Next Article in Journal
Chenodeoxycholic Acid Improves Embryo Implantation and Metabolic Health through Modulating Gut Microbiota–Host Metabolites Interaction during Early Pregnancy
Next Article in Special Issue
Mechanistic Insights into the Multiple Functions of Niacinamide: Therapeutic Implications and Cosmeceutical Applications in Functional Skincare Products
Previous Article in Journal
Ameliorative Effects of Cumin Extract-Encapsulated Chitosan Nanoparticles on Skeletal Muscle Atrophy and Grip Strength in Streptozotocin-Induced Diabetic Rats
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Sesquiterpenes and Sesquiterpene Derivatives from Ferula: Their Chemical Structures, Biosynthetic Pathways, and Biological Properties

1
The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
2
Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Antioxidants 2024, 13(1), 7; https://doi.org/10.3390/antiox13010007
Submission received: 9 November 2023 / Revised: 13 December 2023 / Accepted: 15 December 2023 / Published: 19 December 2023

Abstract

:
Ferula is a genus of flowering plants known for its edible and medicinal properties. Since ancient times, many species of Ferula have been used in traditional medicine to treat various health issues across countries, such as digestive disorders, respiratory problems, and even as a remedy for headaches and toothaches. In addition, they are also used as a flavoring agent in various cuisines. As the main active ingredients in Ferula, sesquiterpenes and their derivatives, especially sesquiterpene coumarins, sesquiterpene phenylpropanoids, and sesquiterpene chromones, have attracted the attention of scientists due to the diversity of their chemical structures, as well as their extensive and promising biological properties, such as antioxidative, anti-inflammatory, antibacterial properties. However, there has not been a comprehensive review of sesquiterpenes and their derivatives from this plant. This review aims to provide an overview of the chemical structures, biosynthetic pathways, and biological properties of sesquiterpenes and sesquiterpene derivatives from Ferula, which may help guide future research directions and possible application methods for this valuable edible and medicinal plant.

1. Introduction

Ferula is a diverse genus of flowering plants belonging to the Apiaceae family, which primarily grow in dry and temperate regions of the Euro-Asian continent, surrounded by India and China in the east, the Canary Islands in the west, Central Europe in the north, and North Africa in the south [1]. This genus comprises about 180 recognized species [2], and it is renowned for its distinctive and often aromatic plants due to the presence of volatile essential oils and sulfide compounds. There are 94 species distributed in the erstwhile USSR, 32 species in Iran, 25 species in China, 19 species in the western Himalayas, 18 species in Turkey, 15 species in Pakistan, 4 species in Saudi Arabia, and 3 species in India [3]. Among these, 15 species are endemic to Iran, 9 species to Turkey, 7 species to China, and 1 species to Italy [4].
Since ancient times, different species of Ferula have been used in traditional medicine to treat various diseases across countries [5]. Asafoetida is an oleo–gum–resin obtained from the stems of Ferula plants, and in many parts of the world, it is used as a traditional medicine and as a flavoring agent in various cuisines [6]; its dual role in cuisine and traditional medicine is notable in several cultures. Asafoetida is commonly used in Indian, Iranian, and some Middle Eastern dishes, and it is known for enhancing the flavor of dishes, especially in vegetarian recipes. It is a common ingredient in spice blends and seasoning for lentils, vegetables, and rice dishes [7,8]. In the folk medicine of Russia, Iran, China, Turkey, Pakistan, and India, asafoetida is often called “Asafetida”, “Rechina fena (Zaz)”, “A-wei”, “Setan bokosu (Seytan tersi)”, “Anjadana (Kama, Anguza)”, and “Hengu (Hing, Hingu, Ingu, etc.)”, respectively [9]. It is traditionally used to treat various health issues, such as digestive disorders, respiratory problems, and even as a remedy for headaches and toothaches [10,11,12]. The digestive-stimulating effect of Asafoetida is the most common beneficial physiological effect. In addition, other parts of some Ferula species also have edible and medicinal values. For instance, some nomadic peoples in central Iran use fried aerial parts of F. assafoetida and some seasonings as carminative foods. In Brazil, a hot-water extract from the dried stems and leaves of F. assafoetida is used as an aphrodisiac that is orally taken for the treatment of erectile dysfunction [13]. People in Pakistan extensively use the F. narthex Boiss herb for the treatment of coughs, fever, scorpion stings, hysteria, gastric dysfunction, constipation, habitual miscarriage, and toothache [14]. In Saudi Arabia, the rhizomes of F. communis are called alkalakh, which are used locally as a traditional medicine to treat skin infections, while its roasted flower buds are used to treat fever and dysentery [15]. In Lebanon and Syria, the roots of F. hermonis Boiss are used in folk medicine to reduce plasma cholesterol levels and total weight, as well as to treat skin infections, stomach diseases, erectile dysfunction, fever, dysentery, frostbite, and hysteria [16].
Phytochemical studies of the oleo–gum–resin, roots, seeds, and aerial parts of more than 70 species have revealed coumarins [17], phenylpropanoids [18], lignans [19], steroidal esters [20], organic acid glycosides [20], aromatic acids [21], sesquiterpenes [22], monoterpenes [23], benzofurans [24], and sulfur-containing derivatives [25] of the Ferula genus. Among these constituents, sesquiterpenes and their derivatives, especially sesquiterpene coumarins, sesquiterpene phenylpropanoids, and sesquiterpene chromones, have attracted the attention of scientists due to the diversity of their chemical structures, as well as their extensive and promising biological properties, such as antioxidative [26], anti-inflammatory [27], antibacterial [28], antitumor [29], and antiviral [30] properties.
While they are the main active ingredients in Ferula, there has not, however, been a comprehensive review of sesquiterpenes and their derivatives from this plant. In this review, we aim to report the chemical structures, biosynthetic pathways, and biological properties of sesquiterpenes and sesquiterpene derivatives from Ferula. Overall, the purpose of this work is to provide a comprehensive introduction to the bioactive sesquiterpenes of Ferula, which may help guide future research directions and possible application methods for this valuable edible and medicinal plant.

2. Chemical Structures

2.1. Sesquiterpenes

Ferula species are known for their production of various secondary metabolites, including sesquiterpenes. Sesquiterpenes are a class of terpenes composed of three isoprene units. The structural types of sesquiterpenes in Ferula are dominated by monocyclic and bicyclic sesquiterpenes, such as the daucane-type (I), guaiane-type (II), humulane-type (III), eudesmane-type (IV), germacrane-type (V), and elemane-type (VI) sesquiterpenes (Figure 1). Among them, the daucane-type sesquiterpene is the most common skeleton type.
Except for a few compounds, the sesquiterpenes in Ferula mostly exist in the form of esters, with substituents including fatty acids, aromatic acids, etc. Due to the presence of multiple substituent sites and substituents, the structures of sesquiterpenes are diverse. Here, sesquiterpenes with medicinal or potential medicinal prospects are summarized, including 88 daucane-type sesquiterpenes (188), 27 guaiane-type sesquiterpenes (89115), 13 humulane-type sesquiterpenes (116128), 11 eudesmane-type sesquiterpenes (129139), 3 germacrane-type sesquiterpenes (140142), 1 elemane-type sesquiterpene (143), and 6 other types of sesquiterpenes (144149). The names and sources of compounds 1149 are listed in Table 1, and their chemical structures are shown in Figure 2.

2.2. Sesquiterpene Coumarins

Sesquiterpene coumarins are often found in Ferula plants and are known for their unique chemical structures and potential bioactivity. According to the connection site between the sesquiterpene unit and the coumarin skeleton, sesquiterpene coumarins can be classified into those connected by a 7-position C-O-C bridge (I) (150345), those connected by a 4-position C-O-C bridge (II) (346348), and those connected by a 3-position C-C bond (III) (349407). According to the structural types of sesquiterpenes, type I compounds can be further classified into a straight-chain type (Ia) (150175), monocyclic type (Ib) (176219), and bicyclic type (Ic) (220345). Type III compounds can be classified into straight-chain coumarin type (IIIa) (349361), furanocoumarin type (IIIb) (362399), and pyranocoumarin type (IIIc) (400407) compounds depending on whether the hydroxyl group in the sesquiterpene moiety forms a five- or six-membered heterocyclic ring with the coumarin moiety.
The names and sources of sesquiterpene coumarins (150407) are listed in Table 2, and their chemical structures are shown in Figure 3.

2.3. Sesquiterpene Chromones

Sesquiterpene chromones are present relatively rarely in the genus Ferula, with only 16 compounds (408423) found in F. communis subsp. communis, F. fukanensis, F. ferulaeoides, F. pallida, and F. sinkiangensis, which can be classified into the furanochromone type (408418) and pyranochromone type (419421). The exceptions are (±)-ferulasin (422 and 423), which are uncommon sesquiterpene chromones with an oxygen-containing macrocyclic framework.
The names and sources of sesquiterpene chromones (408423) are listed in Table 3, and their chemical structures are shown in Figure 4.

2.4. Sesquiterpene Phenylpropanoids

Sesquiterpene phenylpropanoids (424458) are also present only in a few Ferula species, such as F. fukanensis, F. ferulaeoides, F. pallida, F. sinkiangensis, and F. seravschanica. Their structures vary mainly in the sesquiterpene moiety, including the types and positions of substituents, stereoisomerism, etc., whereas the phenylpropanoid moiety often loses one carbon. The names and sources of compounds 424458 are listed in Table 4, and their chemical structures are shown in Figure 5.

3. Biosynthetic Pathways

Sesquiterpenes are synthesized in plants through complex biosynthetic pathways, which involve several enzymatic reactions and intermediates. Sesquiterpene biosynthesis typically begins with the isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) precursors, which are common to all terpenoids. These precursors are generated through the mevalonate (MVA) pathway or the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Once IPP and DMAPP are synthesized, they serve as the building blocks for sesquiterpene biosynthesis. IPP and DMAPP are condensed to form geranyl diphosphate (GPP), which contains ten carbon atoms. Then farnesyl diphosphate (FPP), which contains fifteen carbon atoms, is formed by the condensation of two molecules of IPP and GPP. FPP is a precursor to various sesquiterpenes, and it undergoes further modifications and cyclization reactions. These cyclization reactions create diverse sesquiterpene skeletons with different ring structures. After the initial cyclization step, the sesquiterpene skeleton may undergo rearrangement or further modification by various enzymes. This step introduces functional groups and structural diversity into the sesquiterpenes. After the sesquiterpenes are synthesized, they may undergo additional enzymatic modifications, such as glycosylation, acylation, or oxidation. These modifications can alter their solubility, stability, and biological activities. The biosynthesis pathways of the typical sesquiterpene skeletons in Ferula are shown in Figure 6.
The scaffold of sesquiterpene coumarins is formed through the dehydration condensation of the coumarin unit and the sesquiterpene moiety via an ether bond. The biosynthesis pathways of type Ib sesquiterpene coumarins, e.g., 219 [128], type Ic sesquiterpene coumarins, e.g., 225, 319, 323, and 338 [112,204]; type IIIa sesquiterpene coumarins, e.g., 355 and 359 [143,179]; and type IIIb sesquiterpene coumarins, e.g., 362, 370, 372, 374, 375, 383, 384, 386, 387, 392, 394, and 395 [143,179], are shown in Figure 7.
Figure 7. Biosynthesis pathways of different types of sesquiterpene coumarins. (A) The biosynthesis pathways of type I sesquiterpene coumarins [112,128,204]. (B) The biosynthesis pathways of type III sesquiterpene coumarins [143,179]. The biosynthesis pathways of sesquiterpene chromones [115,143,195] and sesquiterpene phenylpropanoids [179,198,199,201] are shown in Figure 8 and Figure 9, respectively.
Figure 7. Biosynthesis pathways of different types of sesquiterpene coumarins. (A) The biosynthesis pathways of type I sesquiterpene coumarins [112,128,204]. (B) The biosynthesis pathways of type III sesquiterpene coumarins [143,179]. The biosynthesis pathways of sesquiterpene chromones [115,143,195] and sesquiterpene phenylpropanoids [179,198,199,201] are shown in Figure 8 and Figure 9, respectively.
Antioxidants 13 00007 g007

4. Bioactive Properties

4.1. Antibacterial Effects

Antibiotics, such as penicillin, tetracycline, ciprofloxacin, are a common class of antibacterial agents, which are specifically designed to target and kill or inhibit the growth of bacteria. Natural compounds can be used alongside antibiotics as complementary treatments, potentially enhancing the overall effectiveness of the treatment.
The antibacterial effects of sesquiterpenes and sesquiterpene derivatives from Ferula have been extensively studied. In 2001, Tamemoto et al. [64] isolated the daucane sesquiterpene ferutinin (18) from F. kuhistanica, which showed strong activity against Gram-positive bacteria, including Staphylococcus aureus, S. epidermidis, Enterococcus faecalis, and Bacillus subtilis, but did not exhibit activity against Gram-negative bacteria. Among them, the MIC values of ferutinin (18) were similar to those of the standard antibiotics ampicillin and chloramphenicol. In another study, Ibraheim et al. [205] reported that ferutinin (18), teferin (21), and teferidin (17) from F. hermonis showed strong activity against methicillin-resistant S. aureus (MRSA) (MIC, <0.39, 1.56, and 0.78 μg/mL, respectively), B. subtilis (MIC: <0.39, 1.56, and <0.39 μg/mL, respectively), Mycobacterium tuberculosis (MIC: 2, 8, and 0.69 μg/mL, respectively), and BCG (MIC: 1.56, 6.25, and 3.125 μg/mL, respectively). In addition, the enhancing effect of ferutinin (18) on four antitubercular drugs, i.e., rifampin, isoniazid, streptomycin, and ethionamide was tested against M. smegmatis. Ferutinin (18) showed higher activity (MIC, 10 μg/mL) than rifampin and streptomycin (MIC: each at 20 μg/mL) in the agar dilution assay, and the combination of ferutinin (18) with the anti-tuberculosis drugs isoniazid and ethionamide resulted in enhancing the effect of the antimycobacterial activity in the checkerboard method, while the combination with rifampicin or streptomycin did not exhibit this effect [206].
As another structural type of sesquiterpenes, the new guaianolides diversolide A (103), diversolide D (106), and diversolide F (108) from F. diversivittata showed moderate antibacterial activities against S. aureus (ATCC 29737) and Escherichia coli (ATCC 8739), with MIC values ranging from 40 to 80 μg/mL, while the MIC values of the gentamycin positive control were 18 μg/mL and 8 μg/mL, respectively [49].
In 2004, the sesquiterpene coumarin ferulenol (349) and its three derivatives were investigated for their antimycobacterial activity against four strains of fast-growing Mycobacterium species: M. fortuitum, M. phlei, M. aurum, and M. smegmatis. Ferulenol (349) showed the most promising activity with IC50 values of 0.5–2 μg/mL, which was superior to the therapeutically used antimycobacterials isoniazid and ethambutol (IC50: 0.5–8 μg/mL and 0.5–4 μg/mL, respectively) [207]. Ferulenol (349) showed stronger activity (MIC: each at 0.63 μg/mL) against the above Gram-positive bacteria, and it exhibited potent activity against Mycobacterium organisms (MIC: each at 1.25 μg/mL). In contrast, ferchromone (420) proved to be less active [208].
By the disk diffusion method, umbelliprenin (150) was found to have the highest activity against B. subtilis, B. cereus, E. coli, Salmonella typhi, Klebsiella ponumoniae, S. aureus, and S. epidermilis at a concentration of 500 μg/mL [209]. Liu et al. [116,200] discovered a series of sesquiterpene phenylpropanoids and sesquiterpene coumarins from F. ferulioides with strong antibacterial properties against multidrug-resistant (MDR) S. aureus strains, including ATCC25923, RN4220, SA1199B, XU212, EMRSA15, and EMRSA16. Among them, 8,9-oxoisopropanyldshamirone (454) and ferulaeolactone A (452) displayed better antibacterial properties than some of the controls in the above strains, i.e., norfloxacin, tetracycline, erythromycin, and oxacillin. The sesquiterpene phenylpropanoid (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyl-6,10-dodecadien-1-one (439) and the sesquiterpene coumarin 2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin (383) from F. heuffelii could significantly inhibit S. epidermidis (MIC: 11.2 and 5.2 μM, respectively) and Micrococcus luteus (MIC: 22.5 and 10.5 μM, respectively) growth. Moreover, (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyl-6,10-dodecadien-1-one (439) could also inhibit B. subtilis growth, with an MIC value of 11.2 μM [210]. Sun et al. [211] discovered two sesquiterpene phenylpropanoids from F. ferulioides using TLC-bioautography-directed isolation. Both compounds showed significant antibacterial activities against five tested strains, especially the MDR strains XU212 and SA1199B, and the MIC values of the two compounds (16 μg/mL and 1 μg/mL, 8 μg/mL and 2 μg/mL, respectively) were lower than the standard antibiotic norfloxacin (32 μg/mL and 8 μg/mL, respectively). Ferulsinaic acid (218) was found to have strong antibacterial activity against Gram-positive strains (B. cereus and S. aureus) and Gram-negative strains (Serratia sp., Pseudomonas sp., and E. coli), which was comparable to the reference antibiotics ampicillin and amoxillin [145].
In 2007, Shahverdi et al. [212] proved that galbanic acid (213) could enhance the antibacterial activity of penicillin G and cephalexin against S. aureus. The MIC of penicillin G alone was 64 μg/mL, while the MIC of a combination of penicillin and galbanic acid (213) was reduced to 1 μg/mL. In the meanwhile, the MIC of cephalexin decreased from 64 μg/mL to 1 μg/mL when used in combination with galbanic acid (213). In 2009, Bazzaz et al. [213] proved that galbanic acid (213) could enhance the activity of methicillin, tetracycline, and ciprofloxacin against isolates of S. aureus. The MIC of methicilin, tetracycline, and ciprofloxacin decreased from 10–80 μg/mL, 40-80 μg/mL, and 10–20 μg/mL to less than 1.25 μg/mL when used in combination with galbanic acid (213). The class A β-lactamase is one of the main causes of β-lactam antibiotic resistance. Umbelliprenin (150) and galbanic acid (213) showed potent inhibitory activity (IC50: 54 ± 2.9 μM and 47 ± 3.1 μM, respectively) against class A β-lactamase, and the IC50 of the positive control, clavulanic acid, was 24.1 ± 2.1 μM. Moreover, the average MIC of penicillin G alone was 244.2 ± 12.3 μM, while the average MIC of penicillin–umbelliprenin and penicillin–galbanic acid were 21.3 ± 4.3 μM and 18.2 ± 5.6 μM, respectively, which was a significant decrease from the MIC of penicillin G. The results indicate that umbelliprenin (150) and galbanic acid (213) may be good substitutes for clavulanic acid to combat infections caused by S. aureus resistance [214]. Galbanic acid (213) appears to exert its antibacterial activity by the regulation of drug resistance.
In 2014, Dastan et al. [158] reported that 4′-hydroxy kamolonol acetate (277) and kamolonol (334) from F. pseudalliacea displayed antibacterial activity against Heliobacter pylori and S. aureus (MIC: each at 64 μg/mL). Later in 2016, they investigated the antibacterial effect of another six sesquiterpene coumarins from F. pseudalliacea against seven bacterial strains, including S. aureus, B. cereus, E. faecium (vancomycin-resistant clinical strain), K. pneumonia (clinical strain), P. aeruginosa (clinical strain), Helicobacter pylori, and E. coli. All compounds were effective (MIC: 64-128 μg/mL) against S. aureus, except for farnesiferol B (186). Fekrynol acetate (212) and methyl galbanate (214) showed significant activity against E. faecium, with MIC values of 128 and 64 μg/mL, respectively, while the MIC value of the chloramphenicol control was 32 μg/mL. Ethyl galbanate (215) and kamonolol acetate (278) showed strong activity against H. pylori, with MIC values of 64 and 128 μg/mL, respectively [215]. The MIC values of these compounds against different bacterial strains are listed in Table 5.

4.2. Antifungal Effects

Over the past several decades, there has been a significant rise in the number of human fungal infections, particularly those affecting the skin and mucosal surfaces. These infections are most common in tropical and subtropical regions and are mostly caused by Candida sp. and dermatophytes [216]. According to research conducted by Al-Ja’fari et al. [12], ferutinin (18) and teferidin (17) from the rhizome and roots of F. hermonis displayed antifungal activity in vitro. The results of determining the minimal fungicidal concentration (MFC) and MIC of both substances showed that ferutinin (18) had greater antifungal activity than teferidin (17). Especially in Tricophyton mentagrophytes, their MIC and MFC values ranged from 8 to 256 mg/mL.

4.3. Antiparasitic Effects

Iranshahi et al. [122] and Bashir et al. [151] evaluated the inhibitory activity of sesquiterpene coumarins extracted from F. szowitsiana and F. narthex Boiss against Leishmania major. The results showed that umbelliprenin (150) and conferol (267) displayed potent antileishmanial activity (IC50: 4.9 and 11.5 μg/mL, respectively). Dastan et al. [121] determined the in vitro antiplasmodial activity of compounds extracted from F. pseudalliacea against the Plasmodium falciparum strain, K1. The results indicated that kamolonol acetate (299) and methyl galbanate (214) showed moderate antiplasmodial activity, with IC50 values of 16.1 and 7.1 μM, respectively, whereas the IC50 value of the positive control, artemisin, was 0.004 μM.

4.4. Antiviral Effects

H1N1, also known as swine flu, is a subtype of the influenza A virus. In 2009, it attracted worldwide attention when a new H1N1 strain emerged and caused a global pandemic. It was found that some sesquiterpene coumarins of Ferula species were active against H1N1. Lee et al. [10] discovered that 5′S-hydroxyumbelliprenin (151), 8′-acetoxy-5′S-hydroxyumbelliprenin (155), methyl galbanate (214), galbanic acid (213), farnesiferol C (202), farnesiferol A (228), conferol (267), ligupersin A (273), and epi-conferdione (272) isolated from F. assa-foetida displayed significant antiviral activity against H1N1 (IC50: 0.26–0.86 μg/mL), which was more effective than amantadine (IC50: 0.92 μg/mL). Li et al. [30] found that Sinkiangenorin E also had a significant inhibitory effect on H1N1. These findings indicate that sesquiterpene coumarins might be potential lead compounds for new drugs to treat H1N1 viral infection. In addition, the sesquiterpene coumarin kellerin (321) showed an antiviral effect against herpes virus type 1 (HSV-1) by the plaque-reduction assay. It could dramatically reduce the viral titre of the HSV-1 DNA viral strain KOS at concentrations of 10, 5, and 2.5 µg/mL and considerably lessen its cytopathic effects [217].

4.5. Antioxidative Effects

Oxidative stress refers to the imbalance between the antioxidative defense system and the production of oxidants (free radicals). The accumulation of oxidized lipids plays an important role in the incidence of many diseases such as diabetes, cancer, aging, etc. Therefore, compounds that reduce or prevent the production of oxidative products can be used to treat these diseases [218].
In a study conducted by Raafat and El-Lakani [219], it was observed that the administration of ferutinin (18), a daucane-type sesquiterpene ester, significantly reversed the decreasing trend of the expression of the antioxidant enzyme catalase observed in diabetic mice. In addition, for the first time, it described the antioxidant property of ferutinin (18) on diabetes-related neuropathic pain, indicating that 1.6 mg/kg of ferutinin (18) could reduce thermal hyperalgesia and tactile allodynia. At 500 and 1000 μg/kg mice body weight, ferutinin (18) could significantly upregulate the gene expression of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver and kidney tissues, which are known to resist cellular oxidative stress. At the same concentration, it could also significantly decrease the lipid peroxidation in mice liver tissues [220]. An analog of ferutinin (18), 2α-acetyl ferutinin (19) could rapidly reduce the mRNA levels of several intracellular antioxidative enzymes, such as catalase, Mn-superoxide dismutase (SOD2), nuclear factor erythroid 2-related factor 2 (NRF2), peroxiredoxin (PRDX1), and thioredoxin (TRX) between 6 and 12 h, and it could also significantly induce intracellular glutathione (GSH) depletion in a time- and concentration-dependent manner [32]. In addition, the daucane esters teferidin (17), ferutinin (18), and teferin (21) from F. hermonis showed strong 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) radical scavenging activity, with IC50 values of 17.3, 13.2, and 11.5 μM, respectively, comparable to the positive control of ascorbic acid (12.5 μM). The significant increase in free radical scavenging activity is associated with an increase in the number of hydroxyl groups [205].
Umbelliprenin (150) is the first synthesized sesquiterpene coumarin in Ferula. In a study on the antigenotoxicity effects of umbelliprenin (150) on human peripheral lymphocytes exposed to oxidative stress [221], although umbelliprenin (150) showed no scavenging activity (4%), the protective activity of umbelliprenin (150) (10-400 mM) against DNA damage induced by 25 mM H2O2 increased in a concentration-dependent manner. There was no significant difference between umbelliprenin (150) and ascorbic acid (positive standard) when the concentration exceeded 50 mM. Kamolonol acetate (299) is also a sesquiterpene coumarin extracted from F. pseudalliacea with potent antioxidant activity. It displays strong DPPH radical scavenging activity, with an EC50 value of 65.29 ± 5.6 μM, which is similar to that of the positive control, butylatedhydroxyanisole (BHA), at 59.85 ± 3.7 μM [222].
Kogure et al. [223] evaluated the antioxidative activities of several compounds isolated from F. penninervis and F. pallida, with the sesquiterpene coumarin KT23 (Pallidone A) (359) having moderate antioxidative properties. Compared with α-tocopherol (43.2%, 200 μM) as a control, KT23 (359) (100 μM) inhibited 16.4% of egg-yolk phosphatidylcholine liposome (EyPC liposome) peroxidation. Ferulsinaic acid (218) is a sesquiterpene coumarin from F. sinaica with a rare carbon skeleton. It was found to significantly reduce malondialdehyde (MDA) levels in Caenorhabditis elegans, thus attenuating lipid peroxidation. In addition, it could significantly decrease the formation of N-ε-carboxymethyllysine (CML), one of the advanced glycation end-products (AGEs) that is correlated with oxidative stress. These indicate the antioxidative power of ferulsinaic acid (218) [224]. Galbanic acid (213) is also a natural sesquiterpene coumarin abundantly distributed in Ferula species; it exhibited antioxidative activity by inhibiting DPPH and ABTS free radicals, with IC50 values of 180 and 60 μg/mL, respectively. In addition, galbanic acid (213) (62.5 μg/mL) and vitamin C (5 μg/mL), as a positive control, could significantly upregulate the expression of SOD, CAT, and GPx. The upregulation of these antioxidative genes enhances the redox state of cells; however, the potential of galbanic acid (213) to upregulate antioxidative enzymes is lower than that of vitamin C [225].

4.6. Anti-Inflammatory Effects

Inflammation is a complex biological response triggered by the immune system in response to harmful stimuli such as infections, injuries, or diseases. Many sesquiterpenes and their derivatives from Ferula have anti-inflammatory properties, making them valuable for promoting overall health and potentially reducing the risk of chronic diseases associated with inflammation.
Ferutinin (18) and teferin (21) exhibit anti-inflammatory effects at a dose of 100 mg/kg using the in vivo carrageenan-induced edema model, which may be caused by the antagonistic effects of histamine and/or serotonin actions, and their anti-inflammatory effects may be directly related to the degree of oxidation of the benzene ring [226].
The sesquiterpene coumarins methyl galbanate (214) and umbelliprenin (150) were reported to exert their anti-inflammatory effects by significantly inhibiting the LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2), leading to a decrease in the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) [227]. In another study, the anti-inflammatory effect of umbelliprenin (150) was evaluated in vitro and in vivo. It displayed a significant inhibitory effect on soybean lipoxygenase (a key enzyme in the process of inflammation), with an IC50 value of 0.0725 μM, whereas the IC50 value of the positive control, caffeic acid, was 600 μM. Furthermore, it showed a significant anti-inflammatory effect (39%) in vivo, which was comparable to the positive control, indomethacin (47%), using the carrageenin mouse-paw edema model [228]. In RAW264.7 cells stimulated by lipopolysaccharide (LPS)/interferon-γ (IFN-γ), Kohno et al. [229] found that methyl galbanate (214) significantly reduced NO production. In the presence of methyl galbanate (214), the mRNA expression of iNOS stimulated by LPS/IFN-γ was reduced to 52% of the levels found with LPS/IFN-γ induction alone.
Kellerin (321) is the major constituent (1.5%, w/w) of F. sinkiangensis, and its anti-inflammatory mechanism is to inhibit the mRNA expression of inflammatory cytokines such as NO, tumor necrosis factor-α (TNF-α), COX-2, interleukin-6 (IL-6), and interleukin-1β (IL-1β) [190]. Zhang et al. [190] found that kellerin (321) could transform microglia from a pro-inflammatory M1 phenotype into an anti-inflammatory M2 phenotype, and thus alleviate cognitive impairment in mice. In another research, kellerin (321) was found to decrease the levels of pro-inflammatory cytokines, inhibit the NF-κB signaling pathway, and reduce ROS production and NADPH oxidase activity to exert neuroprotective effects [27].
Motai et al. reported six new sesquiterpene coumarins from F fukanensis, four of which (fukanefuromarin H–K) (385, 388, 396, and 397) showed NO-inhibitory activities, with IC50 values of 11.1-55.6 μM. In addition, fukanefuromarin H (385) and fukanefuromarin K (397) could inhibit the gene expression of iNOS, IL-6, and TNF-α [156]. The sesquiterpene coumarins ferubungeanol B (308) (IC50 23.6 μM) and samarcandin acetate (290) (IC50 25.6 μM) from F. bungeana were found to have a strong inhibitory effect on NO production in LPS-induced BV-2 microglia compared with the positive control, minocycline (IC50 25.6 μM) [137]. Episamarcandin acetate (295) from Ferula sinkiangensis was also found to exert its anti-inflammatory activity by significantly decreasing NO production, with an IC50 value of 2.3 μM, and inhibiting TNF-α, IL-1β, and IL-6 expression [149].

4.7. Antitumor Effects

In the past few decades, the cytotoxicity of sesquiterpenes and sesquiterpene derivatives from the Ferula species, especially sesquiterpene coumarins, has been studied extensively. These compounds have shown significant cytotoxicity against various tumor cell lines, including HCT116 and HT-29 human colon cancer cells; AGS, BGC-823, and MGC-803 human gastric cancer cells; M4Beu human melanoma cells; BxPC3, PANC-1, and Capan-1 human pancreatic cancer cells; HeLa human cervical cancer cells; and MCF-7 and MDA-MB-231 human breast cancer cells. The IC50 values of these compounds against different cancer cell lines in vitro are listed in Table 6.
Umbelliprenin (150) is one of the most widely studied sesquiterpene coumarins with antitumor potential. Promoting tumor cell apoptosis is one of the important mechanisms in antitumor therapy. Researchers discovered that umbelliprenin (150) could promote apoptosis in tumor cells by annexin V-FITC/PI staining. In the meanwhile, umbelliprenin (150) activated caspase-3, -8, and -9 and the proapoptotic protein Bax and reduced the expression of the antiapoptotic protein Bcl-2, caspase-3, -8, and -9, and the proapoptotic protein Bax and reduced the expression of the antiapoptotic protein Bcl2 [230,231], which promoted apoptosis in the Jurkat T-CLL and Raji B-CLL cell lines in a time- and dose-dependent manner [232]. In addition, it could activate the mitochondrial apoptotic pathway and lead to apoptosis of the cancer cells by decreasing the mitochondrial membrane potential, enhancing the P53, P27, P16, and Rb protein expression and diminishing the expression of the proteins of cyclin E, cyclin D, Cdk4, and Cdk6 as well as cell cycle arrest in the G0/G1 phase [233]. Apart from this, umbelliprenin (150) could attenuate cell migration through the Wnt signaling pathway by decreasing the expression levels of Wnt-2, β-catenin, GSK-3β, p-GSK-3β, survivin, and c-myc [193]. In another study, umbelliprenin was found to induce cytoprotective autophagy by reducing the phosphorylation levels of AKT and mTOR and blocking the Akt signaling pathway [230]. In brief, umbelliprenin (150) could exert its antitumor property by inducing apoptosis and autophagy, inhibiting the cell cycle, and attenuating the migration and invasion of cancer cells. In an in vivo study, a double-stage carcinogenicity assay of mouse skin tumors was performed to investigate the cancer chemopreventive activity of umbelliprenin (150). The results showed that mice treated with umbelliprenin (150) together with peroxynitrite (initiator)/TPA (promoter) had delayed papillary tumor formation, with effects comparable to those of the curcumin control. Furthermore, the tumor development pattern was slower in umbelliprenin-treated mice compared with curcumin treatment. Thus, umbelliprenin (150) may be a potential cancer chemopreventive agent [234].
Galbanic acid (213) is another extensively studied sesquiterpene coumarin. Kim et al. [235] revealed the potential molecular mechanism of galbanic acid (213) in overcoming chemotherapy resistance in drug-resistant lung cancer. As an effective TNF-related apoptosis-inducing ligand (TRAIL) sensitizer, galbanic acid (213) enhanced TRAIL-induced cell apoptosis by inhibiting multidrug resistance 1 (MDR1) and activating caspase and death receptor 5 (DR5) in cisplatin-resistant H460/R non-small-cell lung cancer cells. Galbanic acid (213) induced tumor cell-cycle arrest at G1, which is associated with the inhibition of the cyclin/cyclin-dependent kinase (CDK)4/6 pathway, particularly cyclin D1. [236]. It also inhibited tumor cell metastasis. Neoangiogenesis and the activation of matrix metalloproteinases (MMPs) play a crucial role in tumor generation and metastasis. Neovessels are formed during tumor generation and metastasis [237], so the inhibition of angiogenesis may promote cancer cell death [238]. Kim et al. [239] reported that galbanic acid (213) reduced the number of blood vessels in tumor cells by more than 40%, significantly reduced the proliferation of vascular endothelial growth factor-(VEGF)-induced human umbilical-vein endothelial cells (HUVECs), and inhibited VEGF-induced migration and tube formation in HUVECs. It was shown to have an inhibitory effect on tumor-induced angiogenesis. MMPs are capable of degrading the vast majority of proteins in the extracellular matrix and disrupting the extracellular matrix and basement membrane barriers of tissues, which play a crucial role in the invasive and metastatic process of cancer cells [240]. Thus, inhibiting the activity of MMPs is an effective strategy to block the migration of tumor cells. Studies have demonstrated that galbanic acid (213) can inhibit the activity and expression of MMP2 and MMP9 [241]. Hypoxia-inducible factor (HIF) is a transcription factor that regulates the expression of genes involved in the regulation of hypoxic mechanisms (e.g., angiogenesis or apoptosis) as well as tumor growth, invasion, and metastasis [242]. Hypoxia in tumors can stimulate and induce HIF-1α and HIF-2α protein expression [243]. EGFR-MAPK is an important signaling pathway with regulatory effects on HIF-1α expression [244]. Syeda et al. [245] found that galbanic acid (213) downregulated HIF-1α and HIF-1β mRNA expression under both hypoxic and normoxic conditions, and it had an inhibitory effect on HIF-1 activation. Under normoxic conditions, it shortened the half-life of the EGFR (HIF-1 downstream genes) and promoted EGFR degradation to inhibit HIF activation. Meantime, it inhibited HIF-1α accumulation in A549 and OVCAR-3 cells by suppressing the EGFR/HIF-1α signaling pathway [244].
Table 6. The IC50 values of sesquiterpenes and sesquiterpene derivatives against different cancer cell lines.
Table 6. The IC50 values of sesquiterpenes and sesquiterpene derivatives against different cancer cell lines.
NamesNo.Cell LinesIC50 (μM)References
8-O-Acetyl-sinkiangenorin F209AGS62.7 ± 2.5[81]
Coladin232HCT1163.7 ± 1.5[75]
HT-295.4 ± 1.2[75]
Conferol267COLO20511.19 ± 0.68[246]
Conferone265COLO20527.63 ± 0.69[246]
MCF-734.02 ± 0.68[246]
Episamarcandin305AGS83.8 ± 1.4[128]
Farnesiferol A228HeLa20 ± 0.2[189]
Farnesiferol C202HeLa25 ± 0.8[189]
AGS101.6 ± 1.3[128]
Fekolone187AGS75.4 ± 2.1[128]
Fekrynol211HeLa35 ± 0.6[189]
MGC-80349 ± 0.8[189]
AGS20 ± 0.5[189]
Fekrynol acetate212HeLa25 ± 0.6[189]
MGC-80328 ± 1.2[189]
(+)-Ferulasin422PANC-12.24 ± 0.83[195]
CFPAC-16.12 ± 0.52[195]
SW199011.77 ± 1.57[195]
Capan-28.57 ± 0.59[195]
(-)-Ferulasin423PANC-10.92 ± 0.12[195]
CFPAC-119.13 ± 2.99[195]
Feselol268COLO20538.41 ± 0.8[246]
MCF-735.95 ± 1.29[246]
Galbanic acid213HeLa43 ± 2.0[189]
MCF-756.65 ± 1.4[225]
MDA-MB-23148.75 ± 1.16[225]
4′-Hydroxy kamolonol acetate277HeLa4.5 ± 0.1[158]
13-Hydroxyfeselol271HCT11634.1 ± 2.3[75]
HT-2935.4 ± 4.0[75]
Kamolonol334HeLa3.8 ± 0.1[158]
Kellerin321HeLa37 ± 1.8[189]
MCF-718.24 ± 0.12[246]
Lehmannolol300HeLa42 ± 0.9[189]
AGS26.0 ± 0.9[128]
Lehmannolone298HeLa81.1 ± 1.4[128]
Mogoltadone227COLO20531.71 ± 0.15[246]
MCF-730.45 ± 0.6[246]
K-56221.11 ± 0.85[246]
HepG223.06[247]
Polyanthinin226HeLa28 ± 0.4[189]
MGC-80345 ± 0.9[189]
AGS45 ± 0.9[189]
Sinkiangenol E222HeLa16 ± 0.8[189]
Sinkiangenone A448MGC-80345.05 ± 3.09[21]
AGS48.13 ± 0.87[21]
Sinkiangenone B449MGC-80318.89 ± 1.32[21]
AGS16.15 ± 0.14[21]
Sinkiangenorin D219HeLa20.4 ± 1.3[128]
AGS104.8 ± 1.2[128]
K56281.1 ± 1.0[128]
Sinkiangenorin E344AGS12.7 ± 2.5[30]
Sinkiangenorin F208AGS27.1 ± 1.4[81]
Sinkianone201HeLa77.9 ± 0.7[128]
Umbelliprenin150AGS11.74 ± 1.33[193]
BGC-82324.62 ± 2.45[193]
M4Beu12.4[232]
BxPC345.15 ± 2.57[230]
PANC-147.13 ± 5.13[230]
The anticancer mechanisms of umbelliprenin (150) and galbanic acid (213) are shown in Figure 10.

4.8. Anti-Acetylcholinesterase Effects

Dastan et al. [163] evaluated the acetylcholinesterase (AChE) inhibitory activity of kamonolol acetate (278) from F. pseudalliacea. The results revealed that AChE was suppressed by kamonolol acetate (278), with an IC50 value of 63.9 μM. Moreover, they proved that kamonolol acetate (278) inhibited AChE in the mixed-type model through kinetics together with molecular modeling studies. The findings suggested that kamonolol acetate (278) might be a potential lead compound for designing AChE inhibitors.

4.9. Antidiabetic Effects

Amin et al. [248] conducted antiglycosylation tests on components isolated from the F. narthex exudate. The antiglycation activity of the isolated constituents is composed of both oxidative and non-oxidative inhibition modes. In the bovine serum albumin (BSA)-glucose test, ligupersin A (273) displayed a higher activity (IC50: 0.41 mM) than the control, aminiguanidine (IC50: 1.75 mM). In the BSA-methyl glyoxal (MGO) experiment, 5′-acetoxy-8′-hydroxyumbelliprenin (155) showed better activity (IC50: 1.03 mM) than the control, aminoguanidine (IC50: 0.15 mM). In another study, 10′R-acetoxy-11′-hydroxyumbelliprenin (167) displayed α-glucosidase inhibitory activity, with an IC50 value of 0.05 mM. The results indicated that the antidiabetic activity of the F. narthex exudate may be related to the presence of these constituents [249].

5. Conclusions

Several Ferula species have a long history of use in traditional medicine due to their potential therapeutic properties in treating various health conditions, such as gastrointestinal disorders, respiratory issues, and inflammatory diseases. In recent years, due to its important edible and medicinal values, extensive research has been conducted on every aspect of Ferula, such as its geographical distribution, physiological ecology, genomics, metabolomics, taxonomy, phytoconstituents, biosynthesis, pharmacological activity, traditional uses, clinical efficacy, and industrial applications [250,251,252,253,254].
Ferula is known for its production of sesquiterpenes. Sesquiterpenes are a subclass of terpenes, which are natural hydrocarbons synthesized by plants, including the Ferula species, through the mevalonic acid pathway. Sesquiterpenes are composed of three isoprene units, giving them a 15-carbon structure. Sesquiterpenes and their derivatives have antibacterial, antifungal, and antiviral activities, which are characteristically related to plant defense mechanisms [255]. In this work, information on 454 sesquiterpenes and their derivatives from various parts of this plant, including resins, stems, aerial parts, seeds, and roots have been summarized. The specific sesquiterpenes found in Ferula species can vary between different plant varieties, and even within the same species, and they are influenced by factors such as environmental conditions and geographic location. These compounds not only give Ferula plants their unique aromas but also contribute to their potential therapeutic properties, making them of interest to researchers and practitioners in the fields of herbal medicine. Sesquiterpenes are known for their diverse biological activities, including antioxidative, antibacterial, and anti-inflammatory properties. Ferutinin (18), umbelliprenin (150), and galbanic acid (213) are sesquiterpenes from Ferula which have undergone extensive pharmacological activity research, and investigating these activities can help uncover potential treatments for a wide range of health conditions. They have also shown promise in drug discovery and development.
It should be noted that the specific biological activity of sesquiterpenes is related to their chemical structure. Researchers should understand their structure–activity relationships to design compounds with better activity, fully tap into their therapeutic potential, and develop standardized applications in medicine industries.
In summary, Ferula plants offer a wealth of research opportunities in fields such as phytochemistry, pharmacology, agriculture, ecology, and biotechnology. The diverse sesquiterpenes produced by Ferula species have the potential to yield novel drugs, making them a valuable subject of study for researchers across the globe.

Author Contributions

Conceptualization, C.F. and J.S.; software, J.W., Q.Z. and H.W.; writing—original draft preparation, J.W. and Q.Z.; writing—review and editing, J.W., H.W., L.S., G.W., Y.Z., C.F. and J.S.; visualization, Q.Z. and H.W.; supervision, J.S. and J.W.; project administration, J.S. and J.W.; funding acquisition, J.W., Y.Z. and J.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the CAMS Innovation Fund for Medical Sciences (CIFMS, Grant No. 2022-I2M-1-017), the National Natural Science Foundation of China (Grant No. 81903920), and the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2022D01B190).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Akalın, E.; Tuncay, H.O.; Olcay, B.; Miski, M. A New Ferula (Apiaceae) Species from Southwest Anatolia: Ferula Pisidica Akalın & Miski. Plants 2020, 9, 740. [Google Scholar] [CrossRef] [PubMed]
  2. Chen, Z.; Zhou, G.; Ma, S. Research Progress of Ferula Ferulaeoides: A Review. Molecules 2023, 28, 3579. [Google Scholar] [CrossRef] [PubMed]
  3. Yaqoob, U.; Nawchoo, I.A. Distribution and Taxonomy of Ferula L.: A Review. Res. Rev. J. Bot. Sci. 2016, 5, 15–23. [Google Scholar]
  4. Mohammadhosseini, M.; Venditti, A.; Sarker, S.D.; Nahar, L.; Akbarzadeh, A. The Genus Ferula: Ethnobotany, Phytochemistry and Bioactivities—A Review. Ind. Crop. Prod. 2019, 129, 350–394. [Google Scholar] [CrossRef]
  5. Ahmed, A.A.; Hegazy, M.E.; Zellagui, A.; Rhouati, S.; Mohamed, T.A.; Sayed, A.A.; Abdella, M.A.; Ohta, S.; Hirata, T. Ferulsinaic Acid, a Sesquiterpene Coumarin with a Rare Carbon Skeleton from Ferula Species. Phytochemistry 2007, 68, 680–686. [Google Scholar] [CrossRef] [PubMed]
  6. Salehi, M.; Naghavi, M.R.; Bahmankar, M. A Review of Ferula Species: Biochemical Characteristics, Pharmaceutical and Industrial Applications, and Suggestions for Biotechnologists. Ind. Crop. Prod. 2019, 139, 111511. [Google Scholar] [CrossRef]
  7. Mahboubi, M. Ferula Gummosa, a Traditional Medicine with Novel Applications. J. Diet. Suppl. 2016, 13, 700–718. [Google Scholar] [CrossRef] [PubMed]
  8. Iranshahy, M.; Iranshahi, M. Traditional Uses, Phytochemistry and Pharmacology of Asafoetida (Ferula assa-foetida Oleo-Gum-Resin)—A Review. J. Ethnopharmacol. 2011, 134, 1–10. [Google Scholar] [CrossRef]
  9. Amalraj, A.; Gopi, S. Biological Activities and Medicinal Properties of Asafoetida: A Review. J. Tradit. Complement. Med. 2017, 7, 347–359. [Google Scholar] [CrossRef]
  10. Lee, C.L.; Chiang, L.C.; Cheng, L.H.; Liaw, C.C.; Abd El-Razek, M.H.; Chang, F.R.; Wu, Y.C. Influenza A (H1N1) Antiviral and Cytotoxic Agents from Ferula assa-foetida. J. Nat. Prod. 2009, 72, 1568–1572. [Google Scholar] [CrossRef]
  11. Mahendra, P.; Bisht, S. Ferula asafoetida: Traditional Uses and Pharmacological Activity. Pharmacogn. Rev. 2012, 6, 141–146. [Google Scholar] [CrossRef] [PubMed]
  12. Al-Ja’fari, A.-H.; Vila, R.; Freixa, B.; Costa, J.; Cañigueral, S. Antifungal Compounds from the Rhizome and Roots of Ferula hermonis. Phytother. Res. PTR 2013, 27, 911–915. [Google Scholar] [CrossRef] [PubMed]
  13. Elisabetsky, E.; Shanley, P. Ethnopharmacology in the Brazilian Amazon. Pharmacol. Ther. 1994, 64, 201–214. [Google Scholar] [CrossRef] [PubMed]
  14. Bashir, S.; Alam, M.; Bashir, A.; Aman, A.; Ali, J. Screening of Ferula narthex Boiss Crude Methanolic Extract for Analgesic, Gastrointestinal Motility and Insecticidal Activity. Middle East J. Sci. Res. 2013, 14, 471–475. [Google Scholar]
  15. Akaberi, M.; Iranshahy, M.; Iranshahi, M. Review of the Traditional Uses, Phytochemistry, Pharmacology and Toxicology of Giant Fennel (Ferula communis L. subsp. communis). Iran. J. Basic. Med. Sci. 2015, 18, 1050–1062. [Google Scholar] [PubMed]
  16. Sattar, Z.; Iranshahi, M. Phytochemistry and Pharmacology of Ferula hermonis Boiss.—A Review. Drug Res. 2017, 67, 437–446. [Google Scholar] [CrossRef] [PubMed]
  17. Ensiyeh, C.; Ehsan, K.; Ehsan, O.; Mehrdad, I. Antibacterial, Antioxidant and Melanogenesis Inhibitory Activity of Auraptene, a Coumarin from Ferula szowitsiana Root. Nutr. Cancer 2022, 74, 1829–1836. [Google Scholar] [CrossRef]
  18. Motai, T.; Kitanaka, S. Sesquiterpene Phenylpropanoids from Ferula Fukanensis and Their Nitric Oxide Production Inhibitory Effects. J. Nat. Prod. 2005, 68, 365–368. [Google Scholar] [CrossRef]
  19. Bao, X.-H.; Li, Y.-P.; Li, Q.; Cheng, Y.-X.; Jiao, Y.-B.; Zhang, H.-X.; Yan, Y.-M. Racemic Norneolignans from the Resin of Ferula sinkiangensis and Their COX-2 Inhibitory Activity. Fitoterapia 2023, 164, 105341. [Google Scholar] [CrossRef]
  20. Li, G.; Li, X.; Cao, L.; Shen, L.; Zhu, J.; Zhang, J.; Wang, J.; Zhang, L.; Si, J. Steroidal Esters from Ferula sinkiangensis. Fitoterapia 2014, 97, 247–252. [Google Scholar] [CrossRef]
  21. Wang, J.; Gao, Y.; Wang, H.; Chen, L.; Cao, L.; Xu, J.; Li, X.; Zhao, Y.; Zhu, J.; Si, J. Apoptosis Induction and Cell Cycle Arrest Induced by Sinkiangenone B, a Novel Phenylpropanoid Derivative from the Resin of Ferula sinkiangensis K. M. Shen. RSC Adv. 2018, 8, 4093–4103. [Google Scholar] [CrossRef]
  22. Alkhatib, R.; Hennebelle, T.; Joha, S.; Roumy, V.; Güzel, Y.; Biabiany, M.; Idziorek, T.; Preudhomme, C.; Quesnel, B.; Sahpaz, S.; et al. Humulane and Germacrane Sesquiterpenes from Ferula lycia. J. Nat. Prod. 2010, 73, 780–783. [Google Scholar] [CrossRef] [PubMed]
  23. Liu, T.; Wang, L.; Zhang, L.; Jiang, H.; Zhang, Y.; Mao, L. Insecticidal, Cytotoxic and Anti-Phytopathogenic Fungal Activities of Chemical Constituents from the Aerial Parts of Ferula sinkiangensis. Nat. Prod. Res. 2018, 34, 1430–1436. [Google Scholar] [CrossRef] [PubMed]
  24. Yi, X.; Li, Z.; Zheng, Q.; Sang, R.; Li, H.; Gao, G.; Qin, Q.; Zhu, N. Three New Tetrahydrobenzofuran Derivatives from Ferula sinkiangensis K.M.Shen and Their Cytotoxic Activities. Nat. Prod. Res. 2022, 37, 3369–3373. [Google Scholar] [CrossRef] [PubMed]
  25. Eruçar, F.M.; Senadeera, S.P.D.; Wilson, J.A.; Goncharova, E.; Beutler, J.A.; Miski, M. Novel Cytotoxic Sesquiterpene Coumarin Ethers and Sulfur-Containing Compounds from the Roots of Ferula turcica. Molecules 2023, 28, 5733. [Google Scholar] [CrossRef] [PubMed]
  26. Macrì, R.; Bava, I.; Scarano, F.; Mollace, R.; Musolino, V.; Gliozzi, M.; Greco, M.; Foti, D.; Tucci, L.; Maiuolo, J.; et al. In Vitro Evaluation of Ferutinin Rich-Ferula communis L., Ssp. Glauca, Root Extract on Doxorubicin-Induced Cardiotoxicity: Antioxidant Properties and Cell Cycle Modulation. Int. J. Mol. Sci. 2023, 24, 12735. [Google Scholar] [CrossRef] [PubMed]
  27. Mi, Y.; Jiao, K.; Xu, J.-K.; Wei, K.; Liu, J.-Y.; Meng, Q.Q.; Guo, T.-T.; Zhang, X.-N.; Zhou, D.; Qing, D.-G.; et al. Kellerin from Ferula sinkiangensis Exerts Neuroprotective Effects after Focal Cerebral Ischemia in Rats by Inhibiting Microglia-Mediated Inflammatory Responses. J. Ethnopharmacol. 2021, 269, 113718. [Google Scholar] [CrossRef]
  28. Arjmand, Z.; Hamburger, M.; Dastan, D. Isolation and Purification of Terpenoid Compounds from Ferula haussknechtii and Evaluation of Their Antibacterial Effects. Nat. Prod. Res. 2023, 37, 1617–1624. [Google Scholar] [CrossRef]
  29. Wang, J.-L.; Sang, C.-Y.; Wang, J.; Li, P.-L.; Chai, T.; Naghavi, M.R.; Zhao, Y.-M.; Yang, J.-L. Sesquiterpene Coumarins from Ferula sinkiangensis and Their Anti-Pancreatic Cancer Effects. Phytochemistry 2023, 214, 113824. [Google Scholar] [CrossRef]
  30. Li, G.Z.; Wang, J.C.; Li, X.J.; Cao, L.; Gao, L.; Lv, N.; Si, J.Y. An Unusual Sesquiterpene Coumarin from the Seeds of Ferula sinkiangensis. J. Asian Nat. Prod. Res. 2016, 18, 891–896. [Google Scholar] [CrossRef]
  31. Dall’Acqua, S.; Linardi, M.A.; Maggi, F.; Nicoletti, M.; Petitto, V.; Innocenti, G.; Basso, G.; Viola, G. Natural Daucane Sesquiterpenes with Antiproliferative and Proapoptotic Activity against Human Tumor Cells. Bioorg. Med. Chem. 2011, 19, 5876–5885. [Google Scholar] [CrossRef] [PubMed]
  32. Dall’Acqua, S.; Linardi, M.A.; Bortolozzi, R.; Clauser, M.; Marzocchini, S.; Maggi, F.; Nicoletti, M.; Innocenti, G.; Basso, G.; Viola, G. Natural Daucane Esters Induces Apoptosis in Leukaemic Cells through ROS Production. Phytochemistry 2014, 108, 147–156. [Google Scholar] [CrossRef] [PubMed]
  33. Iranshahi, M.; Amin, G.-R.; Jalalizadeh, H.; Shafiee, A. New Germacrane Derivative from Ferula persica. Pharm. Biol. 2003, 41, 431–433. [Google Scholar] [CrossRef]
  34. González, A.G.; Díaz, J.G.; López, L.A.; Valencia, E.; De Paz, P.P.; Barrera, J.B. Sesquiterpene Esters and Sesquiterpene Coumarin Ethers from Ferula linkii-TF. Phytochemistry 1993, 33, 863–866. [Google Scholar] [CrossRef]
  35. Suzuki, K.; Okasaka, M.; Kashiwada, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O.K.; Ashurmetov, O.; Sekiya, M.; et al. Sesquiterpene Lactones from the Roots of Ferula varia and Their Cytotoxic Activity. J. Nat. Prod. 2007, 70, 1915–1918. [Google Scholar] [CrossRef] [PubMed]
  36. Lamnaouer, D.; Martin, M.-T.; Molho, D.; Bodo, B. Isolation of Daucane Esters from Ferula communis var. Brevifolia. Phytochemistry 1989, 28, 2711–2716. [Google Scholar] [CrossRef]
  37. Ahmed, A.A. New Sesquiterpenes from Ferula sinaica. J. Nat. Prod. 1990, 53, 483–486. [Google Scholar] [CrossRef]
  38. Miski, M.; Mabry, T.J. Daucane Esters from Ferula communis subsp. communis. Phytochemistry 1985, 24, 1735–1741. [Google Scholar] [CrossRef]
  39. Zhu, G.; Zhang, H. Studies on the Chemical Constituents in the Root of Ferula tunshanica Su. J. China Pharm. Univ. 1996, 27, 585–588. [Google Scholar] [CrossRef]
  40. Miski, M.; Mabry, T.J. Fercolide, a Type of Sesquiterpene Lactone from Ferula communis subsp. communis and the Correct Structure of Vaginatin. Phytochemistry 1986, 25, 1673–1675. [Google Scholar] [CrossRef]
  41. Iranshahi, M.; Ghiadi, M.; Sahebkar, A.; Rahimi, A.; Bassarello, C.; Piacente, S.; Pizza, C. Badrakemonin, a New Eremophilane-Type Sesquiterpene from the Roots of Ferula badrakema Kos.-Pol. Iran. J. Pharm. Res. 2009, 8, 275–279. [Google Scholar]
  42. Fraga, B.M.; Hernández, M.G.; Diaz, J.G. Carotdiol Esters from Ferula linkii. Phytochemistry 1989, 28, 1649–1652. [Google Scholar] [CrossRef]
  43. Appendino, G.; Jakupovic, J.; Alloatti, S.; Ballero, M. Daucane Esters from Ferula arrigonii. Phytochemistry 1997, 45, 1639–1643. [Google Scholar] [CrossRef]
  44. Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Tori, M.; Takaoka, S.; Kodzhimatov, O.K.; Ashurmetov, O. Sesquiterpenes from Ferula penninervis. J. Nat. Prod. 2002, 65, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
  45. Oughlissi-Dehak, K.; Lawton, P.; Michalet, S.; Bayet, C.; Darbour, N.; Hadj-Mahammed, M.; Badjah-Hadj-Ahmed, Y.A.; Dijoux-Franca, M.-G.; Guilet, D. Sesquiterpenes from Aerial Parts of Ferula vesceritensis. Phytochemistry 2008, 69, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
  46. Ahmed, A.A.; Abdel-Razek, M.H.; Nassar, M.I.; Izumi, S.; Ohta, S.; Hirata, T. An Eudesmanolide and a Carotane from Ferula sinaica. Phytochemistry 2001, 57, 513–515. [Google Scholar] [CrossRef] [PubMed]
  47. Auzi, A.A.; Gray, A.I.; Salem, M.M.; Badwan, A.A.; Sarker, S.D. Feruhermonins A-C: Three Daucane Esters from the Seeds of Ferula hermonis (Apiaceae). J. Asian Nat. Prod. Res. 2008, 10, 711–717. [Google Scholar] [CrossRef] [PubMed]
  48. Chen, B.; Teranishi, R.; Kawazoe, K.; Takaishi, Y.; Honda, G.; Itoh, M.; Takeda, Y.; Kodzhimatov, O.K. Sesquiterpenoids from Ferula kuhistanica. Phytochemistry 2000, 54, 717–722. [Google Scholar] [CrossRef]
  49. Iranshahi, M.; Hosseini, S.T.; Shahverdi, A.R.; Molazade, K.; Khan, S.S.; Ahmad, V.U. Diversolides A–G, Guaianolides from the Roots of Ferula diversivittata. Phytochemistry 2008, 69, 2753–2757. [Google Scholar] [CrossRef]
  50. Alkhatib, R.; Hennebelle, T.; Joha, S.; Idziorek, T.; Preudhomme, C.; Quesnel, B.; Sahpaz, S.; Bailleul, F. Activity of Elaeochytrin A from Ferula elaeochytris on Leukemia Cell Lines. Phytochemistry 2008, 69, 2979–2983. [Google Scholar] [CrossRef]
  51. Naguib, Y.M.A. Pharmaceutically Active Composition Extracted from Ferula hermonis and Process of Its Extraction. U.S. Patent US6623768B1, 23 September 2003. [Google Scholar]
  52. Galal, A.M.; Abourashed, E.A.; Ross, S.A.; ElSohly, M.A.; Al-Said, M.S.; El-Feraly, F.S. Daucane Sesquiterpenes from Ferula hermonis. J. Nat. Prod. 2001, 64, 399–400. [Google Scholar] [CrossRef]
  53. Valle, M.G.; Appendino, G.; Nano, G.M.; Picci, V. Prenylated Coumarins and Sesquiterpenoids from Ferula communis. Phytochemistry 1986, 26, 253–256. [Google Scholar] [CrossRef]
  54. Fraga, B.M.; González, A.G.; Gonzàlez, P.; Hernandez, M.G.; Larruga, C.L. Carotane Sesquiterpenes from Ferula lancerottensis. Phytochemistry 1985, 24, 501–504. [Google Scholar] [CrossRef]
  55. Diaz, J.G.; Fraga, B.M.; González, A.G.; Gónzalez, P.; Hernández, M.G. Eight Carotane Sesquiterpenes from Ferula linkii. Phytochemistry 1984, 23, 2541–2544. [Google Scholar] [CrossRef]
  56. Lhuillier, A.; Fabre, N.; Cheble, E.; Oueida, F.; Maurel, S.; Valentin, A.; Fourasté, I.; Moulis, C. Daucane Sesquiterpenes from Ferula hermonis. J. Nat. Prod. 2005, 68, 468–471. [Google Scholar] [CrossRef] [PubMed]
  57. Wang, N.; Yuan, C.; Kimie, B.; Masahiko, T.; Misunobu, D. Chemical constituents of roots of Ferula licentiana var. tunshanica and F. kingdon-wardii and their systematical significance. J. Plant Resour. Environ. 1997, 6, 15–18+49. [Google Scholar]
  58. Ahmed, A.A. Daucanes and Other Constituents from Ferula sinaica. Phytochemistry 1991, 30, 1207–1210. [Google Scholar] [CrossRef]
  59. Singh, M.M.; Agnihotri, A.; Garg, S.N.; Agarwal, S.K.; Gupta, D.N.; Keshri, G.; Kamboj, V.P. Antifertility and Hormonal Properties of Certain Carotane Sesquiterpenes of Ferula jaeschkeana. Planta Med. 1988, 54, 492–494. [Google Scholar] [CrossRef]
  60. Garg, S.N.; Misra, L.N.; Agarwal, S.K.; Mahajan, V.P.; Rastogi, S.N. Carotane Derivatives from Ferula jaeschkeana. Phytochemistry 1987, 26, 449–450. [Google Scholar] [CrossRef]
  61. Hu, Y.; Li, X.-D.; Li, G.-Y.; Li, N.; Zuo, W.-J.; Zeng, Y.-M.; Meng, H.; Li, X.; Wang, J.-H. Two Novel Sesquiterpenoids from the Roots of Ferula ferulaeoides (Steud.) Korov. Helv. Chim. Acta 2010, 93, 1019–1024. [Google Scholar] [CrossRef]
  62. Miski, M.; Ulubelen, A.; Mabry, T.J. Six Sesquiterpene Alcohol Esters from Ferula elaeochytris. Phytochemistry 1983, 22, 2231–2233. [Google Scholar] [CrossRef]
  63. Razdan, T.K.; Qadri, B.; Qurishi, M.A.; Khuroo, M.A.; Kachroo, K. Sesquiterpene Esters Sesquiterpene-Coumarin Ethers from Ferula jaeskeana. Phytochemistry 1989, 28, 3389–3393. [Google Scholar] [CrossRef]
  64. Tamemoto, K.; Takaishi, Y.; Chen, B.; Kawazoe, K.; Shibata, H.; Higuti, T.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O.K.; et al. Sesquiterpenoids from the Fruits of Ferula kuhistanica and Antibacterial Activity of the Constituents of F. kuhistanica. Phytochemistry 2001, 58, 763–767. [Google Scholar] [CrossRef] [PubMed]
  65. Appendino, G.; Cravotto, G.; Sterner, O.; Ballero, M. Oxygenated Sesquiterpenoids from a Nonpoisonous Sardinian Chemotype of Giant Fennel (Ferula communis). J. Nat. Prod. 2001, 64, 393–395. [Google Scholar] [CrossRef] [PubMed]
  66. Appendino, G.; Maxia, L.; Bascope, M.; Houghton, P.J.; Sanchez-Duffhues, G.; Muñoz, E.; Sterner, O. A Meroterpenoid NF-kappaB Inhibitor and Drimane Sesquiterpenoids from Asafetida. J. Nat. Prod. 2006, 69, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
  67. Garg, S.N.; Agarwal, S.K. Further New Sesquiterpenes from Ferula jaeschkeana. J. Nat. Prod. 1988, 51, 771–774. [Google Scholar] [CrossRef] [PubMed]
  68. Ahmed, A.A. Sesquiterpene Coumarins and Sesquiterpenes from Ferula sinaica. Phytochemistry 1999, 50, 109–112. [Google Scholar] [CrossRef]
  69. Fraga, B.M.; Hernández, M.G.; Díaz, J.G.; González, A.G.; González, P. Carotane Sesquiterpenes from Ferula linkii. Phytochemistry 1986, 25, 2883–2886. [Google Scholar] [CrossRef]
  70. Tamemoto, K.; Takaishi, Y.; Kawazoe, K.; Honda, G.; Ito, M.; Kiuchi, F.; Takeda, Y.; Kodzhimatov, O.K.; Ashurmetov, O.; Shimizu, K.; et al. An Unusual Sesquiterpene Derivative from Ferula kuhistanica. J. Nat. Prod. 2002, 65, 1323–1324. [Google Scholar] [CrossRef]
  71. Diaz, J.G.; Fraga, B.M.; González, A.G.; Hernandez, M.G.; Perales, A. Carotane Sesquiterpenes from Ferula linkii. Phytochemistry 1986, 25, 1161–1165. [Google Scholar] [CrossRef]
  72. Golovina, L.A.; Saidkhodzhaev, A.I. Structure and Stereochemistry of Lapidin. Chem. Nat. Compd. 1981, 17, 244–248. [Google Scholar] [CrossRef]
  73. Gamal-Eldeen, A.M.; Hegazy, M.-E.F. A Crystal Lapiferin Derived from Ferula Vesceritensis Induces Apoptosis Pathway in MCF-7 Breast Cancer Cells. Nat. Prod. Res. 2010, 24, 246–257. [Google Scholar] [CrossRef] [PubMed]
  74. Motai, T.; Kitanaka, S. Sesquiterpenoids from Ferula Fukanensis and Their Inhibitory Effects on Nitric Oxide Production. J. Nat. Med. 2006, 60, 54–57. [Google Scholar] [CrossRef]
  75. Jabrane, A.; Jannet, H.B.; Mighri, Z.; Mirjolet, J.F.; Duchamp, O.; Harzallah-Skhiri, F.; Lacaille Dubois, M.A. Two New Sesquiterpene Derivatives from the Tunisian Endemic Ferula tunetana Pom. Chem. Biodivers. 2010, 7, 392–399. [Google Scholar] [CrossRef] [PubMed]
  76. Lamnaouer, D.; Fraigui, O.; Martin, M.; Bodo, B. Structure of Ferulenol Derivatives from Ferula communis Var. Genuina. Phytochemistry 1991, 30, 2383–2386. [Google Scholar] [CrossRef]
  77. Appendino, G.; Tagliapietra, S.; Mario Nano, G.; Jakupovic, J. Sesquiterpene Coumarin Ethers from Asafetida. Phytochemistry 1993, 35, 183–186. [Google Scholar] [CrossRef]
  78. Appendino, G.; Tagliapietra, S.; Gariboldi, P.; Mario Nano, G.; Picci, V. ω-Oxygenated Prenylated Coumarins from Ferula communis. Phytochemistry 1988, 27, 3619–3624. [Google Scholar] [CrossRef]
  79. Appendino, G.; Tagliapietra, S.; Nano, G.; Picci, V. Ferprenin, a Prenylated Coumarin from Ferula communis. Phytochemistry 1988, 27, 944–946. [Google Scholar] [CrossRef]
  80. Monti, M.; Pinotti, M.; Appendino, G.; Dallocchlo, F.; Bellini, T.; Antognoni, F.; Poli, F.; Bernardi, F. Characterization of Anti-Coagulant Properties of Prenylated Coumarin Ferulenol. Biochim. Biophys. Acta-Gen. Subj. 2007, 1770, 1437–1440. [Google Scholar] [CrossRef]
  81. Li, G.; Wang, J.; Li, X.; Cao, L.; Lv, N.; Chen, G.; Zhu, J.; Si, J. Two New Sesquiterpene Coumarins from the Seeds of Ferula sinkiangensis. Phytochem. Lett. 2015, 13, 123–126. [Google Scholar] [CrossRef]
  82. Kajimoto, T.; Yahiro, K.; Nohara, T. Sesquiterpenoid and Disulphide Derivatives from Ferula assa-foetida. Phytochemistry 1989, 28, 1761–1763. [Google Scholar] [CrossRef]
  83. Abd El-Razek, M.H.; Wu, Y.-C.; Chang, F.-R. Sesquiterpene Coumarins from Ferula foetida. J. Chin. Chem. Soc. 2007, 54, 235–238. [Google Scholar] [CrossRef]
  84. Ghosh, A.; Banerji, A.; Mandal, S.; Banerji, J. A New Sesquiterpenoid Coumarin from Ferula assafoetida. Nat. Prod. Commun. 2009, 4, 1023–1024. [Google Scholar] [CrossRef] [PubMed]
  85. Bandyopadhyay, D.; Banerjee, M.; Laskar, S.; Basak, B. Asimafoetidnol: A New Sesquiterpenoid Coumarin from the Gum Resin of Ferula assa-foetida. Nat. Prod. Commun. 2011, 6, 209–212. [Google Scholar] [CrossRef] [PubMed]
  86. Xu, Q.; Li, G.; Liu, Y.; Chen, S.; Xu, L.; Yang, S. Study on Sesquiterpenoid Coumarins from the Root of Ferula fukanensis K. M. Shen. Chin. Pharm. 2009, 44, 255–257. [Google Scholar] [CrossRef]
  87. Li, X.; Li, G.; Wang, H.; Wang, Y.; Wang, J. Chemical Constituents from Ferula lehmannii Boss. Mod. Chin. Med. 2010, 12, 17–20. [Google Scholar] [CrossRef]
  88. Banerji, A.; Mallick, B.; Chatterjee, A.; Budzikiewics, H.; Breuer, M. Assafoetidin and Ferocolicin, Two Sesquiterpenoid Coumarins from Ferula assafoetida Regel. Tetrahedron Lett. 1988, 29, 1557–1560. [Google Scholar] [CrossRef]
  89. Abd El-Razek, M.H.; Ohta, S.; Ahmed, A.A.; Hirata, T. Sesquiterpene Coumarins from the Roots of Ferula assa-foetida. Phytochemistry 2001, 58, 1289–1295. [Google Scholar] [CrossRef]
  90. Yang, J.; Li, G.; Li, Z.; Qin, H. Chemical Constituents from Ferula teterrima. Nat. Prod. Res. Dev. 2006, 18, 246–248. [Google Scholar] [CrossRef]
  91. Kiryalov, N.P. Isolation of the Coumarin Badrakemin from the Roots of Ferula badrakema. Chem. Nat. Compd. 1967, 3, 307–309. [Google Scholar] [CrossRef]
  92. Iranshahi, M.; Amin, G.; Shafiee, A. A New Coumarin from Ferula persica. Pharm. Biol. 2004, 42, 440–442. [Google Scholar] [CrossRef]
  93. Bagirov, V.Y.; Kir’yalov, N.P. Coumarins from the Roots of Ferula nevskii. Chem. Nat. Compd. 1970, 6, 474. [Google Scholar] [CrossRef]
  94. Kuliev, Z.A.; Khasanov, T.K. Structures of Cauferin and Cauferidin. Chem. Nat. Compd. 1978, 14, 271–274. [Google Scholar] [CrossRef]
  95. Kuliev, Z.A.; Khasanov, T.K.; Malikov, V.M. Structure and Configuration of Cauferinin. Chem. Nat. Compd. 1979, 15, 127–129. [Google Scholar] [CrossRef]
  96. Kamoldinov, K.; Li, J.; Eshbakova, K.; Sagdullaev, S.; Xu, G.; Zhou, Y.; Li, J.; Aisa, H.A. Sesquiterpene Coumarins from Ferula samarkandica Korovin and Their Bioactivity. Phytochemistry 2021, 187, 112705. [Google Scholar] [CrossRef] [PubMed]
  97. Iranshahi, M.; Masullo, M.; Asili, A.; Hamedzadeh, A.; Jahanbin, B.; Festa, M.; Capasso, A.; Piacente, S. Sesquiterpene Coumarins from Ferula gumosa. J. Nat. Prod. 2010, 73, 1958–1962. [Google Scholar] [CrossRef] [PubMed]
  98. Kuliev, Z.A.; Khasanov, T.K.; Malikov, V.M. Terpenoid Coumarin Glycosides of Ferula conocaula. Chem. Nat. Compd. 1979, 15, 414–416. [Google Scholar] [CrossRef]
  99. Abd El-Razek, M.H.; Ohta, S.; Hirata, T. Terpenoid Coumarins of the Genus Ferula. Heterocycles 2003, 60, 689. [Google Scholar] [CrossRef]
  100. Dall’Acqua, S.; Maggi, F.; Minesso, P.; Salvagno, M.; Papa, F.; Vittori, S.; Innocenti, G. Identification of Non-Alkaloid Acetylcholinesterase Inhibitors from Ferulago campestris (Besser) Grecescu (Apiaceae). Fitoterapia 2010, 81, 1208–1212. [Google Scholar] [CrossRef]
  101. Wang, Y.; Si, J.; Li, X.; Jiang, L.; Zhu, J. Chemical Constituents from the Seeds of Ferula sinkiangensis. Mod. Chin. Med. 2011, 13, 26–28. [Google Scholar] [CrossRef]
  102. Pinar, M.; Rodríguez, B. A New Coumarin from Ferula Loscosii and the Correct Structure of Coladonin. Phytochemistry 1977, 16, 1987–1989. [Google Scholar] [CrossRef]
  103. Yoshino, Y.; Tanaka, N.; Tsuji, D.; Itoh, K.; Kashiwada, Y. Communiferulins, Farnesylated Coumarins from the Roots of Ferula communis and Their Anti-Neuroinflammatory Activity. J. Nat. Med. 2023, 77, 173–179. [Google Scholar] [CrossRef] [PubMed]
  104. Iranshahi, M.; Kalategi, F.; Sahebkar, A.; Sardashti, A.; Schneider, B. New Sesquiterpene Coumarins from the Roots of Ferula flabelliloba. Pharm. Biol. 2010, 48, 217–220. [Google Scholar] [CrossRef] [PubMed]
  105. Vandyshev, V.V.; Sklyar, Y.E.; Perel’son, M.E.; Moroz, M.D. Conferdione—A New Coumarin from Ferula conocaula. Chem. Nat. Compd. 1974, 10, 670–671. [Google Scholar] [CrossRef]
  106. Vandyshev, V.V.; Perel’son, M.E.; Sklyar, Y.E.; Moroz, M.D. Conferin—New Coumarin from the Roots of Ferula conocaula. Chem. Nat. Compd. 1974, 10, 673–674. [Google Scholar] [CrossRef]
  107. Vandyshev, V.V.; Sklyar, Y.E.; Perel’son, M.E.; Moroz, M.D.; Pimenov, M.G. Conferol—A New Coumarin from the Roots of Ferula conocaula and F. moschata. Chem. Nat. Compd. 1972, 8, 654. [Google Scholar] [CrossRef]
  108. Iranshahi, M.; Rezaee, R.; Sahebkar, A.; Bassarello, C.; Piacente, S.; Pizza, C. Sesquiterpene Coumarins from the Fruits of Ferula badrakema. Pharm. Biol. 2009, 47, 344–347. [Google Scholar] [CrossRef]
  109. Andrianova, V.B.; Sklyar, Y.E.; Perel’son, M.E.; Pimenov, M.G. Kellerin—A New Coumarin from the Roots of Ferula kelleri. Chem. Nat. Compd. 1973, 9, 758–759. [Google Scholar] [CrossRef]
  110. Nabiev, A.A.; Khasanov, T.K.; Malikov, V.M. Terpenoid Coumarins of Ferula kokanica. Chem. Nat. Compd. 1982, 18, 547–549. [Google Scholar] [CrossRef]
  111. Beselovskaya, N.V.; Sklyar, Y.E. Deacetyltadzhikorin from Ferula tadshikorum. Chem. Nat. Compd. 1984, 20, 363. [Google Scholar] [CrossRef]
  112. El-Bassuony, A.A.; Gohar, A.A.; Kabbash, A.M. Two New Sesquiterpene Coumarins, Ferusinol and Samarcandin Diastereomer, from Ferula sinaica. Iran. J. Pharm. Res. 2007, 6, 217–221. [Google Scholar]
  113. Motai, T.; Daikonya, A.; Kitanaka, S. Sesquiterpene Coumarins from Ferula fukanensis and Nitric Oxide Production Inhibitory Effects. J. Nat. Prod. 2004, 67, 432–436. [Google Scholar] [CrossRef] [PubMed]
  114. Isaka, K.; Nagatsu, A.; Ondognii, P.; Zevgeegiin, O.; Gombosurengyin, P.; Davgiin, K.; Kojima, K.; Ogihara, Y. Sesquiterpenoid Derivatives from Ferula ferulioides. V. Chem. Pharm. Bull. 2001, 49, 1072–1076. [Google Scholar] [CrossRef] [PubMed]
  115. Nagatsu, A.; Isaka, K.; Kojima, K.; Ondognii, P.; Zevgeegiin, O.; Gombosurengyin, P.; Davgiin, K.; Irfan, B.; Iqubal, C.M.; Ogihara, Y. New Sesquiterpenes from Ferula ferulaeoides (Steud.) Korovin. VI. Isolation and Identification of Three New Dihydrofuro[2,3-b]Chromones. Chem. Pharm. Bull. 2002, 50, 675–677. [Google Scholar] [CrossRef] [PubMed]
  116. Liu, T.; Wang, S.; Xu, L.; Fu, W.; Gibbons, S.; Mu, Q. Sesquiterpenoids with Anti-MDR Staphylococcus Aureus Activitiesfrom Ferula ferulioides. Chem. Biodivers. 2015, 12, 599–614. [Google Scholar] [CrossRef] [PubMed]
  117. Yang, J. Studies on the Chemical Constituents of Ferula teterrima, F. sinkiangensis and F. ferulaeoides. Master’s Thesis, Chinese Acedemy of Medical Sciences & Peking Union Medical College, Beijing, China, 2006. [Google Scholar]
  118. Yang, J.; Jing, S.; Li, Z.; Qin, H. Chemical Constituents from Roots of Ferula sinkiangensis. China J. Chin. Mater. Med. 2007, 32, 2382–2384. [Google Scholar] [CrossRef]
  119. Ahmed, A.A.; Mohamed, A.E.-H.H.; El-Razek, M.H.A.; Hegazy, M.-E.F. Ferulol and Epi-Samarcandin, Two New Sesquiterpene Coumarins from Ferula sinaica. Nat. Prod. Commun. 2007, 2, 521–524. [Google Scholar] [CrossRef]
  120. Nassar, M.I.; Mohamed, T.K. A New Sequiterpene Coumarin from Ferula assa-foetida. Fitoterapia 1998, 69, 41–42. [Google Scholar]
  121. Dastan, D.; Salehi, P.; Reza Gohari, A.; Zimmermann, S.; Kaiser, M.; Hamburger, M.; Reza Khavasi, H.; Nejad Ebrahimi, S. Disesquiterpene and Sesquiterpene Coumarins from Ferula pseudalliacea, and Determination of Their Absolute Configurations. Phytochemistry 2012, 78, 170–178. [Google Scholar] [CrossRef]
  122. Iranshahi, M.; Arfa, P.; Ramezani, M.; Jaafari, M.R.; Sadeghian, H.; Bassarello, C.; Piacente, S.; Pizza, C. Sesquiterpene Coumarins from Ferula szowitsiana and in Vitro Antileishmanial Activity of 7-Prenyloxycoumarins against Promastigotes. Phytochemistry 2007, 68, 554–561. [Google Scholar] [CrossRef]
  123. Li, X.; Li, G.; Wang, H.; Wang, Y.; Wang, J. Chemical Constituents from Ferula lehmannii Boss. J. Nong. Med. 2010, 32, 198–200. [Google Scholar] [CrossRef]
  124. Cha, M.-R.; Choi, Y.; Choi, C.; Kim, Y.; Kim, Y.-K.; Ryu, S.; Kim, Y.; Choi, S. Galbanic Acid, a Cytotoxic Sesquiterpene from the Gum Resin of Ferula asafoetida, Blocks Protein Farnesyltransferase. Planta Med. 2011, 77, 52–54. [Google Scholar] [CrossRef] [PubMed]
  125. Sistani, P.; Dehghan, G.; Sadeghi, L. Structural and Kinetic Insights into HIV-1 Reverse Transcriptase Inhibition by Farnesiferol, C. Int. J. Biol. Macromol. 2021, 174, 309–318. [Google Scholar] [CrossRef] [PubMed]
  126. Golovina, L.A.; Khasanov, T.K.; Saidkhodzhaev, A.I.; Malikov, V.M.; Rakhmankulov, U. Coumarins and Esters of Ferula microcarpa. Chem. Nat. Compd. 1978, 14, 487–490. [Google Scholar] [CrossRef]
  127. Nabiev, A.A.; Khasanov, T.K.; Malikov, V.M. New Terpenoid Coumarins of Ferula kopetdaghensis. Chem. Nat. Compd. 1978, 14, 440. [Google Scholar] [CrossRef]
  128. Li, G.; Li, X.; Cao, L.; Zhang, L.; Shen, L.; Zhu, J.; Wang, J.; Si, J. Sesquiterpene Coumarins from Seeds of Ferula sinkiangensis. Fitoterapia 2015, 103, 222–226. [Google Scholar] [CrossRef] [PubMed]
  129. Veselovskaya, N.V.; Sklyar, Y.E.; Fesenko, D.A.; Pimenov, M.G. Fekrol—A Terpenoid Coumarin from Ferula krylovii. Chem. Nat. Compd. 1979, 15, 755. [Google Scholar] [CrossRef]
  130. Veselovskaya, N.V.; Sklyar, Y.E.; Savina, A.A. Fekrynol and Its Acetate from Ferula krylovii. Chem. Nat. Compd. 1981, 17, 589–590. [Google Scholar] [CrossRef]
  131. Miski, M.; Jakupovic, J. Cyclic Farnesyl-Coumarin and Farnesyl-Chromone Derivatives from Ferula communis subsp. communis. Phytochemistry 1990, 29, 1995–1998. [Google Scholar] [CrossRef]
  132. Kuliev, Z.A.; Khasanov, T.K. The Structures of Ferocaulin, Ferocaulinin, Ferocaulidin, and Ferocaulicin. Chem. Nat. Compd. 1978, 14, 267–271. [Google Scholar] [CrossRef]
  133. Saidkhodzhaev, A.I.; Malikov, V.M. The Stereochemistry of Feropolol, Feropolin, Feropolone, and Feropolidin. Chem. Nat. Compd. 1978, 14, 681–682. [Google Scholar] [CrossRef]
  134. Khasanov, T.K.; Saidkhodzhaev, A.I.; Nikonov, G.K. The Structures of Feropolin, Feropolol, Feropolone, and Feropolidin. Chem. Nat. Compd. 1976, 12, 79–80. [Google Scholar] [CrossRef]
  135. Saidkhodzhaev, A.I.; Malikov, V.M.; Pimenov, M.G.; Melibaev, S. Terpenoid Coumarins of Ferula lipskvi and F. vicaria. Chem. Nat. Compd. 1991, 27, 242–243. [Google Scholar] [CrossRef]
  136. Kadyrov, A.S.; Saidkhodzhaev, A.I.; Nikonov, G.K. The Structures of Feroside and of Reoselin a—New Glycosides from the Roots of Ferula korshinskyi. Chem. Nat. Compd. 1975, 11, 604–608. [Google Scholar] [CrossRef]
  137. Guo, T.; Dang, W.; Zhou, Y.; Zhou, D.; Meng, Q.; Xu, L.; Chen, G.; Lin, B.; Qing, D.; Sun, Y.; et al. Sesquiterpene Coumarins Isolated from Ferula bungeana and Their Anti-Neuroinflammatory Activities. Bioorg. Chem. 2022, 128, 106102. [Google Scholar] [CrossRef] [PubMed]
  138. Kir’yanova, I.A.; Sklyar, Y.E. Ferucrin Isobutyrate and Ferucrinone from Ferula foetidissima. Chem. Nat. Compd. 1984, 20, 617–618. [Google Scholar] [CrossRef]
  139. Nabiev, A.A.; Khasanov, T.K.; Malikov, V.M. A Chemical Study of the Roots of Ferula kopetdagensis. Chem. Nat. Compd. 1979, 15, 14–16. [Google Scholar] [CrossRef]
  140. Perel’son, M.E.; Sklyar, Y.E.; Veselovskaya, N.V.; Pimenov, M.G. Ferukrin, a New Terpinoid Coumarin from Ferula krylovii. Pharm. Chem. J. 1977, 11, 366–369. [Google Scholar] [CrossRef]
  141. Lamnaouer, D.; Bodo, B.; Martin, M.-T.; Molho, D. Ferulenol and ω-Hydroxyferulenol, Toxic Coumarins from Ferula communis Var. Genuina. Phytochemistry 1987, 26, 1613–1615. [Google Scholar] [CrossRef]
  142. Carboni, S.; Malaguzzi, V.; Marsili, A. Ferulenol a New Coumarin Derivative from Ferula communis. Tetrahedron Lett. 1964, 5, 2783–2786. [Google Scholar] [CrossRef]
  143. Meng, H.; Li, G.; Huang, J.; Zhang, K.; Wang, H.; Wang, J. Sesquiterpene Coumarin and Sesquiterpene Chromone Derivatives from Ferula ferulaeoides (Steud.) Korov. Fitoterapia 2013, 86, 70–77. [Google Scholar] [CrossRef]
  144. Obul, M.; Wang, X.; Zhao, J.; Li, G.; Aisa, H.A.; Huang, G. Structural Modification on Rupestonic Acid Leads to Highly Potent Inhibitors against Influenza Virus. Mol. Divers. 2019, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
  145. El-Bassuony, A.A. Antibacterial Activity of a Novel Sesquiterpene Coumarin from Ferula sinaica. Asian J. Chem. 2007, 19, 2053–2058. [Google Scholar]
  146. Guo, T.; Zhou, D.; Yang, Y.; Zhang, X.; Chen, G.; Lin, B.; Sun, Y.; Ni, H.; Liu, J.; Hou, Y.; et al. Bioactive Sesquiterpene Coumarins from the Resin of Ferula sinkiangensis Targeted on over-Activation of Microglia. Bioorg. Chem. 2020, 104, 104338. [Google Scholar] [CrossRef]
  147. Nabiev, A.A.; Khasanov, T.K.; Melibaev, S. Coumarins of Ferula diversivittata. Chem. Nat. Compd. 1978, 14, 441. [Google Scholar] [CrossRef]
  148. Nabiev, A.A.; Malikov, V.M.; Khasanov, T.K. Karatavicin—A New Coumarin from Ferula karatavica. Chem. Nat. Compd. 1983, 19, 498. [Google Scholar] [CrossRef]
  149. Wang, J.; Huo, X.; Wang, H.; Dong, A.; Zheng, Q.; Si, J. Undescribed Sesquiterpene Coumarins from the Aerial Parts of Ferula sinkiangensis and Their Anti-Inflammatory Activities in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Phytochemistry 2023, 210, 113664. [Google Scholar] [CrossRef] [PubMed]
  150. Perel’son, M.E.; Sokolova, A.I.; Sklyar, Y.E. The Structure of Feterin—A New Terpenoid Coumarin from Ferula teterrima. Chem. Nat. Compd. 1978, 14, 263–267. [Google Scholar] [CrossRef]
  151. Bashir, S.; Alam, M.; Adhikari, A.; Shrestha, R.L.; Yousuf, S.; Ahmad, B.; Parveen, S.; Aman, A.; Iqbal Choudhary, M. New Antileishmanial Sesquiterpene Coumarins from Ferula narthex Boiss. Phytochem. Lett. 2014, 9, 46–50. [Google Scholar] [CrossRef]
  152. Buddrus, J.; Bauer, H.; Abumustafa, E.; Khattab, A.; Mishaal, S.; Elkhrisy, E.; Linscheid, M. Foetidin, a Sesquiterpenoid Coumarin from Ferula-assa-foetida. Phytochemistry 1985, 24, 869–870. [Google Scholar] [CrossRef]
  153. Wu, Y.-C.; Abd El-Razek, M.H.; Chang, F.-R.; Liaw, C.-C.; Nassar, M.I.; Huang, H.-C.; Chen, Y.-H.; Yang, Y.-L. Two Sesquiterpene-Coumarins from the Roots of Ferula marmarica. Heterocycles 2004, 63, 2101. [Google Scholar] [CrossRef]
  154. Kadyrov, A.S.; Saidkhodzhaev, A.I.; Malikov, V.M. The Structure of Foliferin. Chem. Nat. Compd. 1978, 14, 442–443. [Google Scholar] [CrossRef]
  155. Motai, T.; Kitanaka, S. Sesquiterpene Coumarins from Ferula Fukanensis and Nitric Oxide Production Inhibitory Effects (2). Chem. Pharm. Bull. 2004, 52, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
  156. Motai, T.; Daikonya, A.; Kitanaka, S. Sesquiterpene Coumarins from Ferula Fukanensis and Their Pro-Inflammatory Cytokine Gene Expression Inhibitory Effects. Chem. Pharm. Bull. 2013, 61, 618–623. [Google Scholar] [CrossRef] [PubMed]
  157. Bagirov, V.Y.; Sheichenko, V.I.; Veselovskaya, N.V.; Sklyar, Y.E.; Savina, A.A.; Kir’yanova, I.A. Structure and Stereochemistry of Galbanic Acid. Chem. Nat. Compd. 1980, 16, 439–441. [Google Scholar] [CrossRef]
  158. Dastan, D.; Salehi, P.; Reza Gohari, A.; Ebrahimi, S.; Aliahmadi, A.; Hamburger, M. Bioactive Sesquiterpene Coumarins from Ferula pseudalliacea. Planta Med. 2014, 80, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
  159. Lamnaouer, D.; Fraigui, O.; Martin, M.-T.; Gallard, J.-F.; Bodo, B. Structure of Isoferprenin, a 4-Hydroxycoumarin Derivative from Ferula communis Var. Genuina. J. Nat. Prod. 1991, 54, 576–578. [Google Scholar] [CrossRef]
  160. Yang, J.-R.; An, Z.; Li, Z.-H.; Jing, S.; Qin, H.-L. Sesquiterpene Coumarins from the Roots of Ferula sinkiangensis and Ferula teterrima. Chem. Pharm. Bull. 2006, 54, 1595–1598. [Google Scholar] [CrossRef]
  161. Nabiev, A.A.; Malikov, V.M. Microlobin—A New Coumarin from Ferula microloba. Chem. Nat. Compd. 1983, 19, 664–667. [Google Scholar] [CrossRef]
  162. Paknikar, S.; Kirtany, J. Terpenoid Parts of Kamolone and Kamolol of Ferula penninervis. Experientia 1974, 30, 224–225. [Google Scholar] [CrossRef]
  163. Dastan, D.; Validi, S.; Ebadi, A. Kamonolol Acetate from Ferula Pseudalliacea as AChE Inhibitor: In Vitro and in Silico Studies. Struct. Chem. 2020, 31, 965–973. [Google Scholar] [CrossRef]
  164. Bagirov, V.Y.; Sheichenko, V.I. The Structure of Karatavic Acid. Chem. Nat. Compd. 1975, 11, 734–736. [Google Scholar] [CrossRef]
  165. Kir’yalov, N.P.; Bagirov, V.Y. The Structure of Karatavic Acid. Chem. Nat. Compd. 1968, 4, 240–242. [Google Scholar] [CrossRef]
  166. Veselovskaya, N.V.; Sklyar, Y.E.; Pimenov, M.G. Terpenoid Coumarins of Ferula aitchisonii. Chem. Nat. Compd. 1982, 18, 368. [Google Scholar] [CrossRef]
  167. Kir’yalov, N.P.; Bagirov, V.Y. The Structure of Karatavicinol. Chem. Nat. Compd. 1969, 5, 191–192. [Google Scholar] [CrossRef]
  168. Saidkhozhaev, A.I.; Mukumova, D.U.; Kamilov, K.M.; Malikov, V.M.; Pimenov, M.G. Terpenoid Coumarins of Ferula cummosa. Chem. Nat. Compd. 1991, 27, 243–244. [Google Scholar] [CrossRef]
  169. Nabiev, A.A.; Khasanov, T.K.; Malikov, V.M. A New Terpenoid Coumarin from Ferula kopetdaghensis. Chem. Nat. Compd. 1982, 18, 44–46. [Google Scholar] [CrossRef]
  170. Kamilov, K.M.; Nikonov, G.K. Coumarins of Ferula Kopetdaghensis and the Structure of Kopeolin and Kopeoside. Chem. Nat. Compd. 1973, 9, 294–298. [Google Scholar] [CrossRef]
  171. Kamilov, K.M.; Nikonov, G.K. Coumarins of Ferula Kopetdaghensis—Kopetdaghin and Kopeodin (Farnesiferol B). Chem. Nat. Compd. 1974, 10, 450–453. [Google Scholar] [CrossRef]
  172. Gu, X.-Y.; Zhang, H.-Q.; Xue, Y.-C.; Lv, Y.; Zheng, Q.-T. A study of chemical structure of lehmannolone. J. Plant Resour. Environ. 1995, 4, 13–16. [Google Scholar]
  173. Sagitdinova, G.V.; Saidkhodzhaev, A.I.; Malikov, V.M. Structure and Stereochemistry of the Coumarins of Ferula lehmannii. Chem. Nat. Compd. 1983, 19, 672–675. [Google Scholar] [CrossRef]
  174. Nabiev, A.A.; Malikov, V.M. Microlobidene—A Terpenoid Coumarin from Ferula Microloba with a New Type of Terpenoid Skeleton. Chem. Nat. Compd. 1983, 19, 743–744. [Google Scholar] [CrossRef]
  175. Khasanov, T.K.; Saidkhodzhaev, A.I.; Nikonov, G.K. Structure and Configuration of the Coumarins Mogoltadone and Mogoltadin. Chem. Nat. Compd. 1974, 10, 20–23. [Google Scholar] [CrossRef]
  176. Khasanov, T.K.; Saidkhodzhaev, A.I.; Nikonov, G.K. Structure and Configuration of New Coumarins of the Roots of Ferula mogoltavica. Chem. Nat. Compd. 1974, 10, 8–11. [Google Scholar] [CrossRef]
  177. Zakharov, P.I.; Terent’ev, P.B.; Nikonov, G.K.; Ban’kovskii, A.I. Mass-Spectrometric Study of the Coumarins Mogoltin, Mogoltavin, and Mogoltavinin. Chem. Nat. Compd. 1974, 10, 15–19. [Google Scholar] [CrossRef]
  178. Kir’yanova, I.A.; Sklyar, Y.E.; Pimenov, M.G.; Baranova, Y.V. Terpenoid Coumarins of Ferula foetidissima and F. inciso-serrata. Chem. Nat. Compd. 1982, 18, 489. [Google Scholar] [CrossRef]
  179. Su, B.N.; Takaishi, Y.; Honda, G.; Itoh, M.; Takeda, Y.; Kodzhimatov, O.K.; Ashurmetov, O. Sesquiterpene Coumarins and Related Derivatives from Ferula pallida. J. Nat. Prod. 2000, 63, 436–440. [Google Scholar] [CrossRef]
  180. Iranshahi, M.; Mojarab, M.; Sadeghian, H.; Hanafi-Bojd, M.Y.; Schneider, B. Polar Secondary Metabolites of Ferula persica Roots. Phytochemistry 2008, 69, 473–478. [Google Scholar] [CrossRef]
  181. Perel’son, M.E. The Configuration of Polyanthin and Polyanthinin. Chem. Nat. Compd. 1975, 11, 254. [Google Scholar] [CrossRef]
  182. Bukreeva, T.V. Components of the Resin of the Roots of Ferula kirialovii. Chem. Nat. Compd. 1987, 23, 633–634. [Google Scholar] [CrossRef]
  183. Kir’yalov, N.P.; Bukreeva, T.V.; Gindin, V.A.; Mamatov, G.; Kozhina, I.S. The Structure of the Coumarin Glucoside Reoselin from the Roots of Ferula pseudooreoselinum. Chem. Nat. Compd. 1975, 11, 88–90. [Google Scholar] [CrossRef]
  184. Kamilov, K.M.; Nikonov, G.K. Structure of the Coumarin Reoselin. Chem. Nat. Compd. 1974, 10, 82–83. [Google Scholar] [CrossRef]
  185. Kir’yalov, N.P.; Movchan, S.D. The Structure of Samarcandin and Samarcandone, Coumarin Compounds from Ferula samarcandica. Chem. Nat. Compd. 1968, 4, 63–65. [Google Scholar] [CrossRef]
  186. Kir’yalov, N.P.; Bukreeva, T.V. Samarcandin Acetate from the Roots of Ferula pseudooreoselinum. Chem. Nat. Compd. 1972, 8, 777–778. [Google Scholar] [CrossRef]
  187. Bandyopadhyay, D.; Basak, B.; Chatterjee, A.; Lai, T.K.; Banerji, A.; Banerji, J.; Neuman, A.; Prangé, T. Saradaferin, a New Sesquiterpenoid Coumarin from Ferula assafoetida. Nat. Prod. Res. 2006, 20, 961–965. [Google Scholar] [CrossRef] [PubMed]
  188. Shomirzoeva, O.; Xu, M.-Y.; Sun, Z.-J.; Li, C.; Nasriddinov, A.; Muhidinov, Z.; Zhang, K.; Gu, Q.; Xu, J. Chemical Constituents of Ferula seravschanica. Fitoterapia 2021, 149, 104829. [Google Scholar] [CrossRef] [PubMed]
  189. Wang, J.; Wang, H.; Zhang, M.; Li, X.; Zhao, Y.; Chen, G.; Si, J.; Jiang, L. Sesquiterpene Coumarins from Ferula sinkiangensis K.M.Shen and Their Cytotoxic Activities. Phytochemistry 2020, 180, 112531. [Google Scholar] [CrossRef]
  190. Xing, Y.; Li, N.; Zhou, D.; Chen, G.; Jiao, K.; Wang, W.; Si, Y.; Hou, Y. Sesquiterpene Coumarins from Ferula sinkiangensis Act as Neuroinflammation Inhibitors. Planta Med. 2016, 83, 135–142. [Google Scholar] [CrossRef]
  191. Khalilova, É.K.; Saidkhodzhaev, A.I. Terpenoid Coumarins of Ferula sumbul. Chem. Nat. Compd. 1998, 34, 506–507. [Google Scholar] [CrossRef]
  192. Perel’son, M.E.; Bandyshev, V.V.; Sklyar, Y.E.; Vezhkhovska-Renke, K.; Veselovskaya, N.V.; Pimenov, M.G. New Terpenoid Coumarins from Ferula tadshikorum. Chem. Nat. Compd. 1976, 12, 533–537. [Google Scholar] [CrossRef]
  193. Zhang, L.; Sun, X.; Si, J.; Li, G.; Cao, L. Umbelliprenin Isolated from Ferula sinkiangensis Inhibits Tumor Growth and Migration through the Disturbance of Wnt Signaling Pathway in Gastric Cancer. PLoS ONE 2019, 14, e0207169. [Google Scholar] [CrossRef]
  194. Al-Hazimi, H.M.G. Terpenoids and a Coumarin from Ferula sinaica. Phytochemistry 1986, 25, 2417–2419. [Google Scholar] [CrossRef]
  195. Wang, J.-L.; Meng, X.-H.; Zheng, Y.-D.; Sang, C.-Y.; Wang, W.-F.; Ma, J.-Y.; Ha, T.-K.-Q.; Zhao, Y.-M.; Yang, J.-L. (±)-Ferulasin, Unusual Sesquiterpene Chromones from Ferula sinkiangensis. Tetrahedron 2022, 122, 132953. [Google Scholar] [CrossRef]
  196. Motai, T.; Kitanaka, S. Sesquiterpene Chromones from Ferula Fukanensis and Their Nitric Oxide Production Inhibitory Effects. J. Nat. Prod. 2005, 68, 1732–1735. [Google Scholar] [CrossRef] [PubMed]
  197. Su, B.-N.; Takaishi, Y.; Honda, G.; Itoh, M.; Takeda, Y.; Kodzhimatov, O.K.; Ashurmetov, O. Sesquiterpene Phenylpropanoid and Sesquiterpene Chromone Derivatives from Ferula pallida. J. Nat. Prod. 2000, 63, 520–522. [Google Scholar] [CrossRef] [PubMed]
  198. Meng, H.; Li, G.; Huang, J.; Zhang, K.; Wei, X.; Ma, Y.; Zhang, C.; Wang, J. Sesquiterpenoid Derivatives from Ferula ferulaeoides (Steud.) Korov. Phytochemistry 2013, 86, 151–158. [Google Scholar] [CrossRef] [PubMed]
  199. Kojima, K.; Isaka, K.; Ondognii, P.; Zevgeegiin, O.; Davgiin, K.; Mizukami, H.; Ogihara, Y. Sequiterpenoid Derivatives from Ferula ferulioides. III. Chem. Pharm. Bull. 1999, 47, 1145–1147. [Google Scholar] [CrossRef]
  200. Liu, T.; Osman, K.; Kaatz, G.W.; Gibbons, S.; Mu, Q. Antibacterial Sesquiterpenoid Derivatives from Ferula ferulaeoides. Planta Med. 2013, 79, 701–706. [Google Scholar] [CrossRef]
  201. Kojima, K.; Isaka, K.; Purev, O.; Jargalsaikhan, G.; Suran, D.; Mizukami, H.; Ogihara, Y. Sesquiterpenoid Derivatives from Ferula ferulioides. Chem. Pharm. Bull. 1998, 46, 1781–1784. [Google Scholar] [CrossRef]
  202. Xu, H.; Dickschat, J.S. Germacrene A—A Central Intermediate in Sesquiterpene Biosynthesis. Chemistry 2020, 26, 17318–17341. [Google Scholar] [CrossRef]
  203. Xu, H.; Dickschat, J.S. Germacrene B—A Central Intermediate in Sesquiterpene Biosynthesis. Beilstein J. Org. Chem. 2023, 19, 186–203. [Google Scholar] [CrossRef] [PubMed]
  204. Zhou, D.; Li, N.; Zhang, Y.; Yan, C.; Jiao, K.; Sun, Y.; Ni, H.; Lin, B.; Hou, Y. Biotransformation of Neuro-Inflammation Inhibitor Kellerin Using Angelica Sinensis (Oliv.) Diels Callus. RSC Adv. 2016, 6, 97302–97312. [Google Scholar] [CrossRef]
  205. Ibraheim, Z.Z.; Abdel-Mageed, W.M.; Dai, H.; Guo, H.; Zhang, L.; Jaspars, M. Antimicrobial Antioxidant Daucane Sesquiterpenes from Ferula hermonis Boiss. Phytother. Res. 2012, 26, 579–586. [Google Scholar] [CrossRef] [PubMed]
  206. Abourashed, E.A.; Galal, A.M.; Shibl, A.M. Antimycobacterial Activity of Ferutinin Alone and in Combination with Antitubercular Drugs against a Rapidly Growing Surrogate of Mycobacterium Tuberculosis. Nat. Prod. Res. 2011, 25, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
  207. Appendino, G.; Mercalli, E.; Fuzzati, N.; Arnoldi, L.; Stavri, M.; Gibbons, S.; Ballero, M.; Maxia, A. Antimycobacterial Coumarins from the Sardinian Giant Fennel (Ferula communis). J. Nat. Prod. 2004, 67, 2108–2110. [Google Scholar] [CrossRef] [PubMed]
  208. Al-Yahya, M.A.; Muhammad, I.; Mirza, H.H.; El-Feraly, F.S. Antibacterial Constituents from the Rhizomes of Ferula communis. Phytother. Res. 1998, 12, 335–339. [Google Scholar] [CrossRef]
  209. Shahverdi, A.R.; Iranshahi, M.; Mirjani, R.; JAMALIFAR, H.; Amin, G. Bioassay-Guided Isolation and Identification of an Antibacterial Compound from Ferula persica Var. Persica Roots. DARU J. Pharm. Sci. 2005, 13, 17–19. [Google Scholar]
  210. Pavlović, I.; Petrović, S.; Milenković, M.; Stanojković, T.; Nikolić, D.; Krunić, A.; Niketić, M. Antimicrobial and Cytotoxic Activity of Extracts of Ferula heuffelii Griseb. Ex Heuff. and Its Metabolites. Chem. Biodivers. 2015, 12, 1585–1594. [Google Scholar] [CrossRef]
  211. Sun, Z.-L.; Liu, T.; Wang, S.-Y.; Ji, X.-Y.; Mu, Q. TLC-Bioautography Directed Isolation of Antibacterial Compounds from Active Fractionation of Ferula ferulioides. Nat. Prod. Res. 2019, 33, 1761–1764. [Google Scholar] [CrossRef]
  212. Shahverdi, A.R.; Fakhimi, A.; Zarrini, G.; Dehghan, G.; Iranshahi, M. Galbanic Acid from Ferula szowitsiana Enhanced the Antibacterial Activity of Penicillin G and Cephalexin against Staphylococcus Aureus. Biol. Pharm. Bull. 2007, 30, 1805–1807. [Google Scholar] [CrossRef]
  213. Bazzaz, B.S.F.; Du, A.R.; Iranshahi, M.; Naderinasab, M.; Karamodin, M.K. Evaluating the Potentiating Effect of Galbanic Acid from Ferula szowitsiana on Three Common Antibiotics against Resistant Hospital Isolates of Staphylococcus Aureus. Iran. J. Pharm. Res. 2009, 8, 217–221. [Google Scholar] [CrossRef]
  214. Safdari, H.; Neshani, A.; Sadeghian, A.; Ebrahimi, M.; Iranshahi, M.; Sadeghian, H. Potent and Selective Inhibitors of Class A β-Lactamase: 7-Prenyloxy Coumarins. J. Antibiot. 2014, 67, 373–377. [Google Scholar] [CrossRef] [PubMed]
  215. Dastan, D.; Salehi, P.; Aliahmadi, A.; Gohari, A.R.; Maroofi, H.; Ardalan, A. New Coumarin Derivatives from Ferula Pseudalliacea with Antibacterial Activity. Nat. Prod. Res. 2016, 30, 2747–2753. [Google Scholar] [CrossRef] [PubMed]
  216. Pfaller, M.A.; Diekema, D.J. Epidemiology of Invasive Candidiasis: A Persistent Public Health Problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed]
  217. Ghannadi, A.; Fattahian, K.; Shokoohinia, Y.; Behbahani, M.; Shahnoush, A. Anti-Viral Evaluation of Sesquiterpene Coumarins from Ferula assa-foetida against HSV-1. Iran. J. Pharm. Res. 2014, 13, 523–530. [Google Scholar] [CrossRef] [PubMed]
  218. Rezaee, R.; Behravan, E.; Behravan, J.; Soltani, F.; Naderi, Y.; Emami, B.; Iranshahi, M. Antigenotoxic Activities of the Natural Dietary Coumarins Umbelliferone, Herniarin and 7-Isopentenyloxy Coumarin on Human Lymphocytes Exposed to Oxidative Stress. Drug Chem. Toxicol. 2014, 37, 144–148. [Google Scholar] [CrossRef] [PubMed]
  219. Raafat, K.; El-Lakany, A. Acute and Subchronic In-Vivo Effects of Ferula hermonis L. and Sambucus nigra L. and Their Potential Active Isolates in a Diabetic Mouse Model of Neuropathic Pain. BMC Complement. Altern. Med. 2015, 15, 257. [Google Scholar] [CrossRef]
  220. Naji Reyhani Garmroudi, S.; Karimi, E.; Oskoueian, E.; Homayouni-Tabrizi, M.; Iranshahi, M. Ferutinin: A Phytoestrogen from Ferula and Its Anticancer, Antioxidant, and Toxicity Properties. J. Biochem. Mol. Toxicol. 2021, 35, e22713. [Google Scholar] [CrossRef]
  221. Soltani, F.; Mosaffa, F.; Iranshahi, M.; Karimi, G.; Malekaneh, M.; Haghighi, F.; Behravan, J. Evaluation of Antigenotoxicity Effects of Umbelliprenin on Human Peripheral Lymphocytes Exposed to Oxidative Stress. Cell Biol. Toxicol. 2009, 25, 291–296. [Google Scholar] [CrossRef]
  222. Mahaki, H.; Tanzadehpanah, H.; Abou-Zied, O.K.; Moghadam, N.H.; Bahmani, A.; Salehzadeh, S.; Dastan, D.; Saidijam, M. Cytotoxicity and Antioxidant Activity of Kamolonol Acetate from Ferula pseudalliacea, and Studying Its Interactions with Calf Thymus DNA (Ct-DNA) and Human Serum Albumin (HSA) by Spectroscopic and Molecular Docking Techniques. Process Biochem. 2019, 79, 203–213. [Google Scholar] [CrossRef]
  223. Kogure, K.; Yamauchi, I.; Tokumura, A.; Kondou, K.; Tanaka, N.; Takaishi, Y.; Fukuzawa, K. Novel Antioxidants Isolated from Plants of the Genera Ferula, inula, Prangos and Rheum Collected in Uzbekistan. Phytomedicine 2004, 11, 645–651. [Google Scholar] [CrossRef] [PubMed]
  224. Sayed, A.A.R. Ferulsinaic Acid Attenuation of Advanced Glycation End Products Extends the Lifespan of Caenorhabditis Elegans. J. Pharm. Pharmacol. 2011, 63, 423–428. [Google Scholar] [CrossRef] [PubMed]
  225. Sajjadi, M.; Karimi, E.; Oskoueian, E.; Iranshahi, M.; Neamati, A. Galbanic Acid: Induced Antiproliferation in Estrogen Receptor-Negative Breast Cancer Cells and Enhanced Cellular Redox State in the Human Dermal Fibroblasts. J. Biochem. Mol. Toxicol. 2019, 33, e22402. [Google Scholar] [CrossRef] [PubMed]
  226. Geroushi, A.; Auzi, A.A.; Elhwuegi, A.S.; Elzawam, F.; Elsherif, A.; Nahar, L.; Sarker, S.D. Antiinflammatory Sesquiterpenes from the Root Oil of Ferula hermonis. Phytother. Res. 2011, 25, 774–777. [Google Scholar] [CrossRef] [PubMed]
  227. Zamani Taghizadeh Rabe, S.; Iranshahi, M.; Mahmoudi, M. In Vitro Anti-Inflammatory and Immunomodulatory Properties of Umbelliprenin and Methyl Galbanate. J. Immunotoxicol. 2016, 13, 209–216. [Google Scholar] [CrossRef] [PubMed]
  228. Iranshahi, M.; Askari, M.; Sahebkar, A.; Hadjipavlou-Litina, D. Evaluation of Antioxidant, Anti-Inflammatory and Lipoxygenase Inhibitory Activities of the Prenylated Coumarin Umbelliprenin. Daru-J. Pharm. Sci. 2009, 17, 99–103. [Google Scholar] [CrossRef]
  229. Kohno, S.; Murata, T.; Sugiura, A.; Ito, C.; Iranshahi, M.; Hikita, K.; Kaneda, N. Methyl Galbanate, a Novel Inhibitor of Nitric Oxide Production in Mouse Macrophage RAW264.7 Cells. J. Nat. Med. 2011, 65, 353–359. [Google Scholar] [CrossRef] [PubMed]
  230. Wang, H.; Liu, Y.; Wang, Y.; Xu, T.; Xia, G.; Huang, X. Umbelliprenin Induces Autophagy and Apoptosis While Inhibits Cancer Cell Stemness in Pancreatic Cancer Cells. Cancer Med. 2023, 12, 15277–15288. [Google Scholar] [CrossRef]
  231. Gholami, O.; Jeddi-Tehrani, M.; Iranshahi, M.; Zarnani, A.H.; Ziai, S.A. Umbelliprenin from Ferula szowitsiana Activates Both Intrinsic and Extrinsic Pathways of Apoptosis in Jurkat T-CLL Cell Line. Iran. J. Pharm. Res. 2013, 12, 371–376. [Google Scholar] [CrossRef]
  232. Ziai, S.A.; Gholami, O.; Iranshahi, M.; Zamani, A.H.; Jeddi-Tehrani, M. Umbelliprenin Induces Apoptosis in CLL Cell Lines. Iran. J. Pharm. Res. 2012, 11, 653–659. [Google Scholar] [CrossRef]
  233. Zhang, L.; Si, J.; Li, G.; Li, X.; Zhang, L.; Gao, L.; Huo, X.; Liu, D.; Sun, X.; Cao, L. Umbelliprenin and Lariciresinol Isolated from a Long-Term-Used Herb Medicine Ferula sinkiangensis Induce Apoptosis and G0/G1 Arresting in Gastric Cancer Cells. RSC Adv. 2015, 5, 91006–91017. [Google Scholar] [CrossRef]
  234. Iranshahi, M.; Sahebkar, A.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer Chemopreventive Activity of the Prenylated Coumarin, Umbelliprenin, in Vivo. Eur. J. Cancer Prev. 2009, 18, 412–415. [Google Scholar] [CrossRef] [PubMed]
  235. Kim, Y.H.; Shin, E.A.; Jung, J.H.; Park, J.E.; Koo, J.; Koo, J.I.; Shim, B.S.; Kim, S.-H. Galbanic Acid Potentiates TRAIL Induced Apoptosis in Resistant Non-Small Cell Lung Cancer Cells via Inhibition of MDR1 and Activation of Caspases and DR5. Eur. J. Pharmacol. 2019, 847, 91–96. [Google Scholar] [CrossRef] [PubMed]
  236. Zhang, Y.; Kim, K.-H.; Zhang, W.; Guo, Y.; Kim, S.-H.; Lü, J. Galbanic Acid Decreases Androgen Receptor Abundance and Signaling and Induces G1 Arrest in Prostate Cancer Cells. Int. J. Cancer 2012, 130, 200–212. [Google Scholar] [CrossRef] [PubMed]
  237. Folkman, J. Fundamental Concepts of the Angiogenic Process. Curr. Mol. Med. 2003, 3, 643–651. [Google Scholar] [CrossRef] [PubMed]
  238. Harper, J.; Moses, M.A. Molecular Regulation of Tumor Angiogenesis: Mechanisms and Therapeutic Implications. In Cancer: Cell Structures, Carcinogens and Genomic Instability; Birkhäuser: Basel, Switzerland, 2006; pp. 223–268. [Google Scholar]
  239. Kim, K.-H.; Lee, H.-J.; Jeong, S.-J.; Lee, H.-J.; Lee, E.-O.; Kim, H.-S.; Zhang, Y.; Ryu, S.-Y.; Lee, M.-H.; Lü, J.; et al. Galbanic Acid Isolated from Ferula assafoetida Exerts In Vivo Anti-Tumor Activity in Association with Anti-Angiogenesis and Anti-Proliferation. Pharm. Res. 2011, 28, 597–609. [Google Scholar] [CrossRef] [PubMed]
  240. Mannello, F.; Gazzanelli, G. Tissue Inhibitors of Metalloproteinases and Programmed Cell Death: Conundrums, Controversies and Potential Implications. Apoptosis 2001, 6, 479–482. [Google Scholar] [CrossRef]
  241. Shahcheraghi, S.H.; Lotfi, M.; Soukhtanloo, M.; Ghayour-Mobarhan, M.; Jaliani, H.Z.; Sadeghnia, H.R.; Ghorbani, A. Effects of Galbanic Acid on Proliferation, Migration, and Apoptosis of Glioblastoma Cells Through the PI3K/Akt/MTOR Signaling Pathway. Curr. Mol. Pharmacol. 2020, 14, 79–87. [Google Scholar] [CrossRef]
  242. Fallah, J.; Rini, B.I. HIF Inhibitors: Status of Current Clinical Development. Curr. Oncol. Rep. 2019, 21, 6. [Google Scholar] [CrossRef]
  243. Wicks, E.E.; Semenza, G.L. Hypoxia-Inducible Factors: Cancer Progression and Clinical Translation. J. Clin. Investig. 2022, 132, e159839. [Google Scholar] [CrossRef]
  244. Eskandani, M.; Abdolalizadeh, J.; Hamishehkar, H.; Nazemiyeh, H.; Barar, J. Galbanic Acid Inhibits HIF-1α Expression via EGFR/HIF-1α Pathway in Cancer Cells. Fitoterapia 2015, 101, 1–11. [Google Scholar] [CrossRef] [PubMed]
  245. Syeda, S.; Abbas, S.; Naveed, D.S.; Qamar, F.; Saba; Hussain, J.; Jawed, S. Exploration & Wonders of Medicinal Plant “Asafoetida” (Heeng) Constituent Galbanic Acid as Anticancerous and Antimutagenic Agent. IESRJ 2015, 1, 15–17. [Google Scholar]
  246. Eruçar, F.M.; Kuran, F.K.; Altıparmak Ülbegi, G.; Özbey, S.; Karavuş, Ş.N.; Arcan, G.G.; Yazıcı Tütüniş, S.; Tan, N.; Aksoy Sağırlı, P.; Miski, M. Sesquiterpene Coumarin Ethers with Selective Cytotoxic Activities from the Roots of Ferula huber-morathii Peşmen (Apiaceae) and Unequivocal Determination of the Absolute Stereochemistry of Samarcandin. Pharmaceuticals 2023, 16, 792. [Google Scholar] [CrossRef] [PubMed]
  247. Zhang, X.; Li, M.; Wang, Y.; Chen, Q.; Liu, J.; Li, S.; Tang, S. Study on chemical constituents from Ferula teterrima. Chin. Tradit. Herbal Drugs 2023, 54, 2373–2378. [Google Scholar]
  248. Amin, A.; Tuenter, E.; Cos, P.; Maes, L.; Exarchou, V.; Apers, S.; Pieters, L. Antiprotozoal and Antiglycation Activities of Sesquiterpene Coumarins from Ferula narthex Exudate. Molecules 2016, 21, 1287. [Google Scholar] [CrossRef] [PubMed]
  249. Amin, A.; Hanif, M.; Rafey, A.; Zaib, S.; Bakhsh, S.; Ramzan, M.; Zaman, A.; Rehman, F.U.; Iqbal, J.; Pieters, L. Sesquiterpene Coumarins from Ferula narthex 15-LOX, α-Glucosidase Inhibition and Molecular Docking Studies. Rev. Bras. Farmacogn. 2020, 30, 12–17. [Google Scholar] [CrossRef]
  250. Foadoddini, M.; Javdani, H.; Farahi, A.; Hosseini, M. Therapeutic Potential of Ferula foetida (Bunge) Regel on Gastric Ulcer Model in Rats. Environ. Sci. Pollut. Res. Int. 2022, 29, 12147–12156. [Google Scholar] [CrossRef] [PubMed]
  251. Qin, J.; Si, J.; Jia, B.; Zhao, C.; Zhou, D.; He, X.; Wang, C.; Zhu, X. Water Use Strategies of Ferula bungeana on Mega-Dunes in the Badain Jaran Desert. Front. Plant Sci. 2022, 13, 957421. [Google Scholar] [CrossRef]
  252. Qin, H.-H.; Cai, J.; Liu, C.-K.; Zhou, R.-X.; Price, M.; Zhou, S.-D.; He, X.-J. The Plastid Genome of Twenty-Two Species from Ferula, Talassia, and Soranthus: Comparative Analysis, Phylogenetic Implications, and Adaptive Evolution. BMC Plant Biol. 2023, 23, 9. [Google Scholar] [CrossRef]
  253. Farhadi, F.; Iranshahi, M.; Mohtashami, L.; Shakeri Asil, S.; Iranshahy, M. Metabolic Differences of Two Ferula Species as Potential Sources of Galbanum: An NMR-Based Metabolomics Study. Phytochem. Anal. 2021, 32, 811–819. [Google Scholar] [CrossRef]
  254. Hasanpour, M.; Safari, H.; Mohammadpour, A.H.; Iranshahy, M.; Dehghan Nayyeri, M.J.; Farhadi, F.; Emami, B.; Iranshahi, M. Efficacy of Covexir® (Ferula foetida Oleo-Gum) Treatment in Symptomatic Improvement of Patients with Mild to Moderate COVID-19: A Randomized, Double-Blind, Placebo-Controlled Trial. Phytother. Res. 2022, 36, 4504–4515. [Google Scholar] [CrossRef]
  255. Abu-Izneid, T.; Rauf, A.; Shariati, M.A.; Khalil, A.A.; Imran, M.; Rebezov, M.; Uddin, M.S.; Mahomoodally, M.F.; Rengasamy, K.R.R. Sesquiterpenes and Their Derivatives-Natural Anticancer Compounds: An Update. Pharmacol. Res. 2020, 161, 105165. [Google Scholar] [CrossRef]
Figure 1. The main structural types of sesquiterpenes in Ferula plants (the daucane-type (I), guaiane-type (II), humulane-type (III), eudesmane-type (IV), germacrane-type (V), and elemane-type (VI) sesquiterpenes).
Figure 1. The main structural types of sesquiterpenes in Ferula plants (the daucane-type (I), guaiane-type (II), humulane-type (III), eudesmane-type (IV), germacrane-type (V), and elemane-type (VI) sesquiterpenes).
Antioxidants 13 00007 g001
Figure 2. Sesquiterpenes in Ferula plants.
Figure 2. Sesquiterpenes in Ferula plants.
Antioxidants 13 00007 g002aAntioxidants 13 00007 g002b
Figure 3. Sesquiterpene coumarins in Ferula plants.
Figure 3. Sesquiterpene coumarins in Ferula plants.
Antioxidants 13 00007 g003aAntioxidants 13 00007 g003bAntioxidants 13 00007 g003cAntioxidants 13 00007 g003d
Figure 4. Sesquiterpene chromones from Ferula plants.
Figure 4. Sesquiterpene chromones from Ferula plants.
Antioxidants 13 00007 g004
Figure 5. Sesquiterpene phenylpropanoids in Ferula plants.
Figure 5. Sesquiterpene phenylpropanoids in Ferula plants.
Antioxidants 13 00007 g005
Figure 6. Biosynthesis pathways of the typical sesquiterpene skeletons in Ferula [202,203].
Figure 6. Biosynthesis pathways of the typical sesquiterpene skeletons in Ferula [202,203].
Antioxidants 13 00007 g006
Figure 8. Proposed biosynthetic pathways for sesquiterpene chromones [115,143,195].
Figure 8. Proposed biosynthetic pathways for sesquiterpene chromones [115,143,195].
Antioxidants 13 00007 g008
Figure 9. Proposed biosynthetic pathways for sesquiterpene phenylpropanoids [179,198,199,201].
Figure 9. Proposed biosynthetic pathways for sesquiterpene phenylpropanoids [179,198,199,201].
Antioxidants 13 00007 g009
Figure 10. The anticancer mechanisms of umbelliprenin (150) and galbanic acid (213). MMPs (matrix metalloproteinases), HUVEC (human umbilical vein endothelial cell), HIF (hypoxia-inducible factor), VEGF (vascular endothelial growth factor), EGFR (epithelial growth factor receptor), AKT (protein kinase B). “Red arrow” respresent upregulation or downregulation.
Figure 10. The anticancer mechanisms of umbelliprenin (150) and galbanic acid (213). MMPs (matrix metalloproteinases), HUVEC (human umbilical vein endothelial cell), HIF (hypoxia-inducible factor), VEGF (vascular endothelial growth factor), EGFR (epithelial growth factor receptor), AKT (protein kinase B). “Red arrow” respresent upregulation or downregulation.
Antioxidants 13 00007 g010
Table 1. Sesquiterpenes in Ferula plants.
Table 1. Sesquiterpenes in Ferula plants.
NamesNo.TypesSpeciesReferences
2α-Acetoxy-6α-p-methoxybenzoyl-10α-acetoxy-jaeschkeanadiol6IF. communis subsp. communis[31]
2α-Acetoxy-6α-p-methoxybenzoyl-10α-hydroxy-jaeschkeanadiol3IF. communis subsp. communis[31]
2α-Acetoxy-6α-p-methoxybenzoyl-10β-acetoxy-jaeschkeanadiol5IF. communis subsp. communis[31]
2α-Acetoxy-6α-p-methoxybenzoyl-10β-hydroxy-jaeschkeanadiol4IF. communis subsp. communis[31]
2α-Acetyl ferutinin19IF. campestris (Besser) Grecescu[32]
9-O-Acetyl-8-O-tigloyltovarol140VF. persica Willd[33]
Aeschkeanadiol-2-methylbutyrate13IF. linkii Webb & Berthel.[34]
8α-Angeloyloxy-10β-hydroxyslov-3-en-6,12-olide113IIF. varia (Schrenk) Trautv.[35]
10-Angeloyloxy-6-p-hydroxybenzoyl-jaeschkeandiol20IF. communis var. brevifolia[36]
F. sinaica L.[37]
2α-Angeloyloxy-6-veratrate-jaechkeanadiol28IF. communis subsp. communis[38]
F. licentiana var. tunshanica (Su) Shan et Q.X.Liu[39]
14-(4′-Anisoyloxy)dauc-4,8-diene38IF. communis subsp. communis[40]
Badrakemonin143VIF. badrakema Kos.-Pol.[41]
Benzoylfervanol124IIIF. lycia Boiss.[22]
Carotdiol acetate41IF. linkii Webb & Berthel.[42]
Carotdiol veratrate42IF. linkii Webb & Berthel.[42]
Daucol73IF. linkii Webb & Berthel.[42]
10-Deangeloylpallinin31IF. arrigonii Bocchieri[43]
Decipenin D132IVF. penninervis Regel et Schmalh.[44]
7,11-Dehydrogrilactone114IIF. arrigonii Bocchieri[43]
Dehydrooopodin138IVF. varia (Schrenk) Trautv.[35]
2,10-Diacetyl-8-hydroxyferutriol-6-anisate49IF. vesceritensis Coss. & Durieu ex Trab.[45]
3α,4β-Dihydroxy-5βH,11αH-eudesman-6,12-olide130IVF. sinaica L.[46]
4β,8β-Dihydroxy-6α-(4-hydroxy-3-methoxybenzoyl)-dauc-9-ene52IF. hermonis Boiss[47]
F. kuhistanica Korovin[48]
4β,8α-Dihydroxy-6α-vanilloy-loxydauc-9-ene54IF. kuhistanica Korovin[48]
Diversolide A103IIF. diversivittata Regel & Schmalh.-Rech.[49]
Diversolide B104IIF. diversivittata Regel & Schmalh.-Rech.[49]
Diversolide C105IIF. diversivittata Regel & Schmalh.-Rech.[49]
Diversolide D106IIF. diversivittata Regel & Schmalh.-Rech.[49]
Diversolide E107IIF. diversivittata Regel & Schmalh.-Rech.[49]
Diversolide F108IIF. diversivittata Regel & Schmalh.-Rech.[49]
Diversolide G109IIF. diversivittata Regel & Schmalh.-Rech.[49]
Elaeochytrin A45IF. elaeochytris Korovin[50]
Elaeochytrin B50IF. elaeochytris Korovin[50]
Epoxy ferutinol benzoate80IF. hermonis Boiss[51]
8,9-Epoxy-ferutinin81IF. kuhistanica Korovin[48]
Epoxyjaeschkeanadiol78IF. hermonis Boiss[52]
2,3-Epoxy-jaeschkeanadiol-p-methoxybenzoate82IF. kuhistanica Korovin[48]
F. communis L.[53]
F. lancerottensis Parl.[54]
F. linkii Webb & Berthel.[55]
Epoxyvesceritenol84IF. vesceritensis Coss. & Durieu ex Trab.[45]
(1R,3S,8S)-3-Ethoxy-8-angeloyloxydauca-4-en-9-one70IF. hermonis Boiss[56]
Fercolide47IF. communis subsp. communis[40]
Fercomin39IF. communis subsp. communis[40]
F. licentiana var. tunshanica (Su) Shan et Q.X.Liu[57]
Ferugin71IF. sinaica L.[58]
Feruginin48IF. jaeschkeana Vatke[59,60]
Feruhermonin A57IF. hermonis Boiss[47]
Feruhermonin B51IF. hermonis Boiss[47]
Feruhermonins C62IF. hermonis Boiss[47]
Ferulactone A147othersF. ferulaeoides (Steud.) Korov[61]
Ferulactone B148othersF. ferulaeoides (Steud.) Korov[61]
Ferulinkiol-1-hydroxy-5(2-methylbutyrate)11IF. linkii Webb & Berthel.[34]
Ferupennin A89IIF. penninervis Regel et Schmalh.[44]
Ferupennin B90IIF. penninervis Regel et Schmalh.[44]
Ferupennin C91IIF. penninervis Regel et Schmalh.[44]
Ferupennin D92IIF. penninervis Regel et Schmalh.[44]
Ferupennin E93IIF. penninervis Regel et Schmalh.[44]
Ferupennin F94IIF. penninervis Regel et Schmalh.[44]
Ferupennin G95IIF. penninervis Regel et Schmalh.[44]
Ferupennin H96IIF. penninervis Regel et Schmalh.[44]
Ferupennin I97IIF. penninervis Regel et Schmalh.[44]
Ferupennin J98IIF. penninervis Regel et Schmalh.[44]
Ferupennin K99IIF. penninervis Regel et Schmalh.[44]
Ferupennin L100IIF. penninervis Regel et Schmalh.[44]
Ferupennin L111IIF. varia (Schrenk) Trautv.[35]
Ferupennin M101IIF. penninervis Regel et Schmalh.[44]
Ferupennin N102IIF. penninervis Regel et Schmalh.[44]
Ferupennin O112IIF. penninervis Regel et Schmalh.[44]
Ferutidin14IF. elaeochytris Korovin[62]
lancerottensis Parl.[54]
F. licentiana var. tunshanica (Su) Shan et Q.X.Liu[57]
F. arrigonii Bocchieri[34]
F. communis L.[43]
F. communis subsp. communis[31]
F. glauca subsp. glauca[31,38]
F. kuhistanica Korovin[48]
Ferutinin18IF. hermonis Boiss[52]
F. jaeschkeana Vatke[59,60,63]
F. kuhistanica Korovin[64]
F. elaeochytris Korovin[62]
F. sinaica L.[37]
F. lancerottensis Parl.[54]
F. licentiana var. tunshanica (Su) Shan et Q.X.Liu[57]
F. kingdom-wardii Wolff[57]
F. communis L.[53,65]
Ferutionone33IF. jaeschkeana Vatke[63]
Fetidone A145othersF. assa-foetida L.[66]
Fetidone B146othersF. assa-foetida L.[66]
2α-Hydroxy ferutinin1IF. glauca subsp. glauca[31]
1α-Hydroxy-2-oxo-5α,7β-11βH-eudesm-3-en-6α,12-olide129IVF. penninervis Regel et Schmalh.[44]
2β-Hydroxy-3,4-epoxyjaes-chkeanadiol74IF. jaeschkeana Vatke[67]
14-(4′-Hydroxy-3′-methoxy-benzoyloxy)dauc-4,8-diene37IF. hermonis Boiss[52]
2α-Hydroxy-6α-p-methoxybenzoyl-10β-acetoxy-jaeschkeanadiol2IF. communis subsp. communis[31]
5-p-Hydroxybenzoyl ester of ferutiol55IF. sinaica L.[37]
14-(4′-Hydroxybenzoyloxy)-dauc-4,8-diene36IF. hermonis Boiss[52]
5α-p-Hydroxybenzoyloxydauc-2-ene-1-one23IF. kuhistanica Korovin[48]
6-β-p-Hydroxybenzoyloxygermacra-1(10),4-diene141VF. lycia Boiss.[22]
14-Hydroxy-dauc-4-ene68IF. sinaica L.[68]
(1R,4R)-4-Hydroxydauca-7-ene-6,9-dione64IF. hermonis Boiss[56]
(1R,4R)-4-Hydroxydauca-7-ene-6-one63IF. hermonis Boiss[56]
10α-Hydroxyfertidin30IF. arrigonii Bocchieri[43]
10-Hydroxylancerodiol-6-anisate59IF. vesceritensis Coss. & Durieu ex Trab.[45]
10-Hydroxylancerodiol-6-benzoate60IF. vesceritensis Coss. & Durieu ex Trab.[45]
14-Hydroxyvaginatin44IF. sinaica L.[37]
14-Hydroxyvaginatin86IF. sinaica L.[37]
Isolancerotriol72IF. sinaica L.[37,58]
5-Isovalerate of lapiferol83IF. communis L.[53]
F. linkii Webb & Berthel.[69]
Jaeschkeanadiol16IF. hermonis Boiss[52]
F. jaeschkeana Vatke[59,60,63]
F. kuhistanica Korovin[48,64]
F. elaeochytris Korovin[62]
F. sinaica L.[37]
F. communis L.[53]
F. lancerottensis Parl.[54]
Jaeschkeanadiol isovalerate12IF. linkii Webb & Berthel.[34]
Jaeskeanadiol angelate26IF. jaeschkeana Vatke[63]
F. lancerottensis Parl.[54]
F. elaeochytris Korovin[62]
Jaeskeanadiol salicylate27IF. elaeochytris Korovin[62]
Jaeskeanadiol veratrate29IF. arrigonii Bocchieri[43]
F. licentiana var. tunshanica (Su) Shan et Q.X.Liu[57]
Juniferdin121IIIF. lycia Boiss.[22]
Juniferin123IIIF. lycia Boiss.[22]
Juniferinin122IIIF. lycia Boiss.[22]
Kuhistaferone149othersF. kuhistanica Korovin[70]
Kuhistanicaol A76IF. kuhistanica Korovin[48]
Kuhistanicaol D24IF. kuhistanica Korovin[48]
Kuhistanicaol E65IF. kuhistanica Korovin[48]
Kuhistanicaol F66IF. kuhistanica Korovin[48]
Kuhistanicaol G53IF. kuhistanica Korovin[48]
Kuhistanicaol H75IF. kuhistanica Korovin[64]
Kuhistanicaol I25IF. kuhistanica Korovin[64]
Kuhistanicaol J88IF. kuhistanica Korovin[64]
Lancerodiol-p-hydroxybenzoate58IF. lancerottensis Parl.[54]
F. jaeschkeana Vatke[67]
F. sinaica L.[58]
F. linkii Webb & Berthel.[71]
Lancerodiol-p-methoxybenzoate67IF. glauca subsp. glauca[31]
Lancerotriol-9-acetate-6-p-hydroaxybenzoate56IF. sinaica L.[46]
Lanerotriol-p-hydroxy-benzoate61IF. kuhistanica Korovin[48]
Lapidin35IF. lapidosa Korov.[72]
Lapidol34IF. jaeschkeana Vatke[67]
Lapidol isobutyrate9IF. linkii Webb & Berthel.[34]
Lapidol vanillate22IF. kuhistanica Korovin[48]
Lapidol-2-methybutyrate8IF. linkii Webb & Berthel.[34]
Lapidol-p-anisate10IF. linkii Webb & Berthel.[34]
Lapiferin77IF. vesceritensis Coss. & Durieu ex Trab.[73]
F. arrigonii Bocchieri[43]
Lasidiol-10-anisate43IF. vesceritensis Coss. & Durieu ex Trab.[45]
Lyciferin A116IIIF. lycia Boiss.[22]
Lyciferin B117IIIF. lycia Boiss.[22]
Lyciferin C118IIIF. lycia Boiss.[22]
Lyciferin D119IIIF. lycia Boiss.[22]
Lyciferin E120IIIF. lycia Boiss.[22]
lα,l0β-Epoxy-4-humden-6β-p-anisate127IIIF. linkii Webb & Berthel.[34]
lα,l0β-Epoxy-4-humden-6β-p-veratrate128IIIF. linkii Webb & Berthel.[34]
14-p-Methoxybenzoyl-4,5-epoxy-dauc-8-ene46IF. communis subsp. communis[31]
Nerolidol144othersF. fukanensis K. M. Shen[74]
Oopodin139IVF. varia (Schrenk) Trautv.[35]
2-Oxoferutidin32IF. arrigonii Bocchieri[43]
Pallinin or 6α,10α-diangeloyl-jaeschkeanadiol7IF. communis subsp. communis[31]
Penninnervin131IVF. penninervis Regel et Schmalh.[44]
p-Hydroxybenzoylfervanol125IIIF. lycia Boiss.[22]
Spathulenol115IIF. varia (Schrenk) Trautv.[35]
Teferidin17IF. hermonis Boiss[52]
F. elaeochytris Korovin[62]
F. jaeschkeana Vatke[63]
F. sinaica L.[37]
Teferin21IF. hermonis Boiss[52]
F. jaeschkeana Vatke[59,60,63]
F. kuhistanica Korovin[48,64]
F. kingdom-ardii Wolff[57]
F. elaeochytris Korovin[62]
4β, 8β, 9α-Trihydroxy-6α-p-hydroxybenzoyoxydaucane87IF. sinaica L.[37,58]
Tunetanin A15IF. tunetana Pom[75]
Vaginatin40IF. communis subsp. communis[40]
5α-Vanillate-2,3-epoxy-jaescheanadiol79IF. kuhistanica Korovin[48]
F. jaeschkeana Vatke[67]
Vanilloylfervanol126IIIF. lycia Boiss.[22]
6-β-Vanilloyloxygermacra-1(10),4-diene142VF. lycia Boiss.[22]
Vesceritenone85IF. vesceritensis Coss. & Durieu ex Trab.[45]
Webbiol angelate69IF. linkii Webb & Berthel.[71]
-110IIF. varia (Schrenk) Trautv.[35]
-133IVF. varia (Schrenk) Trautv.[35]
-134IVF. varia (Schrenk) Trautv.[35]
-135IVF. varia (Schrenk) Trautv.[35]
-136IVF. varia (Schrenk) Trautv.[35]
-137IVF. varia (Schrenk) Trautv.[35]
Table 2. Sesquiterpene coumarins in Ferula plants.
Table 2. Sesquiterpene coumarins in Ferula plants.
NamesNo.TypesSpeciesReferences
ε-Acetoxy,4-acetylferulenol357IIIaF. communis var. genuina[76]
10′R-Acetoxy-11′-hydroxyumbelliprenin167IaF. assa-foetida L.[10]
5′-Acetoxy-8′-hydroxyumbelliprenin156IaF. assa-foetida L.[10]
8′-Acetoxy-5′-hydroxyumbelliprenin155IaF. assa-foetida L.[77]
(Z)-ω-Acetoxyferprenin401IIIcF. communis L.[78,79]
(E)-ω-Acetoxyferprenin402IIIcF. communis L.[78,79]
(E)-ω-Acetoxyferulenol352IIIaF. communis L.[80]
(Z)-ω-Acetoxyferulenol353IIIaF. communis L.[80]
8-O-Acetyl-sinkiangenorin F209IbF. sinkiangensis K. M. Shen[81]
Ammoresinal356IIIaF. vesceritensis Coss. & Durieu ex Trab.[45]
3-Angeloxycoladin242IcF. vesceritensis Coss. & Durieu ex Trab.[5]
Asacoumarin A154IaF. assa-foetida L.[82]
F. foetida (Bunge) Regel[83]
Asacoumarin B217IbF. assa-foetida L.[82]
Asimafoetida189IbF. assafoetida Linn.[84]
Asimafoetidnol203IbF. assa-foetida L.[85]
Assafoetidin190IbF. fukanensis K. M. Shen[86]
F. lehmannii Boss.[87]
F. assafoetida Linn.[88]
Assafoetidnol A230IcF. assa-foetida L.[89]
Assafoetidnol B231IcF. assa-foetida L.[89]
Badrakemin238IcF. teterrima Kar. et Kir.[90]
F. badrakema Kos.-Pol.[91]
Badrakemin acetate239IcF. teterrima Kar. et Kir.[90]
F. badrakema Kos.-Pol.[41]
Badrakemone237IcF. fukanensis K. M. Shen[86]
F. teterrima Kar. et Kir.[90]
F. persica Willd[92]
F. nevskii Korov.[93]
Cauferidin245IcF. conocaula Korov.[94]
Cauferin249IcF. conocaula Korov.[94]
Cauferinin259IcF. conocaula korov.[95]
F. samarkandica Korovin[96]
Cauferoside235IcF. gumosa Boiss.[97]
F. conocaula Korov.[98]
Cauloside252IcF. conocaula Korov.[99]
Cocanicin160IaF. cocanica[99]
Coladin232IcF. sinkiangensis K. M. Shen[5]
F. tunetana Pom[5,75]
F. campestris (Besser) Grecescu[100]
Colladonin240IcF. teterrima Kar. et Kir.[90]
F. foetida (Bunge) Regel[83]
F. sinkiangensis K. M. Shen[101]
F. sinaica L.[5]
F. tunetana POM[75]
F. campestris (Besser) Grecescu[100]
Colladonin isovalerate241IcF. loscossi (Lge) Wk[102]
Communiferulin A366IIIbF. communis L.[103]
Communiferulin B367IIIbF. communis L.[103]
Communiferulin C368IIIbF. communis L.[103]
Conferdione283IcF. flabelliloba Rech. f. & Aell[104,105]
Conferin286IcF. conocaula Korov.[106]
Conferol267IcF. assa-foetida L.[10]
F. gumosa Boiss.[97]
F. conocaula Korov.[107]
Conferol acetate264IcF. badrakema Kos.-Pol.[41]
Conferone265IcF. flabelliloba Rech. f. & Aell[104]
F. badrakema Kos.-Pol.[41,108]
Conferoside236IcF. gumosa Boiss.[97]
F. conocaula Korov.[98]
Conferoside285IcF. conocaula Korov.[98]
Deacetylkellerin323IcF. kelleri K.-Pol.[109]
F. kokanica Regel & Schmalh.[110]
Deacetyltadshikorin158IaF. tadshikorum M. Pimen[111]
Diastereomer-samarcandin289IcF. sinaica L.[112]
2,3-Dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadien-6-onyl]-furo[3,2-c]coumarin399IIIbF. fukanensis K. M. Shen[113]
2,3-Dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin386IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furyl)-3(E)-pentenyl]-furo[3,2-c]coumarin394IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadien-6-onyl]-furo[3,2-c]coumarin390IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin383IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furyl)-3(E)-pentenyl]-furo[3,2-c]coumarin392IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-3-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin370IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-3-[4-methyl-5-(4-methyl-2-furyl)-3(E)-pentenyl]-furo[3,2-c]coumarin373IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-hydroxy-2S*,3S*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin389IIIbF. ferulaeoides (Steud.) Korov[115]
2,3-Dihydro-7-hydroxy-2S*,3S*-dimethyl-3-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin372IIIbF. ferulaeoides (Steud.) Korov[114]
(2S*,3R*)-2,3-Dihydro-7-hydroxy-2-[(3E)-8-hydroxy-4,8-dimethylnon-3-en-1-yl]-2,3-dimethyl-4H-furo[3,2-c][1]benzopyran-4-one364IIIbF. ferulaeoides (Steud.) Korov[116]
(2S*,3R*)-2,3-Dihydro-2-[(3E)-8-hydroxy-4,8-dimethylnon-3-en-1-yl]-7-methoxy-2,3-dimethyl-4H-furo[3,2-c][1]benzopyran-4-one365IIIbF. ferulaeoides (Steud.) Korov[116]
2,3-Dihydro-7-methoxy-2R*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin387IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-methoxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadien-6-onyl]-furo[3,2-c]coumarin391IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-methoxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin384IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-methoxy-2S*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furyl)-3(E)-pentenyl]-furo[3,2-c]coumarin393IIIbF. ferulaeoides (Steud.) Korov[114]
2,3-Dihydro-7-methoxy-2S*,3R*-dimethyl-3-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin371IIIbF. ferulaeoides (Steud.) Korov[114]
6′,7′-Dihydroxy-karatavicinol169IaF. sinaica L.[37]
(2S*,3S*)-3-[(3E)-4,8-Dimethylnona-3,7-dien-1-yl]-2,3-dihydro-7-methoxy-2,3-dimethyl-4H-furo[3,2-c][1]benzopyran-4-one363IIIbF. ferulaeoides (Steud.) Korov[116]
Drimatol B345IcF. jaeschkeana Vatke[63]
Ent-Colladonin248IcF. sinkiangensis K. M. Shen[117]
Epi-Conferdione272IcF. assa-foetida L.[10]
F. foetida (Bunge) Regel[83]
Episamarcandin305IcF. sinkiangensis K. M. Shen[118]
F. sinaica L.[119]
Episamarcandin acetate295IcF. assa-foetida L.[120]
Epoxyfarnochrol175IaF. jaeschkeana Vatke[63]
Ethyl galbanate215IbF. pseudalliacea Rech.f.[121]
Farnesiferol A228IcF. assafoetida Linn.[84]
F. assa-foetida L.[10]
F. vesceritensis Coss. & Durieu ex Trab.[45]
F. persica Willd[92]
Farnesiferol B186IbF. sinkiangensis K. M. Shen[118]
F. szowitsiana DC.[122]
F. flabelliloba Rech. f. & Aell[104]
F. lehmannii Boss.[123]
F. asafoetida L.[124]
F. assa-foetida L.[10]
F. persica Willd[92]
Farnesiferol C202IbF. lehmannii Boss.[87]
F. sinkiangensis K. M. Shen[118]
F. szowitsiana DC.[122,125]
F. asafoetida L.[124]
F. assafoetida Linn.[84]
Farnesiferone B185IbF. flabelliloba Rech. f. & Aell[104]
Fecarpin330IcF. microcarpa Korovin[126]
Fekolin193IbF. kopetdagensis Eug. Kor.[99,127]
Fekolone187IbF. fukanensis K. M. Shen[86]
F. sinkiangensis K. M. Shen[118,128]
F. kopetdagensis Eug. Kor.[127]
Fekolone195IbF. kopetdagensis Eug. Kor.[99,127]
Fekrol196IbF. krylovii Korov.[129]
Fekrynol211IbF. sinkiangensis K. M. Shen[118]
F. lehmannii Boss.[87]
F. krylovii Korov.[130]
Fekrynol acetate212IbF. lehmannii Boss.[123]
F. krylovii Korov.[130]
Fepaldlin322IcF. pallida Korovin[99]
Fercoprenol369IIIbF. communis subsp. communis[131]
Ferocaulicin288IcF. conocaula Korov.[132]
Ferocaulidin287IcF. gumosa Boiss.[97]
F. badrakema Kos.-Pol[41,108]
F. conocaula Korov.[132]
Ferocaulin282IcF. conocaula Korov.[132]
Ferocaulinin284IcF. conocaula Korov.[132]
Feropolidin263IcF. polyantha Korovin[133,134]
F. vicaria Korovin[135]
Feropolin207IbF. polyantha Korovin[133,134]
Feropolol204IbF. polyantha Korovin[133,134]
F. vicaria Korovin[135]
Feropolone206IbF. polyantha Korovin[133,134]
F. vicaria Korovin[135]
Feroside164IaF. korshinskyi Eug. Korov[136]
Ferprenin405IIIcF. communis L.[78,79]
Ferubungeanol a307IcF. bungeana Kitag.[137]
Ferubungeanol b308IcF. bungeana Kitag.[137]
Ferubungeanol c309IcF. bungeana Kitag.[137]
Ferubungeanol d310IcF. bungeana Kitag.[137]
Ferubungeanol e311IcF. bungeana Kitag.[137]
Ferubungeanol f312IcF. bungeana Kitag.[137]
Ferubungeanol g313IcF. bungeana Kitag.[137]
Ferubungeanol h314IcF. bungeana Kitag.[137]
Ferucrin isobutyrate324IcF. foetidissima Regel & Schmalh.[138]
Ferucrinone325IcF. foetidissima Regel & Schmalh.[138]
Ferukrin319IcF. kopetdagensis Eug. Kor.[139]
F. krylovii Korov.[140]
Ferukrin acetate320IcF. kopetdagensis Eug. Kor.[139]
Ferulenol349IIIaF. communis var. genuina[141,142]
Ferulenoloxy ferulenol361IIIaF. communis var. genuina[76]
Ferulin A395IIIbF. ferulaeoides (Steud.) Korov[143]
Ferulin B374IIIbF. ferulaeoides (Steud.) Korov[143]
Ferulin C375IIIbF. ferulaeoides (Steud.) Korov[143]
Ferulsinaic acid218IbF. sinaica L.[144,145]
Ferusingensine A171IaF. sinkiangensis K. M. Shen[146]
Ferusingensine B172IaF. sinkiangensis K. M. Shen[146]
Ferusingensine C173IaF. sinkiangensis K. M. Shen[146]
Ferusingensine D174IaF. sinkiangensis K. M. Shen[146]
Ferusingensine E168IaF. sinkiangensis K. M. Shen[146]
Ferusingensine F183IbF. sinkiangensis K. M. Shen[146]
Ferusingensine G177IbF. sinkiangensis K. M. Shen[146]
Ferusingensine H326IcF. sinkiangensis K. M. Shen[146]
Ferusinol338IcF. sinaica L.[112]
Feselol268IcF. assa-foetida L.[10]
F. flabelliloba Rech. f. & Aell[104]
F. badrakema Kos.-Pol[41,108]
F. vesceritensis Coss. & Durieu ex Trab.[45]
Feselol angelate270IcF. diversivittata Regel & Schmalh.-Rech.[147]
Feshurin301IcF. teterrima Kar. et Kir.[90,148]
Feshurin acetate302IcF. teterrima Kar. et Kir.[90]
Fesinkin A184IbF. sinkiangensis K. M. Shen[149]
Fesinkin B178IbF. sinkiangensis K. M. Shen[149]
Fesinkin C179IbF. sinkiangensis K. M. Shen[149]
4′E-Fesinkin D180IbF. sinkiangensis K. M. Shen[149]
4′Z-Fesinkin D181IbF. sinkiangensis K. M. Shen[149]
Fesinkin E339IcF. sinkiangensis K. M. Shen[149]
Fesinkin F340IcF. sinkiangensis K. M. Shen[149]
Fesinkin G341IcF. sinkiangensis K. M. Shen[149]
Feterin250IcF. teterrima Kar. et Kir.[150]
Feterin acetate251IcF. teterrima Kar. et Kir.[150]
Flabellilobin A188IbF. flabelliloba Rech. f. & Aell[104]
Flabellilobin B192IbF. flabelliloba Rech. f. & Aell[104]
Fnarthexol279IcF. narthex Boiss[151]
Fnarthexone246IcF. narthex Boiss[151]
Foetidin346IIF. assa-foetida L.[152]
Foetidin acetate347IIF. marmarica Asch. & Taub.[153]
Foetidone348IIF. marmarica Asch. & Taub.[153]
Foliferin205IbF. folioca Lipsky[154]
F. schtschurowskiana Regel & Schmalh.[99]
Fukanefuromarin A376IIIbF. fukanensis K. M. Shen[113]
Fukanefuromarin B377IIIbF. fukanensis K. M. Shen[113]
Fukanefuromarin C378IIIbF. fukanensis K. M. Shen[113]
Fukanefuromarin D379IIIbF. fukanensis K. M. Shen[113]
Fukanefuromarin E380IIIbF. fukanensis K. M. Shen[155]
Fukanefuromarin F381IIIbF. fukanensis K. M. Shen[155]
Fukanefuromarin G382IIIbF. fukanensis K. M. Shen[155]
Fukanefuromarin H385IIIbF. fukanensis K. M. Shen[156]
Fukanefuromarin I388IIIbF. fukanensis K. M. Shen[156]
Fukanefuromarin J396IIIbF. fukanensis K. M. Shen[156]
Fukanefuromarin K397IIIbF. fukanensis K. M. Shen[156]
Fukanefuromarin L398IIIbF. fukanensis K. M. Shen[156]
Fukanefuromarin M407IIIcF. fukanensis K. M. Shen[156]
Fukanemarin A358IIIaF. fukanensis K. M. Shen[113]
Fukanemarin B360IIIaF. fukanensis K. M. Shen[155]
Galbanic acid213IbF. szowitsiana DC.[122,157]
F. asafoetida L.[124]
F. assa-foetida L.[10]
Gummosin225IcF. persica Willd[92]
Gumoside A233IcF. gumosa Boiss.[97]
Gumoside B234IcF. gumosa Boiss.[97]
Gumosin315IcF. gumosa Boiss.[97]
4′-Hydroxy kamolonol acetate277IcF. pseudalliacea Rech.f.[158]
(Z)-ω-Hydroxyferprenin403IIIcF. communis L.[78,79]
(E)-ω-Hydroxyferprenin404IIIcF. communis L.[78,79]
(E)-ω-Hydroxyferulenol350IIIaF. communis L.[80]
(Z)-ω-Hydroxyferulenol351IIIaF. communis L.[80]
ε-Hydroxyferulenol355IIIaF. communis L.[76]
13-Hydroxyfeselol271IcF. vesceritensis Coss. & Durieu ex Trab.[5]
F. tunetana POM[75]
5′-Hydroxyumbelliprenin151IaF. assa-foetida L.[77]
F. assa-foetida L.[10]
8′-Hydroxyumbelliprenin152IaF. assa-foetida L.[77]
Isoferprenin406IIIcF. communis var. genuina[159]
Isofeterin243IcF. teterrima Kar. et Kir.[160]
Isosamarcandin303IcF. sinaica L.[68]
F. sinkiangensis K. M. Shen[118]
F. microloba Boiss.[161]
Isosamarkandin293IcF. sinkiangensis K. M. Shen[117]
Isosamarkandin angelate304IcF. arrigonii Bocchieri[43]
Isosmarcandin297IcF. tunetana POM[75]
Kamolol331IcF. penninervis Regel et Schmalh.[162]
(3′S, 4′S, 5′R, 8′S, 9′S, 10′S)-Kamolol acetate327IcF. sinkiangensis K. M. Shen[146]
Kamolone332IcF. penninervis Regel et Schmalh.[162]
Kamolonol334IcF. assa-foetida L.[10]
F. pseudalliacea Rech.f.[158]
Kamolonol acetate299IcF. pseudooreoselinum Koso-Pol.[121]
Kamonolol acetate278IcF. pseudalliacea Rech.f.[163]
Karatavic acid216IbF. karatavica Regel & Schmalh.[164,165,166]
Karatavicin163IaF. karatavica Regel & Schmalh.[148]
Karatavicinol161IaF. foetida (Bunge) Regel[83]
F. asafoetida L.[124]
F. assa-foetida L.[10]
F. karatavica Rgl. et Schmalh.[167]
Kellerin321IcF. kelleri K.-Pol.[109]
F. kokanica Regel & Schmalh.[110]
Kokanidin306IcF. kokanica Regel & Schmalh.[110]
Kopeolin197IbF. gummosa Boiss.[168]
F. kopetdagensis Eug. Kor.[169,170]
Kopeolone199IbF. kopetdagensis Eug. Kor.[169]
Kopeoside198IbF. gummosa Boiss.[168]
F. kopetdagensis Eug. Kor.[169,170]
Kopetdaghin194IbF. gummosa Boiss.[168]
F. kopetdagensis Eug. Kor.[169,171]
Lehmannolol300IcF. sinkiangensis K. M. Shen[160]
F. assa-foetida L.[10]
Lehmannolone298IcF. fukanensis K. M. Shen[86]
F. sinkiangensis K. M. Shen[160]
F. lehmannii Boiss.[172]
Lehmannolone A200IbF. lehmannii Boss.[87]
Lehmferidin244IcF. lehmannii Boss.[173]
Lehmferin191IbF. flabelliloba Rech. f. & Aell[104]
F. assa-foetida L.[10]
F. lehmannii Boss.[173]
Ligupersin A273IcF. assa-foetida L.[10]
F. flabelliloba Rech. f. & Aell[104]
F. gumosa Boiss.[97]
F. badrakema Kos.-Pol.[108]
Methyl galbanate214IbF. szowitsiana DC.[122]
F. assa-foetida L.[10]
F. microloba Boiss.[161]
Microlobidene335IcF. microloba Boiss.[174]
Microlobin333IcF. assa-foetida L.[10,161]
Mogoltacin266IcF. badrakema Kos.-Pol.[41,108]
Mogoltadone227IcF. mogoltavica Lipsky ex Korovin[175]
Mogoltavicin329IcF. mogoltavica Lipsky ex Korovin[176]
Mogoltavidin328IcF. mogoltavica Lipsky ex Korovin[176]
Mogoltavin280IcF. mogoltavica Lipsky ex Korovin[177]
Mogoltavinin281IcF. mogoltavica Lipsky ex Korovin[177]
Moschatyl acetate269IcF. incisoserrata Pimenov & J.V.Baranova[178]
Nevskone296IcF. neveskii Korovin[99]
(E)-ω-Oxoferprenin400IIIcF. communis L.[78,79]
(E)-ω-Oxoferulenol354IIIaF. communis L.[80]
Pallidone A359IIIaF. pallida Korovin[179]
Pallidone B362IIIbF. pallida Korovin[179]
Persicaoside A342IcF. persica Willd[180]
Persicaoside B247IcF. persica Willd[180]
Persicaoside C165IaF. persica Willd[180]
Persicaoside D166IaF. persica Willd[180]
Polyanthin229IcF. assa-foetida L.[10]
F. polyanthum Eug. Korov.[181]
Polyanthinin226IcF. polyantha Korovin[99]
F. polyanthum Eug. Korov.[181]
(8′S,9′S,10′S)-Propionyl-fekrynol182IbF. sinkiangensis K. M. Shen[146]
Reoselin162IaF. kirialovii Pimenov[182]
F. korshinskyi Eug. Korov[136]
F. pseudooreoselinum Koso-Pol.[183,184]
Samarcandicin A253IcF. samarkandica Korovin[96]
Samarcandicin B254IcF. samarkandica Korovin[96]
Samarcandicin C255IcF. samarkandica Korovin[96]
Samarcandicin D256IcF. samarkandica Korovin[96]
Samarcandicin E223IcF. samarkandica Korovin[96]
Samarcandicin F257IcF. samarkandica Korovin[96]
Samarcandicin G224IcF. samarkandica Korovin[96]
Samarcandicin H258IcF. samarkandica Korovin[96]
Samarcandin291IcF. samarcandica kor.[185]
F. teterrima Kar. et Kir.[117]
F. huber-morathii Peşan[246]
Samarcandin acetate290IcF. teterrima Kar. et Kir.[117]
F. pseudooreoselinum Koso-Pol.[186]
F. huber-morathii Peşan[246]
Samarcandone292IcF. samarcandica kor.[185]
F. sinaica L.[5]
F. huber-morathii Peşan[246]
Saradaferin261IcF. assafoetida Linn.[187]
Seravschanin A274IcF. seravschanica Pimenov & J.V.Baranova[188]
Seravschanin B275IcF. seravschanica Pimenov & J.V.Baranova[188]
Seravschanin C276IcF. seravschanica Pimenov & J.V.Baranova[188]
Seravschanin D170IaF. seravschanica Pimenov & J.V.Baranova[188]
Seravschanin E157IaF. seravschanica Pimenov & J.V.Baranova[188]
Sinkiangenol A220IcF. sinkiangensis K. M. Shen[189]
Sinkiangenol B221IcF. sinkiangensis K. M. Shen[189]
Sinkiangenol C176IbF. sinkiangensis K. M. Shen[189]
Sinkiangenol D294IcF. sinkiangensis K. M. Shen[189]
Sinkiangenol E222IcF. sinkiangensis K. M. Shen[189]
Sinkiangenorin D219IbF. sinkiangensis K. M. Shen[128]
Sinkiangenorin E344IcF. sinkiangensis K. M. Shen[30]
Sinkiangenorin F208IbF. sinkiangensis K. M. Shen[81]
(3′S,8′R,9′S,10′R)-Sinkianol A343IcF. sinkiangensis K. M. Shen[190]
(3′R,5′R,10′R)-Sinkianol B210IbF. sinkiangensis K. M. Shen[190]
Sinkianone201IbF. sinkiangensis K. M. Shen[160]
F. lehmannii Boss.[87]
Sumferin262IcF. sumbul Hook[191]
Szowitsiacoumarin A316IcF. szowitsiana DC.[122]
Szowitsiacoumarin B317IcF. szowitsiana DC.[122]
Tadzhiferin153IaF. assa-foetida L.[77]
F. tadshikorum M. Pimen[192]
Tadzhikorin159IaF. tadshikorum M. Pimen[192]
Tavicone337IcF. aitchisonii K.-Pol.[166]
Tunetacoumarin A318IcF. tunetana POM[75]
Umbelliprenin150IaF. aitchisonii K.-Pol.[166]
F. arrigonii Bocchieri[43]
F. assafoetida Linn.[77,124]
F. campestris (Besser) Grecescu[100]
F. fukanensis K. M. Shen[86]
F. sinkiangensis K. M. Shen[193]
F. flabelliloba Rech. f. & Aell[104]
F. tunetana POM[75]
F. persica Willd[33]
F. szowitsiana DC.[122]
-260IcF. sinaica L.[194]
-336IcF. sinaica L.[68]
Table 3. Sesquiterpene chromones in Ferula plants.
Table 3. Sesquiterpene chromones in Ferula plants.
NamesNo.SpeciesReferences
2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[2,3-b]chromone408F. ferulaeoides (Steud.) Korov[115]
2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furyl)-3(E),7-pentenyl]-furo[2,3-b]chromone409F. ferulaeoides (Steud.) Korov[115]
2,3-Dihydro-7-hydroxy-2R*,3R*-dimethyl-2-[4-methyl-5-(4-methyl-2-furyl)-3(E),7-pentenyl]-furo[2,3-b]chromone410F. ferulaeoides (Steud.) Korov[115]
Ferchromone420F. communis subsp. communis[131]
Ferchromonol421F. communis subsp. communis[131]
(+)-Ferulasin422F. sinkiangensis K. M. Shen[195]
(-)-Ferulasin423F. sinkiangensis K. M. Shen[195]
Ferulin D418F. ferulaeoides (Steud.) Korov[143]
Ferulin E419F. ferulaeoides (Steud.) Korov[143]
Fukanefurochromone A411F. fukanensis K. M. Shen[196]
Fukanefurochromone B412F. fukanensis K. M. Shen[196]
Fukanefurochromone C413F. fukanensis K. M. Shen[196]
Fukanefurochromone D414F. fukanensis K. M. Shen[196]
Fukanefurochromone E415F. fukanensis K. M. Shen[196]
Pallidone I416F. pallida Korovin[197]
Pallidone J417F. pallida Korovin[197]
Table 4. Sesquiterpene phenylpropanoids in Ferula plants.
Table 4. Sesquiterpene phenylpropanoids in Ferula plants.
NamesNo.SpeciesReferences
3-(2,4-dihydroxybenzoyl)-4R*,5R*-dimethyl-5-[4,8-dimethyl-3(E),7(E)-nonadien-1-yl]tetra-hydro-2-furanone443F. ferulaeoides (Steud.) Korov.[198,199]
3S*-(2,4-dihydroxybenzoyl)-4R*,5R*-dimethyl-5-[4-methyl-5-(4-methyl-2-furyl)-3(E)-penten-1-yl]tetrahydro-2-furanone450F. ferulaeoides(Steud.) Korov.[199]
3S*-(2,4-dihydroxybenzoyl)-4R*,5S*-dimethyl-5-[4-methyl-5-(4-methyl-2-furyl)-3(E)-penten-1-yl]tetrahydro-2-furanone451F. ferulaeoides (Steud.) Korov.[199]
8,9-Dihydroxydshamirone455F. ferulaeoides (Steud.) Korov.[200]
(4E,8E)-1-(2,4-dihydroxyphenyl)-2-hydroxy-5,9,13-trimethyltetradeca-4,8,12-trien-1-one438F. ferulaeoides (Steud.) Korov.[198,201]
1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyl-6(E),10-do-decadiene-1,9-dione440F. ferulaeoides (Steud.) Korov.[201]
(6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyl-6,10-dodecadien-1-one439F. ferulaeoides (Steud.) Korov.[198,201]
(6E)-1-(2,4-dihydroxyphenyl)-3,7-dimethyl-3-vinyl-8-(4-methyl-2-furyl)-6-octen-1-one441F. ferulaeoides (Steud.) Korov.[198,201]
Dshamirone437F. ferulaeoides (Steud.) Korov.[198,201]
Ferulaeolactone A452F. ferulaeoides (Steud.) Korov.[200]
Ferulaeone A429F. ferulaeoides (Steud.) Korov.[198]
Ferulaeone B430F. ferulaeoides (Steud.) Korov.[198]
Ferulaeone C431F. ferulaeoides (Steud.) Korov.[198]
Ferulaeone D432F. ferulaeoides (Steud.) Korov.[198]
Ferulaeone E433F. ferulaeoides (Steud.) Korov.[198]
Ferulaeone F434F. ferulaeoides (Steud.) Korov.[198]
Ferulaeone G435F. ferulaeoides (Steud.) Korov.[198]
F. sinkiangensis K. M. Shen[21]
Ferulaeone H436F. ferulaeoides (Steud.) Korov.[198]
Fukanedone A424F. fukanensis K. M. Shen[18]
Fukanedone B425F. fukanensis K. M. Shen[18]
F. ferulaeoides (Steud.) Korov.[198,200]
Fukanedone C426F. fukanensis K. M. Shen[18]
Fukanedone D427F. fukanensis K. M. Shen[18]
Fukanedone E428F. fukanensis K. M. Shen[18]
3-(2-hydroxyl-4-methoxybenzoyl)-4S*,5R*-dimethyl-5-[4,8-dimethyl-3(E),7(E)-nonadien-1-yl]tetrahydro-2-furanone442F. ferulaeoides (Steud.) Korov.[198]
8,9-Oxoisopropanyldshamirone454F. ferulaeoides (Steud.) Korov.[200]
Pallidone C444F. pallida Korovin[179]
Pallidone D445F. pallida Korovin[179]
Pallidone E446F. pallida Korovin[179]
Pallidone F447F. pallida Korovin[179]
Sinkiangenone A448F. sinkiangensis K. M. Shen[21]
Sinkiangenone B449F. sinkiangensis K. M. Shen[21]
Table 5. The MIC values of sesquiterpenes and sesquiterpene derivatives against different bacterial strains.
Table 5. The MIC values of sesquiterpenes and sesquiterpene derivatives against different bacterial strains.
NamesNo.Bacterial StrainsMICReferences
2,3-Dihydro-7-hydroxy-2S*,3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo[3,2-c]coumarin383S. epidermidis5.2 μM[210]
M. luteus22.5 μM[210]
(6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyl-6,10-dodecadien-1-one439S. epidermidis11.2 μM[210]
M. luteus22.5 μM[210]
B. subtilis11.2 μM[210]
Diversolide A103S. aureus>160 µg/mL[49]
E. coli80 µg/mL[49]
Diversolide D106S. aureus40 µg/mL[49]
E. coli>160 µg/mL[49]
Diversolide F108S. aureus80 µg/mL[49]
E. coli80 µg/mL[49]
Ethyl galbanate215H. pylori64 µg/mL[215]
Fekrynol acetate212E. faecium128 µg/mL[215]
Ferulenol349M. fortuitum2 µg/mL[207]
M. phlei2 µg/mL[207]
M. aurum2 µg/mL[207]
M. smegmatis0.5 µg/mL[207]
B. subtilis0.63 µg/mL[208]
S. aureus0.63 µg/mL[208]
S. durans0.63 µg/mL[208]
S. faecalis0.63 µg/mL[208]
Mycobacterium organisms1.25 µg/mL[208]
Ferutinin18MRSA<0.39 µg/mL[205]
B. subtilis<0.39 µg/mL[205]
MTB2 µg/mL[205]
BCG1.56 µg/mL[205]
M. smegmatis10 µg/mL[206]
Galbanic acid213class A β-lactamase47 ± 3.1 μM[214]
4′-Hydroxy kamolonol acetate277H. pylori64 µg/mL[158]
S. aureus64 µg/mL[132]
Kamolonol334H. pylori64 µg/mL[158]
S. aureus64 µg/mL[132]
Kamonolol acetate278H. pylori128 µg/mL[215]
Methyl galbanate214E. faecium64 µg/mL[215]
Teferidin17S. aureus0.78 µg/mL[205]
B. subtilis<0.39 µg/mL[205]
MTB0.69 µg/mL[205]
BCG3.125 µg/mL[205]
Teferin21MRSA1.56 µg/mL[205]
B. subtilis1.56 µg/mL[205]
MTB8 µg/mL[205]
BCG6.25 µg/mL[205]
Umbelliprenin150B. subtilis500 µg/mL[209]
B. cereus500 µg/mL[209]
E. coli500 µg/mL[209]
S. typhi500 µg/mL[209]
K. ponumoniae500 µg/mL[209]
S. aureus500 µg/mL[209]
S. epidermilis500 µg/mL[209]
Class A β-lactamase54 ± 2.9 μM[214]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wang, J.; Zheng, Q.; Wang, H.; Shi, L.; Wang, G.; Zhao, Y.; Fan, C.; Si, J. Sesquiterpenes and Sesquiterpene Derivatives from Ferula: Their Chemical Structures, Biosynthetic Pathways, and Biological Properties. Antioxidants 2024, 13, 7. https://doi.org/10.3390/antiox13010007

AMA Style

Wang J, Zheng Q, Wang H, Shi L, Wang G, Zhao Y, Fan C, Si J. Sesquiterpenes and Sesquiterpene Derivatives from Ferula: Their Chemical Structures, Biosynthetic Pathways, and Biological Properties. Antioxidants. 2024; 13(1):7. https://doi.org/10.3390/antiox13010007

Chicago/Turabian Style

Wang, Junchi, Qi Zheng, Huaxiang Wang, Leiling Shi, Guoping Wang, Yaqin Zhao, Congzhao Fan, and Jianyong Si. 2024. "Sesquiterpenes and Sesquiterpene Derivatives from Ferula: Their Chemical Structures, Biosynthetic Pathways, and Biological Properties" Antioxidants 13, no. 1: 7. https://doi.org/10.3390/antiox13010007

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop