palm and palmist oils determined by GCxGC–ToF–MS and GC–MS/FID. S. Afr. J. Bot. 2017, 112, 483–488. [Google Scholar] [CrossRef]
  196. Taveira, F.S.; Andrade, E.H.; Lima, W.N.; Maia, J.G. Seasonal variation in the essential oil of Pilocarpus microphyllus Stapf. An. Acad. Bras. Cienc. 2003, 75, 27–31. [Google Scholar] [CrossRef]
  197. Dahmane, D.; Dob, T.; Chelghoum, C. Essential oil composition and enantiomeric distribution of some monoterpenoid components of Juniperus communis L. from Algeria. J. Essent. Oil Res. 2016, 28, 348–356. [Google Scholar] [CrossRef]
  198. Nilsson, L.A. Anthecology of Orchis mascula (Orchidaceae). Nord. J. Bot. 1983, 3, 157–179. [Google Scholar] [CrossRef]
  199. Mas, F.; Vereijssen, J.; Suckling, D.M. Influence of the pathogen Candidatus Liberibacter solanacearum on tomato host plant volatiles and psyllid vector settlement. J. Chem. Ecol. 2014, 40, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
  200. Zheng, Y.F.; Liu, X.M.; Lai, F. Extraction and antioxidant activities of Magnolia kwangsiensis Figlar & Noot. leaf polyphenols. Chem. Biodivers. 2019, 16, e1800409. [Google Scholar]
  201. Charalambous, G. Spices, Herbs and Edible Fungi; Elsevier: New York, NY, USA, 1994. [Google Scholar]
  202. Sun, J. D-Limonene: Safety and clinical applications. Altern Med. Rev. 2007, 12, 259–264. [Google Scholar]
  203. Booth, J.K.; Page, J.E.; Bohlmann, J. Terpene synthases from Cannabis sativa. PLoS ONE 2017, 12, e0173911. [Google Scholar] [CrossRef]
  204. Martins, A.O.B.P.B.; Rodrigues, L.B.; Cesário, F.R.A.S.; de Oliveira, M.R.C.; Tintino, C.D.M.; Castro, F.F.E.; Alcântara, I.S.; Fernandes, M.N.M.; de Albuquerque, T.R.; da Silva, M.S.A.; et al. Anti-edematogenic and anti-inflammatory activity of the essential oil from Croton rhamnifolioides leaves and its major constituent 1,8-cineole (eucalyptol). Biomed. Pharmacother. 2017, 96, 384–395. [Google Scholar] [CrossRef]
  205. Mendes, S.S.; Bomfim, R.R.; Jesus, H.C.R.; Alves, P.B.; Blank, A.F.; Estevam, C.S.; Antoniollia, A.R.; Thomazzi, S.M. Evaluation of the analgesic and anti-inflammatory effects of the essential oil of Lippia gracilis leaves. J. Ethnopharmacol. 2010, 129, 391–397. [Google Scholar] [CrossRef]
  206. Noumi, E.; Snoussi, M.; Hajlaoui, H.; Trabelsi, N.; Ksouri, R.; Valentin, E.; Bakhrouf, A. Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia (tea tree) and Eucalyptus globulus essential oils against oral Candida species. J. Med. Plants Res. 2011, 5, 4147–4156. [Google Scholar]
  207. Colette, M.A.; Moke, E.L.; Liyongo, C.I.; Gbolo, B.Z.; Tshilanda, D.D.; Tshibangu, D.S.T.; Baholy, R.R.; Guy, I.B.; Ngbolua, K.N.; Mpiana, P.T.; et al. Literature review on the phytochemistry and pharmaco-biological, nutritional and cosmetic properties of Lippia multiflora and new research perspectives. J. Asian Nat. Prod. Res. 2021, 4, 35–48. [Google Scholar]
  208. Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food microbiol. 2004, 21, 33–42. [Google Scholar] [CrossRef]
  209. El Hadri, A.; del Rio, M.G.; Sanz, J.; Coloma, A.G.; Idaomar, M.; Ozonas, B.R.; González, J.B.; Reus, M.I.S. Cytotoxic activity of α-humulene and transcaryophyllene from Salvia officinalis in animal and human tumor cells. An. R. Acad. Nac. Farm. 2010, 76, 343–356. [Google Scholar]
  210. Zwaving, J.H.; Bos, R. Analysis of the essential oils of five Curcuma species. Flavour Fragr. J. 1992, 7, 19–22. [Google Scholar] [CrossRef]
  211. Lal, R.K.; Chanotiya, C.S.; Singh, V.R.; Gupta, P.; Mishra, A.; Srivastava, S.; Dwivedi, A. Patchouli (Pogostemon cablin (Blanco) Benth) essential oil yield stability with the unique aroma of ar-curcumene and genotype selection over the years. Acta Ecol. Sin. 2021. [Google Scholar] [CrossRef]
  212. Bos, R.; Woerdenbag, H.J.; Kayser, O.; Quax, W.J.; Ruslan, K.; Elfami. Essential oil constituents of Piper cubeba L. fils. from Indonesia. J. Essent. Oil Res. 2007, 19, 14–17. [Google Scholar] [CrossRef]
  213. Joshi, R.K. Chemical composition of the essential oils of aerial parts and flowers of Chromolaena odorata (L.) R. M. King & H. Rob. from Western Ghats region of North West Karnataka, India. J. Essent. Oil-Bear. Plants 2013, 16, 71–75. [Google Scholar]
  214. Zhai, B.; Zhang, N.; Han, X.; Li, Q.; Zhang, M.; Chen, X.; Li, G.; Zhang, R.; Chen, P.; Wang, W.; et al. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. Biomed. Pharmacother. 2019, 114, 108812. [Google Scholar] [CrossRef]
  215. Iwasa, M.; Nakaya, S.; Maki, Y.; Marumoto, S.; Usami, A.; Miyazawa, M. Identification of aroma-active compounds in essential oil from Uncaria Hook by gas chromatography- mass spectrometry and gas chromatography-olfactometry. J. Oleo. Sci. 2015, 64, 825–833. [Google Scholar] [CrossRef] [Green Version]
  216. Jena, S.; Ray, A.; Sahoo, A.; Das, P.K.; Kamila, P.K.; Kar, S.K.; Nayak, S.; Panda, P.C. Anti-proliferative activity of Piper trioicum leaf essential oil based on phytoconstituent analysis, molecular docking and in silico ADMET approaches. In Combinatorial Chemistry & High Throughput Screening; Bentham Science: Sharjah, United Arab Emirates, 2021. [Google Scholar]
  217. Zheljazkov, V.D.; Semerdjieva, I.B.; Stevens, J.F.; Wu, W.; Cantrell, C.L.; Yankova-Tsvetkova, E.; Koleva-Valkova, L.H.; Stoyanova, A.; Astatkie, T. Phytochemical investigation and reproductive capacity of the Bulgarian endemic plant species Marrubium friwaldskyanum Boiss. (Lamiaceae). Plants 2021, 11, 114. [Google Scholar] [CrossRef]
  218. Kambiré, D.A.; Kablan, A.C.L.; Yapi, T.A.; Vincenti, S.; Maury, J.; Baldovini, N.; Tomi, P.; Paoli, M.; Boti, J.B.; Tomi, F. Neuropeltis acuminata (P. Beauv.): Investigation of the chemical variability and in vitro anti-inflammatory activity of the leaf essential oil from the ivorian species. Molecules 2022, 27, 3759. [Google Scholar] [CrossRef]
  219. Sulborska-Różycka, A.; Weryszko-Chmielewska, E.; Polak, B.; Stefańczyk, B.; Matysik-Woźniak, A.; Rejdak, R. Secretory products in petals of Centaurea cyanus L. flowers: A histochemistry, ultrastructure, and phytochemical study of volatile compounds. Molecules 2022, 27, 1371. [Google Scholar] [CrossRef] [PubMed]
  220. Bozan, B.; Ozek, T.; Kurkcuoglu, M.; Kirimer, N.; Baser, K.H.C. The analysis of essential oil and headspace volatiles of the flowers of Pelargonium endlicherianum used as an anthelmintic in folk medicine. Pl. Med. 1999, 65, 781–782. [Google Scholar] [CrossRef] [PubMed]
  221. Cornu, A.; Carnat, A.-P.; Martin, B.; Coulon, J.-B.; Lamaison, J.-L.; Berdague, J.-L. Solid-phase microextraction of volatile components from natural grassland plants. J. Agric. Food Chem. 2001, 49, 203–209. [Google Scholar] [CrossRef] [PubMed]
  222. Birkett, M.A.; Al Abassi, S.; Kröber, T.; Chamberlain, K.; Hooper, A.M.; Guerin, P.M.; Pettersson, J.; Pickett, J.A.; Slade, R.; Wadhams, L.J. Antiectoparasitic activity of the gum resin, gum haggar, from the East African plant, Commiphora holtziana. Phytochemistry 2008, 69, 1710–1715. [Google Scholar] [CrossRef] [Green Version]
  223. Kaiser, R. Scents from rain forests. Chimia 2000, 54, 346–363. [Google Scholar] [CrossRef]
  224. Grison-Pigé, L.; Bessière, J.-M.; Turlings, T.C.J.; Kjellberg, F.; Roy, J.; Hossaert-McKey, M. Limited intersex mimicry of floral odour in Ficus carica. Funct. Ecol. 2001, 15, 551–558. [Google Scholar] [CrossRef] [Green Version]
  225. Majumder, P.L.; Kar, A. Erianol, a 4α-methylsterol from the orchid Eria convallarioides. Phytochemistry 1989, 28, 1487–1490. [Google Scholar] [CrossRef]
  226. Malik, A.; Bisht, K.; Kumar, P.; Sinha, S.; Tomar, S.; Pant, K. In-silico studies for unraveling medicinal properties of Sanjeevani. Mater. Today: Proc. 2021, 46, 11230–11234. [Google Scholar] [CrossRef]
  227. Majumder, L.; Banerjee, S. A ring-B oxygenated phenanthrene derivative from the orchid Bulbophyllum gymnopus. Phytochemistry 1988, 27, 245–248. [Google Scholar] [CrossRef]
  228. Li, R.S.; Yang, X.; He, P.; Gan, N. Studies on phenanthrene constituents from stems of Dendrobium candidum. J. Chin. Med. Mat. 2009, 32, 220–223. [Google Scholar]
  229. El Sohafy, S.M.; Nassra, R.A.; D’Urso, G.; Piacente, S.; Sallam, S.M. Chemical profiling and biological screening with potential anti-inflammatory activity of Callisia fragrans grown in Egypt. Nat. Prod.t Res. 2020, 35, 5521–5524. [Google Scholar] [CrossRef] [PubMed]
  230. Hilali, M.; Charrouf, Z.; Soulhi, A.E.A.; Hachimi, L.; Guillaume, D. Detection of argan oil adulteration using quantitative campesterol GC-analysis. J. Am. Oil. Chem. Soc. 2007, 84, 761–764. [Google Scholar] [CrossRef]
  231. Jain, P.S.; Bari, S.B. Isolation of lupeol, stigmasterol and campesterol from petroleum ether extract of woody stem of Wrightia tinctoria. Asian J. Plant Sci. 2010, 9, 163. [Google Scholar] [CrossRef] [Green Version]
  232. Wiśniewska, N.; Lipińska, M.M.; Gołębiowski, M.; Kowalkowska, A.K. Labellum structure of Bulbophyllum echinolabium JJ Sm. (section Lepidorhiza Schltr., Bulbophyllinae Schltr., Orchidaceae Juss.). Protoplasma 2019, 256, 1185–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  233. Lalel, H.J.D.; Singh, Z.; Tan, S.C. Aroma volatiles production during fruit ripening of ‘Kensington Pride’ mango. Postharvest Biol. Technol. 2003, 27, 323–336. [Google Scholar] [CrossRef]
  234. Merlin, N.J.; Parthasarathy, V.; Manavalan, R.; Kumaravel, S. Chemical investigation of aerial parts of Gmelina asiatica Linn by GC-MS. Pharmacognosy Res. 2009, 1, 152–156. [Google Scholar]
  235. Adeosun, C.B.; Olaseinde, S.; Opeifa, A.O.; Atolani, O. Essential oil from the stem bark of Cordia sebestena scavenges free radicals. J. Acute. Med. 2013, 3, 138–141. [Google Scholar] [CrossRef] [Green Version]
  236. Nidugala, H.; Avadhani, R.; Prabhu, A.; Basavaiah, R.; Kumar, K.S. GC-MS characterization of n-hexane soluble compounds of Cyperus rotundus L. rhizomes. J. App.l Pharm. Sci. 2015, 5, 96–100. [Google Scholar] [CrossRef] [Green Version]
  237. Pradeesh, G.; Suresh, J.; Suresh, H.; Ramani, A.; Hong, I. Antimicrobial activity and identification of potential compounds from the chloroform extract of the medicinal plant Cyathea nilgirensis Holttum. World J. Pharm. Pharm. Sci. 2017, 6, 1167–1184. [Google Scholar] [CrossRef] [Green Version]
  238. Afrin, N.S.; Hossain, M.A.; Saha, K. Phytochemical screening of plant extracts and GC-MS analysis of n-Hexane soluble part of crude chloroform extract of Cuscuta reflexa (Roxb.). J. Pharmacogn. Phytochem. 2019, 8, 560–564. [Google Scholar]
  239. Krumbein, A.l.; Peters, P.; Brückner, B. Flavour compounds and a quantitative descriptive a of tomatoes (Lycopersicon esculentum Mill.) of different cultivars in short-term storage. Postharvest Biol. Technol. 2004, 32, 15–28. [Google Scholar] [CrossRef]
Figure 1. Flowers of Brasiliorchis species examined to date: (a) B. gracilis; (b,c) B. marginata; (d) B. picta; (e) B. porphyrostele; (f) B. cf. porphyrostele. Photo. M. Lipińska.
Figure 1. Flowers of Brasiliorchis species examined to date: (a) B. gracilis; (b,c) B. marginata; (d) B. picta; (e) B. porphyrostele; (f) B. cf. porphyrostele. Photo. M. Lipińska.
Ijms 24 00739 g001
Figure 2. Flowers of Maxillariinae species examined to date: (a) B. schunkeana; (b) Chelyella sp.; (c,d) Heterotaxis cf. discolor; (e) Maxillaria nigrescens; (f) Mormolyca ringens. Photo. M. Lipińska.
Figure 2. Flowers of Maxillariinae species examined to date: (a) B. schunkeana; (b) Chelyella sp.; (c,d) Heterotaxis cf. discolor; (e) Maxillaria nigrescens; (f) Mormolyca ringens. Photo. M. Lipińska.
Ijms 24 00739 g002
Figure 3. Flowers of Maxillariinae species examined to date: (a) Maxillariella sanguinea; (b) Maxillaria splendens; (c) Maxillariella tenuifolia; (d) M. variabilis; (e) M. vulcanica; (f) Xanthoxerampellia rufescens. Photo. M. Lipińska.
Figure 3. Flowers of Maxillariinae species examined to date: (a) Maxillariella sanguinea; (b) Maxillaria splendens; (c) Maxillariella tenuifolia; (d) M. variabilis; (e) M. vulcanica; (f) Xanthoxerampellia rufescens. Photo. M. Lipińska.
Ijms 24 00739 g003
Table 1. List of the active compounds detected in Maxillariinae representatives.
Table 1. List of the active compounds detected in Maxillariinae representatives.
CompoundMaxillariinae Species
NonanalBrasiliorchis gracilis, B. marginata, B. picta, Chelyella jenischiana, Heterotaxis discolor, Maxillaria splendens, Maxillariella tenuifolia, Mormolyca ringens, Trigonidium cf. turbinatum, Xanthoxerampellia rufescens
BenzaldehydeBrasiliorchis picta, Maxillaria nigrescens, Maxillariella tenuifolia, Xanthoxerampellia rufescens
Benzoic acid,
3-methoxy-4-hydroxy
Maxillariella sanguinea, M. tenuifolia, M. variabilis
Benzoic acid,
4-ethoxy-, ethyl ester
Maxillariella sanguinea, M. vulcanica
Butylated
hydroxytoluene
Brasiliorchis gracilis, B. marginata, Chelyella jenischiana, Trigonidium cf. turbinatum
Cinnamic acidMaxillariella sanguinea, Mormolyca ringens
Cinnamic acid, 4-hydroxy-3-methoxyMaxillariella sanguinea
IndoleBrasiliorchis picta, Heterotaxis discolor, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis
p-AnisaldehydeBrasiliorchis picta, Chelyella jenischiana, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis
Azelaic acidBrasiliorchis schunkeana, Chelyella jenischiana, Maxillariella sanguinea, M. variabilis, M. vulcanica
Nonanoic acidMaxillariella sanguinea, M. vulcanica
Octanoic acidMaxillariella sanguinea, M. vulcanica
Suberic acidBrasiliorchis schunkeana, Maxillariella sanguinea, M. variabilis, M vulcanica
Oleic acidMaxillariella sanguinea, M. tenuifolia, M. vulcanica
Heptadecanoic acidMaxillariella sanguinea
Hexadecanoic acidMaxillariella sanguinea, M. variabilis, M. vulcanica
Tetradecanoic acidMaxillariella sanguinea, M. variabilis, M. vulcanica
Octadecanoic acid, methyl esterBrasiliorchis schunkeana, Maxillariella variabilis, M. vulcanica
4,8,8-Trimethyl-2 methylene-4-vinylbicyclo[5.2.0]
nonane
Maxillariella tenuifolia
HeptacosaneMaxillariella sanguinea
2-PentadecanoneMaxillariella tenuifolia
2-UndecanoneMaxillaria tenuifolia
4-TerpineolHeterotaxis discolor, Xanthoxerampellia rufescens
cis-β-OcimeneBrasiliorchis gracilis, B. picta, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis
LimoneneBrasiliorchis gracilis, B. marginata, B. picta, Heterotaxis discolor, Maxillaria nigrescens, M. splendens, Maxillariella sanguinea, M. tenuifolia, M. variabilis, Trigonidium cf. turbinatum, Xanthoxerampellia rufescens
EucalyptolBrasiliorchis picta, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis
γ-terpineneBrasiliorchis picta, Heterotaxis discolor, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis, Xanthoxerampellia rufescens
LinaloolBrasiliorchis gracilis, B. maginata, B. picta, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis
p-CymeneBrasiliorchis gracilis, B. picta, Chelyella jenischiana, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis, Trigonidium cf. turbinatum
α-PineneBrasiliorchis marginata, B. picta, Heterotaxis discolor, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis, Xanthoxerampellia rufescens
α-TerpineolBrasiliorchis picta, Heterotaxis discolor, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis, Xanthoxerampellia rufescens
β-PineneBrasiliorchis picta, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis, Trigonidium cf. turbinatum
ar-CurcumeneBrasiliorchis marginata, Chelyella jenischiana, Mormolyca ringens, Trigonidium cf. turbinatum, Xanthoxerampellia rufescens
AromadendreneBrasiliorchis gracilis, B. marginata, B. picta, Chelyella jenischiana, Heterotaxis discolor, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis, Mormolyca ringens, Trigonidium cf. Turbinatum, Xanthoxerampellia rufescens
CalareneMaxillariella tenuifolia
Caryophylladienol IIMaxillariella tenuifolia
Caryophyllene oxideBrasiliorchis picta, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis
CaryophylleneBrasiliorchis gracilis, B. marginata, B. picta, Chelyella jenischiana, Maxillaria nigrescens, M. splendens, Maxillariella tenuifolia, M. variabilis
epi-CubebolMaxillariella tenuifolia
α-CopaeneBrasiliorchis gracilis, B. marginata, B. picta, Chelyella jenischiana, Maxillaria nigrescens, Maxillariella sanguinea, M. tenuifolia, M. variabilis, Mormolyca ringens, Trigonidium cf. turbinatum, Xanthoxerampellia rufescens
α-HumuleneBrasiliorchis gracilis, B. picta, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis
β-ElemeneBrasiliorchis gracilis, B. marginata, B. picta, Chelyella jenischiana, Maxillaria nigrescens, Maxillariela tenuifolia, M. variabilis, Trigonidium cf. turbinatum, Xanthoxerampellia rufescens
β-GurjuneneBrasiliorchis gracilis, B. marginata, Chelyella jenischiana
β-MyrceneBrasiliorchis picta, Heterotaxis discolor, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis, Xanthoxerampellia rufescens
δ-CadineneBrasiliorchis gracilis, B. marginata, B. picta, Chelyella jenischiana, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis, Trigonidium cf. turbinatum, Xanthoxerampellia rufescens
δ-ElemeneBrasiliorchis gracilis, B. marginata, Chelyella jenischiana, Trigonidium cf. turbinatum
IsocaryophylleneBrasiliorchis picta, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis
ErianthridinChelyella densa
Fimbriol AChelyella densa
FlavanthridinMaxillariella tenuifolia
GymnopusinChelyella densa
NudolChelyella densa
2,5-dihydroxy-3,4-dimethoxyphenanthreneChelyella densa
2-Methoxy-4-vinylphenolMaxillariella sanguinea, M. variabilis
Luteolin-6-C-glucosideHeterotaxis superflua
GigantolChelyella densa
CampesterolMaxillareilla sanguinea
StigmasterolMaxillareilla sanguinea
2,5-di-tert-Butyl-1,4-benzoquinoneBrasiliorchis schunkeana, Maxillariella vulcanica
7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dioneBrasiliorchis schunkeana, Maxillariella sanguinea, M. tenuifolia, M. vulcanica
GeranylacetoneBrasiliorchis gracilis, B. marginata, B. picta, Chelyella jenischiana, Maxillaria nigrescens, Maxillariella tenuifolia, M. variabilis, Xanthoxerampellia rufescens
MangiferinMaxillariella tenuifolia
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Lipińska, M.M.; Haliński, Ł.P.; Gołębiowski, M.; Kowalkowska, A.K. Active Compounds with Medicinal Potential Found in Maxillariinae Benth. (Orchidaceae Juss.) Representatives—A Review. Int. J. Mol. Sci. 2023, 24, 739. https://doi.org/10.3390/ijms24010739

AMA Style

Lipińska MM, Haliński ŁP, Gołębiowski M, Kowalkowska AK. Active Compounds with Medicinal Potential Found in Maxillariinae Benth. (Orchidaceae Juss.) Representatives—A Review. International Journal of Molecular Sciences. 2023; 24(1):739. https://doi.org/10.3390/ijms24010739

Chicago/Turabian Style

Lipińska, Monika M., Łukasz P. Haliński, Marek Gołębiowski, and Agnieszka K. Kowalkowska. 2023. "Active Compounds with Medicinal Potential Found in Maxillariinae Benth. (Orchidaceae Juss.) Representatives—A Review" International Journal of Molecular Sciences 24, no. 1: 739. https://doi.org/10.3390/ijms24010739

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop