Next Article in Journal
Whole Genome Sequence of an Edible Mushroom Stropharia rugosoannulata (Daqiugaigu)
Previous Article in Journal
COVID-19-Associated Pulmonary Aspergillosis in a Tertiary Hospital
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Exploring the Relationships between Macrofungi Diversity and Major Environmental Factors in Wunvfeng National Forest Park in Northeast China

Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
*
Authors to whom correspondence should be addressed.
J. Fungi 2022, 8(2), 98; https://doi.org/10.3390/jof8020098
Submission received: 24 November 2021 / Revised: 14 January 2022 / Accepted: 17 January 2022 / Published: 20 January 2022

Abstract

:
In this paper, we analyze the macrofungi communities of five forest types in Wunvfeng National Forest Park (Jilin, China) by collecting fruiting bodies from 2019–2021. Each forest type had three repeats and covered the main habitats of macrofungi. In addition, we evaluate selected environmental variables and macrofungi communities to relate species composition to potential environmental factors. We collected 1235 specimens belonging to 283 species, 116 genera, and 62 families. We found that Amanitaceae, Boletaceae, Russulaceae, and Tricholomataceae were the most diverse family; further, Amanita, Cortinarius, Lactarius, Russula, and Tricholoma were the dominant genera in the area. The macrofungi diversity showed increasing trends from Pinus koraiensis Siebold et Zuccarini forests to Quercus mongolica Fischer ex Ledebour forests. The cumulative species richness was as follows: Q. mongolica forest A > broadleaf mixed forest B > Q. mongolica, P. koraiensis mix forest D (Q. mongolica was the dominant species) > Q. mongolica and P. koraiensis mix forest C (P. koraiensis was the dominant species) > P. koraiensis forest (E). Ectomycorrhizal fungi were the dominant functional group; they were mainly in forest type A and were influenced by soil moisture content and Q. mongolica content (p < 0.05). The wood-rotting fungus showed richer species diversity than other forest types in broadleaf forests A and B. Overall, we concluded that most fungal communities preferred forest types with a relatively high Q. mongolica content. Therefore, the deliberate protection of Q. mongolica forests proves to be a better strategy for maintaining fungal diversity in Wunvfeng National Forest Park.

1. Introduction

Fungal communities are essential for forest ecosystems and have many functions [1,2]. Ectomycorrhizal fungi (EM) participate in the soil nutrient cycle of forest ecosystems and promote the host plant’s absorption of nutrients, such as nitrogen, phosphorus, and water, thereby maintaining the above-ground primary productivity of the forest ecosystem [3]. Saprotrophic fungi can degrade wood components (i.e., lignin, cellulose, and hemicellulose [4]), and they are considered essential wood-decay-promoting organisms. These functions indicate a crucial role in maintaining the forest ecosystem’s stability [5].
Many biotic and abiotic factors can affect the diversity and composition of fungal communities [6,7]. The composition of EM is strongly influenced by the soil’s nitrogen content [8,9], pH [10], temperature and moisture [11,12], the species composition of the host trees [13,14], and by the seasons [15]. Fungal communities living on the wood are closely dependent upon environmental factors, such as the amount, diameter, and stage of wood decomposition [16], wood chemistry [17], age [18], and tree species [19]. Factors influencing terricolous saprotrophic communities include litter quantity and pH [20], soil P content [21,22], plant species [23,24], and temperature [25]. The processes of natural or human-induced change in the vegetation composition of forests are also important drivers of fungal diversity [26,27,28], as they are associated with significant changes in litter and soil quality in the long term [29,30,31].
Our study sites are all within the Wunvfeng National Forest Park in the southeastern mountainous region of the Jilin Province, China. The reserve was established in 1992 and is part of the Changbai Mountain system. The original vegetation included Quercus mongolica Fischer ex Ledebour forests and mixed broadleaf forests, which changed when Pinus koraiensis Siebold et Zuccarini was planted in the 1980s [32]. Currently, the vegetation composition includes a P. koraiensis forest, and P. koraiensisQ. mongolica mixed forests provide a unique opportunity to investigate the fungal communities of different forest types under the same climatic conditions. Usually, Pinus species are dependent upon macrofungi in symbiotic associations, which are essential for their growth and survival [33] because symbiotic associations facilitate the trees’ uptake of water and nutrients [34,35]. Some specific fungal species may be found in relatively stable Pinus forests. Thus, understanding the distribution characteristics of fungal communities in planted and native forests can provide better strategies for fungal diversity conservation, especially for the deliberate conservation of forest types that host a more significant number of fungal species. In this context, we conducted a three-year survey of macrofungi in different vegetation types in Wunvfeng National Forest Park. We study the relationship between selected environmental factors and community composition. We aim to investigate whether fungal communities differ among the five forest types and whether native forests dominated by Q. mongolica are potentially associated with fungal communities.

2. Materials and Methods

2.1. Study Area Description

Our study site, Wunvfeng National Forest Park, covers an area of 6867 hm2 [36] and is situated in Ji’an City in the extreme southeast part of the Jilin Province, Northeast China (126°2′21″–126°17′57″ E, 41°11′37″–41°21′40″ N). The area is characterized by a temperate continental monsoon climate with a mean annual precipitation of 950 mm with peaks from June–August and a mean annual air temperature of 6.5 °C [36]. The forest cover is 95%, and the dominant tree species is Q. mongolica. P. koraiensis was planted as a non-native tree species in 1980. At present, it has formed stable forest communities. Dark-brown soil [37] is the most frequent soil type. The fundamental geomorphological units belong to the Changbai Mountains, ranging in altitude from 500–1500 m [38].

2.2. Fruiting Body Sampling

We designated five following forest types: A, B, C, D, and E. Three 50 m × 50 m sampling plots with at least 500 m distance between them were located within each forest type (pictures of each forest type are provided in Figure 1).
Quercus mongolica site (A): Old-growth Q. mongolica forests with the original habitat, and no fallen or standing deadwood has been removed. There are 275 Q. mongolica with a coverage rate of 96.15%.
Broad-leaved forest site (B): Mixed broadleaved forest (uneven-aged), with Q. mongolica, Tilia amurensis Rupr., Fraxinus mandshurica Rupr., Acer palmatum Thunb., Juglans regia L., close to nature managed. There are 158 Q. mongolica with a coverage rate of 48.46%.
Pinus koraiensis and Quercus mongolica mixed sites (C): 30–50-year-old P. koraiensis forest, close to nature managed, and naturally grown Q. mongolica. P. koraiensis was artificially grown and is the dominant species. There are 42 Q. mongolica with a coverage rate of 18.03%.
Quercus mongolica and Pinus koraiensis mixed sites (D): 30–60-year-old Q. mongolica forests, close to nature managed, and artificially grown P. koraiensis. Q. mongolica is the dominant species. There are 183 Q. mongolica with a coverage rate of 74.69%.
Pinus. koraiensis sites (E): Single species; 40-year-old P. koraiensis forests planted in 1980, close to nature managed, no fallen trees removed. There are zero Q. mongolica with a coverage rate of 0%.
We collected samples 20–25 times per month from June to October 2019–2021. We randomly acquired macrofungi from each plot. We photographed the specimens in the field using a Canon EOS 800D digital camera and recorded fresh morphological characteristics and ecological characteristics (Figure 2). We selected the context or stipe tissue (1–2 g) of the same specimen when it was fresh and stored it in a sealed bag with silica gel for DNA extraction; we dried them in an oven (45–50 °C) and placed them in specimen boxes. We then took a morphotype of each specimen to the laboratory and used it for morphological species identification.

2.3. Soil Sampling, Analysis and Environmental Data Collection

We collected soil samples four times per month during July–September 2020. After cleaning and removing plant material and debris from the surface, we collected individual soil samples from the center and 4 corners in 15 plots using an auger (5 cm radius, 5 cm depth). We mixed the soil samples from the same plots well and placed them in sealed bags. After removing impurities, we enclosed the fresh samples (20 g) from each clod in an aluminum box. We dried the samples to a constant weight in an oven at 105 °C to measure water content (SWC); we used natural air-dried composite samples (200 g) for each plot to analyze for pH, organic matter (SOM), available phosphorus (P), effective nitrogen (N), and available potassium (K) using the method described by Xing et al. [39]. Finally, we averaged the data from three plots of the five fore for subsequent analysis.
We obtained the temperature and relative humidity of the air and soil temperature from July–September 2020 from meteorological monitoring sites in the forest park. The tested results for the soil are included in Table 1.

2.4. Species Identification

We identified the macrofungi using morphological observations methods. We used molecular methods for the species that were morphologically difficult to identify. We measured different microscopic structures of taxonomic importance (e.g., spores, basidia, cystidia) [40]. We examined the morphological features of the fruiting bodies using appropriate monographs, including by Li et al. [41] and Liu et al. [42], to identify each macrofungi specimens. The specimens are currently housed in the Herbarium of Mycology of Jilin Agricultural University (HMJAU), Changchun, China.
Molecular identification involved sequencing the internal transcribed spacer (ITS). For this, we extracted the DNA of the macrofungi using a NuClean Plant Genomic DNA Kit (Cowin Biosciences, Taizhou, China), following the manufacturer’s instructions. We conducted final elutions in a total volume of 50 μL. We showed a polymerase chain reaction (PCR) with the primer pairs ITS-1F and ITS-4 [43]; finally, we sequenced the PCR products using the Sanger method. We conducted the PCR in 25 μL reactions consisting of 2 μL genomic DNA, 0.5 μL Taq, and one μL upstream and downstream primers, respectively. We used 14.5 μL ddH2O, five μL 5 × PCR buffer, and 1 µL dNTP in the PCR reactions that we ran under the following conditions: 95 °C for 3 min, followed by 35 cycles of 94 °C for 40 s, 55 °C for 45 s, 72 °C for 1.5 min, and a final extension step at 72 °C for 6 min before storage at 4 °C We purified the PCR products and sequenced them at Sangon Biotech Co., Ltd. (Shanghai, China). We performed molecular identification via BLAST comparisons. Species with >98% sequence similarity were also identified with morphological characteristics. GenBank accession numbers obtained are provided in Appendix B.
We identified ecological functions (ectomycorrhizal fungi; soil saprotroph; wood-decaying fungi; litter saprotroph; dung saprotroph; endophyte-insect pathogen) at the genera level using a FUNGuild (available online: http://www.funguild.org (accessed on 18 November 2021) search; these can be found in Appendix B. We classified macrofungi into eight types (agarics; large ascomycetes; boletes; polyporoid fungi; coral fungi; gasteoid fungi; jelly fungi; hydnaceous fungi, and cantharelloid fungi) according to the method of Li et al. [41]. The fungal nomenclature follows the Index Fungorum (available online: http://www.indexfungorum.org (accessed on 15 November 2021)). Setting scientific names at all taxonomic ranks in italics facilitates quick recognition in scientific papers [44].

2.5. Statistical Analysis

We used three alpha diversity indices to analyze the community composition of the macrofungi. The Menhinick richness index (R) reflected the species richness of the community. The Shannon index (D) reflected the diversity of the community species. Pielou’s evenness index (E) reflected the distribution of the number of individuals in each species. The diversity index formulae were as follows:
R = S / N
D = −∑Pi ln (Pi)
E = H’/lnS; H’= −∑Pi ln (Pi)
where Pi is the proportion of species i to the total number of individuals of all species in the plot; ln is the natural logarithm; S is the total number of species in the plot; and N is the total number of individuals observed in the plot.
We analyzed the relationships between ectomycorrhizal fungi communities and selected variables using the canonical correlation analysis (CCA) from Canoco 5.0 [45]. We first used detrended correspondence analysis (DCA) to determine the appropriate model for direct gradient analysis. The results indicated that a unimodal model (gradient lengths > 3 standard units) would best fit our study data; we utilized CCA. Furthermore, we tested explanatory variables using the Monte Carlo permutation test provided by Canoco 5.0 software (with 999 randomizations). The species data matrix for the CCA analysis was based on the presence–absence data of ectomycorrhizal fungi species in each forest type (three-year accumulation of the five forest types).
We used Origin 9.0 software to construct species stacked histograms at the genera level [46] to compare community compositions of the macrofungi species in the five forests and provide the relative proportion of macrofungi species richness (data include the number of species at the genera level in each forest type). Additionally, we generated pie charts, Venn diagrams, and species accumulation curves using Hiplot (available online: https://hiplot.com.cn/basic/venn (accessed on 20 October 2021)). The pie chart data were derived from the number of macrofungi types. The Venn diagram data included the species in each forest type. The accumulation curve data consisted of the cumulative number of species per collection.

3. Results

3.1. Species Richness

We collected 1235 specimens from 5 forest types, 940 (76.11%) of which we identified at the species level, and we classified these into 283 fungal species. We identified 244 species based on morphology and 39 species using morphology and molecular methods (Appendix B). The unidentified sporocarps were not part of our further analysis. We classified the macrofungi species into 116 genera, 62 families, 18 orders, and 2 phyla. Basidiomycota was the dominant phylum, divided into 12 orders, 50 families, 102 genera, and 265 species. Ascomycota was divided into 6 orders, 12 families, 14 genera, and 18 species. The Russulaceae was the most diverse family with 36 different species, followed by Tricholomataceae (21 species), Boletaceae (19 species), and Amanitaceae (16 species). Together, these accounted for 32.51% of the total collected species. The most abundant genera were Amanita, Cortinarius, Lactarius, and Russula. The Agaricales were the most prevalent order in the five forest types (59.36%). In terms of the trophic groups, most of the species were ectomycorrhizal fungi (47%), followed by wood-decaying fungi (20.14%) and soil saprotrophs (18.37%).

3.2. Macrofungal Types

The most significant genera of Agarics accounted for 69.26% of the identified species, followed by boletes, larger ascomytetes, and polyporoid fungi, accounting for 9.89%, 6.36%, and 6.01% of the identified species, respectively. In contrast, hydnaceous and cantharelloid fungi were less abundant, accounting for 1.06% and 0.71%, respectively (see Figure 3). For more detailed information, see Appendix B. For images of some species, see Appendix A.

3.3. Analysis of Dominant Families and Genera

Among the identified species, there were 9 dominant families (number of species ≥10 species) of macrofungi (Table 2). The Russulaceae was the most diverse family. In addition, 53 families contained less than 10 species, accounting for 85.48% of the families and 48.06% of the identified species (Appendix B).
Among the identified species, there were 15 dominant genera (number of species ≥ 5 species) of macrofungi (Table 3). The Amanita, Lactarius, and Russula were the most diverse genera. In addition, 34 genera contained 2–4 species, accounting for 29.31% of the genera and 29.68% of the identified species; 67 of the genera contained only 1 species, accounting for 57.76% of the genera and 23.67% of the identified species (Appendix B).

3.4. Forest Type and Species Composition

The community of macrofungi was different among the five forest types (Figure 4). The species richness increased from E (18 species, 6.36%) < C (35 species, 12.37%) < D (49 species, 17.31%) < B (86 species, 30.39%) < A (142 species, 50.18%). The Lactarius (13 species), Amanita (12 species), Coprinellus (10 species), and Russula (7 species) were the most species-rich genera in forest type A. The Russula (6 species) and Gymnopilus (4 species) were the most species-rich genera in forest type B. The Gymnopus (4 species) and Suillus (4 species) were the most species-rich genera in forest type C. The Russula (8 species), Amanita (7 species), and Mycena (4 species) were the most species-rich genera in forest type D. Finally, the Gymnopus (2 species), Helvella (2 species), and Hydnellum (2 species) were the relatively abundant genera in forest type E. More detailed information is shown in Appendix B.

3.5. Cumulative Abundance of Macrofungi in Five Forest Types

The accumulation curves for the species identified in the five forests show a steady increase with more samplings (Figure 5). We reached saturation of macrofungi richness after 150 surveys. The species accumulation curves of A (Q. mongolica forest) and B (broad-leaved forest) showed relatively steep upward slopes and produced higher macrofungi abundance values than the other forests. Nevertheless, forest type A (Q. mongolica forest) obtained the highest macrofungi diversity values.
Two genera (Clitocybe and Tricholoma) were shared in five forest types, but no species were shared. The unique species (found only in 1 forest) increased from E < C < D < B < A and consisted of 13, 22, 31, 50, and 104 fungal species, respectively (Figure 6). Forest type A shared 27 species with B, 7 species with C, 11 species with D, and 2 species with E. Forest type B shared six species with C, eleven species with D, and three species with E. Forest type C shared three species with D and three species with E. The Gymnopus densilamellatus Antonín, Ryoo & Ka, and Suillus grevillei (Klotzsch) Singer only appeared in E and C. The S. luteus (L.) Roussel only appeared in D and C; Helvella crispa (Scop.) Fr. only appeared in B and E. The Amanita oberwinklerana Zhu L. Yang & Yoshim., Amanita orsonii Ash. Kumar & T.N. Lakh., Amanita virosa Bertill., Boletus edulis Bull., Phellinus pomaceus (Pers.) Maire, Russula paludosa Britzelm., and Tricholoma sejunctum (Sowerby) Quél., only appeared in A and D. The Agaricus moelleri Wasser, Gymnopus dryophilus (Bull.) Murrill, Pluteus leoninus (Schaeff.) P. Kumm., and Rhodocollybia butyracea (Bull.) Lennox only appeared in A and C.
The species richness increased from E < C < D < B < A (Table 4). Broad-leaved forests A and B, with the highest richness indices of 7.4023 and 5.4832, respectively, accounted for 80.57% of the total species. Among them, 142 species were found in forest type A, accounting for 50.18% of the total species. This indicates that the broadleaf forest was the main habitat of macrofungi in the area, especially regarding the Q. mongolica forest. Mixed forests C and D, with richness indices of 2.8296 and 4.6509, contained 84 species, accounting for 29.68% of the total species. However, we found that the species abundance was higher in forest type D (49 species) than in forest type C (35 species), indicating that macrofungal species are associated with Q. mongolica. In P. koraiensis forest E, with the smallest species richness index of 2.286, we only found 18 species, accounting for 6.36% of the total species. This indicates that P. koraiensis forests can only provide habitats for a few fungal species.

3.6. Functional Diversity of Macrofungal Communities

The main functional groups were ectomycorrhizal fungi (EM), wood-decaying fungi (WS), and soil saprotroph (SS). The EM (133 species, 47.0%), WS (57 species, 20.14%), SS (52 species, 18.37%), and LS (38 species, 13.43%) increased from coniferous forest (E) < mixed coniferous forest (C, D) < broadleaf forest (A, B). EM fungi were most abundant in forest type A (Table 5). The highest content of EM fungi was Amanita, Cortinarius, Lactarius, and Russula. The most common WS were Pleurotus and Polyporus. The highest occurrence of SS was Agaricus, Entoloma, and Hygrocybe. The LS, Clitocybe, Gymnopus, Mycena, and Pluteus, showed the highest occurrence.

3.7. CCA Analysis of Macrofungal Communities and Selected Environmental Factors

We performed a canonical correspondence analysis (CCA) for the 130 ectomycorrhizal fungi (EM) species recorded in the 5 forest types. The variables included Q. mongolica content, effective soil nitrogen, soil available phosphorus, soil available potassium, soil organic matter, soil pH, soil temperature, air temperature, soil water content, effective soil nitrogen, and air relative humidity. The CCA results show that all samples were roughly separated into five groups according to their corresponding locations. Eigenvalue axis 1 (0.8963) is higher than axis 2 (0.7955), with a cumulative contribution of 28.8% and 25.57%, respectively. Of all the variables, the Q. mongolica content and soil moisture content were the most significant factors influencing the EM fungi. Many EM fungi (e.g., Amanita, Cortinarius, Lactarius) positively correlate with Q. mongolica and soil water (Figure 7).

4. Discussion

This study is the first systematic survey of macrofungal diversity in Wunvfeng National Forest Park, Ji’an, China. We divided the forests into five main types: Q. mongolica forests (A), mixed broad-leaved forests (B), artificial P. koraiensis forests (E), and mixed forests (C, D). This enabled us to analyze the composition of macrofungi according to the relative content change of Q. mongolica in different forest types. The results show differences in species richness and diversity among forest types with different relative contents of Q. mongolica. The species richness increases with the relative content of Q. mongolica. Forest types with a high cover of Q. mongolica may provide a stable environment for the growth of macrofungi [47]. More importantly, Quercus is the main host plant of EM fungi [48], such as Lactarius [49,50], Amanita [51], Russula [52], and Cortinarius [53]. Our results reveal that the EM fungi are mainly distributed in the Q. mongolica forest. Most EM fungi had a significant positive correlation with Q. mongolica content (Figure 7), especially Amanita, Cortinarius, and Lactarius. In addition, we found that 11 species are shared in forest types A and D (e.g., Amanita ibotengutake T. Oda, C. Tanaka & Tsuda, Amanita oberwinklerana Zhu L. Yang & Yoshim, Amanita orsonii Ash. Kumar & T.N. Lakh., and Amanita virosa Bertill). However, they are not found in the P. koraiensis forest. These species may be associated with Q. mongolica (Figure 7, Ama7, Ama8, Ama9, Ama16), because the macrofungal communities change accordingly with the forest’s succession [54]. Therefore, these macrofungi shared in forest types D and A are likely to be in the early stages that develop from spore banks present in the soil [55].
The species richness of P. koraiensis forests is the lowest in our study. We only found 18 species. Theoretically, species richness may be similar between Q. mongolica and P. koraiensis forests because the EM fungi in temperate forests are significantly associated with Quercus and Pinus [56]. However, we only observed ten species of EM fungi in P. koraiensis forest (E) (e.g., Hydnellum aurantiacum (Batsch) P. Karst., Hydnellum peckii Banker, and Tricholoma matsutake (S. Ito & S. Imai) Singer). Our results differ from those of Gao [57], who found more EM fungi in P. koraiensis forests (aged < 150 years). On the one hand, EM fungi may need more time to form a stable symbiosis with the host plants [58]; on the other hand, the exotic trees have difficulty developing long-lasting symbiotic relationships with local EM fungi [59].
In our study, wood-dwelling fungi (57 species) are also a critical taxon that is mainly distributed in the Q. mongolica and mixed broad-leaved forests and grows on larger diameter Q. mongolica fallen wood (e.g., Armillaria gallica Marxm. & Romagn. and Neolentinus cyathiformis (Schaeff.) Della Magg. & Trassin). The wood-dwelling macrofungi may be related to forest type, as they tend to favor specific forest types under similar climatic conditions. In general, these combinations are determined by fungi closely related to the dominant tree, mainly because their enzymes have adapted to wood with different chemical and physical properties [60]. Another reason may be that large logs that provide a larger surface area have a greater chance of being colonized by fungal spores and mycelium than small logs. Species that produce large fruiting bodies also require more space [61]. Furthermore, we only found a few fallen trees in the Q. mongolica and mixed broadleaved forests; we found no fallen trees in the P. koraiensis forest, which is another factor that might affect fungal assemblage. The amount of deadwood also affects the macrofungal assemblage, which previous authors highlighted as the most crucial microhabitat in the forest [62,63]. The diversity of woody macrofungi strongly depends on the presence and amount of deadwood [64,65].
Saprophytic soil fungi (52 species) rely mainly on the decomposition of soil organic matter for nutrients, and they tend to prefer specific forest types under similar climatic conditions. Generally, the deciduous leaves of broad-leaved trees are more conducive to soil organic matter accumulation than coniferous forests [66]. The forest types with high soil organic matter have more opportunities to be colonized by fungal spores and mycelium [67]. Moreover, we only found thicker deciduous leaves in the Q. mongolica and mixed broad-leaved forests, affecting the grass rot fungal assemblage because litter saprotroph fungi strongly depend on deciduous leaves’ presence and volume [68].
The composition of fungi is also influenced and constrained by soil environmental variables [69,70]. These include soil moisture [71], soil pH [72], soil nutrients [73] and soil total C [74]. We analyzed the correlation between the main functional groups (ectomycorrhizal fungi) and selected environmental factors. The results showed that most ectomycorrhizal fungi are closely related to soil water content, especially Amanita, Cortinarius, Lactarius, and Russula (Figure 7). This result suggests that specific fungal communities respond to soil parameters differently [75,76,77]. Previous studies have shown that soil moisture is one factor that regulates the composition of the ectomycorrhizal fungi community [78,79,80,81]. Hydraulic lift contributes to maintaining EM fungi roots’ integrity and viability of extraradical hyphae [82]; further, EM fungi take up water and organic and inorganic nutrients from the soil via the extraradical hyphae and translocate these to colonized tree roots, receiving carbohydrates from the host in return [83]. This may be an important reason why most ectomycorrhizal fungi prefer forest types with relatively high soil water content.
This study with three years of species data is a small contribution that allows us to understand the distribution of fungal species in forest types with the different covers of Q. mongolica. The Wunvfeng National Forest Park has a strict protection policy for animals and plants, including soil protection. Thus, our soil data (with permission) are from July to September 2020 only. Nevertheless, our results illuminate the potential links between community composition and environmental factors because the July–September 2020 species data include almost all our species.

5. Conclusions

The Q. mongolica forests we analyzed are rich in macrofungal species. Although our data are based on only three years of sampling, we conclude that, as Q. mongolica increases in the forest, the abundance and diversity of macrofungal taxa also increase. We also observed that most EM species favored forest types with high Q. mongolica content (e.g., Amanita, Cortinarius, Lactarius, and Russula), indicating that some EM fungal communities are closely associated with Q. mongolica. We call for further studies to support this claim. In addition, we have only found Tricholoma matsutake (S. Ito & S. Imai) Singer in P. koraiensis forests, which is classified as an endangered species and considered an ectomycorrhizal fungus that is closely associated with Pinus trees. Therefore, according to our research, maintaining P. koraiensis forests is beneficial for conserving endangered species. However, deliberate conservation of Q. mongolica forests would be more useful for maintaining the diversity of macrofungal communities. Whether P. koraiensis affects other fungal species will need to be monitored over 3–5 years.

Author Contributions

Conceptualization, Y.T.; experimental design and methodology, Y.T. and B.Z.; performance of practical work, Y.T., J.H., Y.W. and G.Z.; statistical analyses, Y.T., N.R., Z.Z. and Z.Q.; validation, B.Z.; writing—original draft preparation, Y.T.; writing—review and editing, B.Z.; supervision, B.Z.; project administration, B.Z.; funding acquisition, B.Z. and Y.L. All authors have read and agreed to the published version of the manuscript.

Funding

We would like to express our gratitude to all the people who gave help to this study. This research supported the National Natural Science Foundation of China (31970020); the Key Project on R&D of Ministry of Science and Technology (No. 2018YFE0107800); Jilin Province Science and Technology Development Plan Project (20190201026JC, 20190201256JC); The National Key R&D of Ministry of Science and Technology(2019YFD1001905-33); The Scientific Production and Construction Crops (No. 2021AB004).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors state no conflict of interest.

Appendix A. Photos of Some Species

Larger Ascomycetes.
Figure A1. (A) Leotia lubrica; (B) Helvella elastica; (C) Sowerbyella rhenana; (D) Spathularia flavida; (E) Ophiocordyceps nutans; (F) Xylaria hypoxylon; Bars: 1 cm.
Figure A1. (A) Leotia lubrica; (B) Helvella elastica; (C) Sowerbyella rhenana; (D) Spathularia flavida; (E) Ophiocordyceps nutans; (F) Xylaria hypoxylon; Bars: 1 cm.
Jof 08 00098 g0a1
Coral fungi.
Figure A2. (A) Clavulinopsis sulcata; (B) Ramaria stricta; (C) R. cokeri; (D) R. sanguinipes; (E) R. fennica; (F) Artomyces pyxidatus; Bars: 1 cm.
Figure A2. (A) Clavulinopsis sulcata; (B) Ramaria stricta; (C) R. cokeri; (D) R. sanguinipes; (E) R. fennica; (F) Artomyces pyxidatus; Bars: 1 cm.
Jof 08 00098 g0a2
Agarics.
Figure A3. (A) Tricholoma matsutake; (B) Russula furcata; (C) Clitocybe fasciculata; (D) Amanita orsonii; (E) Hygrophorus russula; (F) Galerina marginata; Bars: 1 cm.
Figure A3. (A) Tricholoma matsutake; (B) Russula furcata; (C) Clitocybe fasciculata; (D) Amanita orsonii; (E) Hygrophorus russula; (F) Galerina marginata; Bars: 1 cm.
Jof 08 00098 g0a3
Boletes.
Figure A4. (A) Pulveroboletus macrosporus; (B) Tylopilus felleus; (C) Boletus edulis; (D) Chalciporus piperatus; (E) Butyriboletus roseoflavus; (F) Suillus grevillei; Bars: 1 cm.
Figure A4. (A) Pulveroboletus macrosporus; (B) Tylopilus felleus; (C) Boletus edulis; (D) Chalciporus piperatus; (E) Butyriboletus roseoflavus; (F) Suillus grevillei; Bars: 1 cm.
Jof 08 00098 g0a4
Polyporoid fungi.
Figure A5. (A) Gloeostereum incarnatum; (B) Phellinus pomaceus; (C) Inonotus hispidus; (D) Polyporus umbellatus; (E) Lentinus arcularius; (F) Laetiporus sulphureus; Bars: 1 cm.
Figure A5. (A) Gloeostereum incarnatum; (B) Phellinus pomaceus; (C) Inonotus hispidus; (D) Polyporus umbellatus; (E) Lentinus arcularius; (F) Laetiporus sulphureus; Bars: 1 cm.
Jof 08 00098 g0a5
Jelly fungi and Hydnaceous fungi.
Figure A6. (A) Craterellus cornucopioides; (B) Tremella fuciformis; (C) Dacrymyces yunnanensis; (D) D. chrysospermus; (E,F) Hydnellum aurantiacum; Bars: 1 cm.
Figure A6. (A) Craterellus cornucopioides; (B) Tremella fuciformis; (C) Dacrymyces yunnanensis; (D) D. chrysospermus; (E,F) Hydnellum aurantiacum; Bars: 1 cm.
Jof 08 00098 g0a6

Appendix B. Macrofungi were collected in five forest types of Wunvfeng National Forest Park

SpeciesFamilyGeneraABCDEFNMLCategoriesSNGenBank Number
Agaricus arvensis Schaeff.AgaricaceaeAgaricus 4SSAgaricsHMJAU60588
Agaricus dulcidulus SchulzerAgaricaceaeAgaricus 2SSAgaricsHMJAU60589
Agaricus moelleri WasserAgaricaceaeAgaricus 3SSAgaricsHMJAU60590
Agaricus placomyces PeckAgaricaceaeAgaricus 1SSAgaricsHMJAU60591
Agaricus semotus Fr.AgaricaceaeAgaricus 2SSAgaricsHMJAU60592
Agaricus subrufescens PeckAgaricaceaeAgaricus 1SSAgaricsHMJAU60593
Agrocybe arvalis (Fr.) SingerStrophariaceaeAgrocybe 3SSAgaricsHMJAU60594
Agrocybe erebia (Fr.) Kühner ex SingeStrophariaceaeAgrocybe 2SSAgaricsHMJAU60595
Agrocybe praecox (Pers.) FayodStrophariaceaeAgrocybe 6SSAgaricsHMJAU60596
Amanita altipes Zhu L. Yang, M. Weiss & Oberw.AmanitaceaeAmanita 1EMAgaricsHMJAU60597
Amanita chepangiana Tulloss & BhandaryAmanitaceaeAmanita 1EMAgaricsHMJAU60598
Amanita excelsa (Fr.) Bertill.AmanitaceaeAmanita 1EMAgaricsHMJAU60599
Amanita flavipes S. ImaiAmanitaceaeAmanita 2EMAgaricsHMJAU60600
Amanita fuliginea HongoAmanitaceaeAmanita 2EMAgaricsHMJAU60601
Amanita hemibapha (Berk. & Broome) Sacc.AmanitaceaeAmanita 2EMAgaricsHMJAU60602
Amanita ibotengutake T. Oda, C. Tanaka & TsudaAmanitaceaeAmanita 6EMAgaricsHMJAU60603
Amanita oberwinklerana Zhu L. Yang & Yoshim.AmanitaceaeAmanita 3EMAgaricsHMJAU60604
Amanita orsonii Ash. Kumar & T.N. Lakh.AmanitaceaeAmanita 5EMAgaricsHMJAU60605
Amanita pallidocarnea (Höhn.) BoedijnAmanitaceaeAmanita 2EMAgaricsHMJAU60606
Amanita pallidorosea P. Zhang & Zhu L. YangAmanitaceaeAmanita 2EMAgaricsHMJAU60607
Amanita rimosa P. Zhang & Zhu L.AmanitaceaeAmanita 1EMAgaricsHMJAU60608
Amanita rubescens Pers.AmanitaceaeAmanita 2EMAgaricsHMJAU60609
Amanita subglobosa Zhu L. YangAmanitaceaeAmanita 1EMAgaricsHMJAU60610
Amanita vaginata (Bull.) Lam.AmanitaceaeAmanita 3EMAgaricsHMJAU60611
Amanita virosa Secr.AmanitaceaeAmanita 4EMAgaricsHMJAU60612
Ampulloclitocybe clavipes (Pers.) Redhead, Lutzoni, Moncalvo & VilgalysHygrophoraceaeAmpulloclitocybe 4LSAgaricsHMJAU60613
Armillaria gallica Marxm. & Romagn.PhysalacriaceaeArmillaria 15WSAgaricsHMJAU60614OL891486
Armillaria mellea (Vahl) P. Kumm.PhysalacriaceaeArmillaria 1WSAgaricsHMJAU60615
Artomyces pyxidatus (Pers.) JülichAuriscalpiaceaeArtomyces 7WSCoral fungiHMJAU60616
Bjerkandera adusta (Willd.) P. Karst.PhanerochaetaceaeBjerkandera 1WSPolyporoid fungiHMJAU60617
Boletus aereus Bull.BoletaceaeBoletus 2EMBoletesHMJAU60618
Boletus edulis Bull.BoletaceaeBoletus 4EMBoletesHMJAU60619
Bothia castanella (Peck) Halling, T.J. Baroni & Manfr. BinderBoletaceaeBothia 2EMBoletesHMJAU60620
Bulgaria inquinans (Pers.) Fr.PhacidiaceaeBulgaria 1WSLarger AscomytetesHMJAU60621
Butyriboletus regius D. Arora & J.L. FrankBoletaceaeButyriboletus 2EMBoletesHMJAU60622OL891490
Butyriboletus roseoflavus (Hai B. Li & Hai L. Wei) D. Arora & J.L. FrankBoletaceaeButyriboletus 3EMBoletesHMJAU60623OL891497
Calocybe persicolor (Fr.) SingerLyophyllaceaeCalocybe 3SSAgaricsHMJAU60624
Chalciporus piperatus (Bull.) BatailleBoletaceaeChalciporus 1EMBoletesHMJAU60625
Chroogomphus helveticus (Singer) M.M. MoserGomphidiaceaeChroogomphus 4EMAgaricsHMJAU60626OL891485
Clavaria fragilis Holmsk.ClavariaceaeClavaria 1SSCoral fungiHMJAU60627
Clavulinopsis corniculata (Schaeff.) CornerClavariaceaeClavulinopsis 1SSCoral fungiHMJAU60628
Clavulinopsis sulcata OvereemClavariaceaeClavulinopsis 10SSCoral fungiHMJAU60629
Clitocybe fasciculata H.E. Bigelow & A.H. Sm.TricholomataceaeClitocybe 2LSAgaricsHMJAU60630
Clitocybe geotropa (Bull.) Quél.TricholomataceaeClitocybe 1LSAgaricsHMJAU60631
Clitocybe gibba (Pers.) P. Kumm.TricholomataceaeClitocybe 4LSAgaricsHMJAU60632
Clitocybe odora (Bull.) P. Kumm.TricholomataceaeClitocybe 1LSAgaricsHMJAU60633
Clitocybe subditopoda PeckTricholomataceaeClitocybe 10LSAgaricsHMJAU60634
Coltricia crassa Y.C. DaiHymenochaetaceaeColtricia 2EMPolyporoid fungiHMJAU60635
Coltricia strigosipes CornerHymenochaetaceaeColtricia 1EMPolyporoid fungiHMJAU60636
Coprinellus disseminatus (Pers.) J.E. LangePsathyrellaceaeCoprinellus 8SSAgaricsHMJAU60637
Coprinellus radians (Desm.) Vilgalys, Hopple & Jacq. JohnsonPsathyrellaceaeCoprinellus 5SSAgaricsHMJAU60638
Coprinus comatus (O.F. Müll.) Pers.AgaricaceaeCoprinus 1DSAgaricsHMJAU60639
Cordyceps militaris Cordyceps militaris (L.) Fr.CordycipitaceaeCordyceps 3EILarger AscomytetesHMJAU60640
Cortinarius anomalus (Fr.) Fr.CortinariaceaeCortinarius 2EMAgaricsHMJAU60641OL891464
Cortinarius armillatus (Fr.) Fr.CortinariaceaeCortinarius 4EMAgaricsHMJAU60642OL891465
Cortinarius balaustinus Fr.CortinariaceaeCortinarius 3EMAgaricsHMJAU60643
Cortinarius bivelus (Fr.) Fr.CortinariaceaeCortinarius 5EMAgaricsHMJAU60644OL891467
Cortinarius caperatus (Pers.) Fr.CortinariaceaeCortinarius 1EMAgaricsHMJAU60645OL891466
Cortinarius cotoneus Fr.CortinariaceaeCortinarius 3EMAgaricsHMJAU60646OL891468
Cortinarius ectypus J. FavreCortinariaceaeCortinarius 2EMAgaricsHMJAU60647
Cortinarius flammeouraceus Niskanen, Kytov., Liimat., Ammirati & DimaCortinariaceaeCortinarius 4EMAgaricsHMJAU60648OL891470
Cortinarius hesleri Ammirati, Niskanen, Liimat. & MathenyCortinariaceaeCortinarius 1EMAgaricsHMJAU60649
Cortinarius pholideus (Lilj.) Fr.CortinariaceaeCortinarius 3EMAgaricsHMJAU60650OL891469
Cortinarius sanguineus (Wulfen) GrayCortinariaceaeCortinarius 2EMAgaricsHMJAU60651
Cortinarius subbalaustinus Rob. HenryCortinariaceaeCortinarius 1EMAgaricsHMJAU60652
Cortinarius torvus (Fr.) Fr.CortinariaceaeCortinarius 1EMAgaricsHMJAU60653
Cotylidia diaphana (Cooke) LentzRickenellaceaeCotylidia 4SSJelly fungiHMJAU60654
Craterellus cornucopioides (L.) Pers.HydnaceaeCraterellus 1EMCantharelloidHMJAU60655
Crepidotus applanatus (Pers.) P. Kumm.CrepidotaceaeCrepidotus 1WSAgaricsHMJAU60656
Crepidotus malachius Sacc.CrepidotaceaeCrepidotus 5WSAgaricsHMJAU60657
Cyclocybe erebia (Fr.) Vizzini & MathenyTubariaceaeCyclocybe 2SSAgaricsHMJAU60658
Cystoderma granulosum (Batsch) FayodAgaricaceaeCystoderma 4SSAgaricsHMJAU60659
Dacrymyces chrysospermus Berk. & M.A. CurtisDacrymycetaceaeDacrymyces 3WSJelly fungiHMJAU60660
Dacrymyces yunnanensis B. Liu & L. FanDacrymycetaceaeDacrymyces 6WSJelly fungiHMJAU60661
Daldinia concentrica (Bolton) Ces. & De Not.HypoxylaceaeDaldinia 5WSLarger AscomytetesHMJAU60662
Elmerina cladophora (Berk.) Bres.AuriculariaceaeElmerina 3WSPolyporoid fungiHMJAU60663
Elmerina hispida (Imazeki) Y.C. Dai & L.W. ZhouAuriculariaceaeElmerina 1WSPolyporoid fungiHMJAU60664
Entoloma abortivum (Berk. & M.A. Curtis) DonkEntolomataceaeEntoloma 2SSAgaricsHMJAU60665
Entoloma alboumbonatum HeslerEntolomataceaeEntoloma 2SSAgaricsHMJAU60666
Entoloma caespitosum W.M. ZhangEntolomataceaeEntoloma 5SSAgaricsHMJAU60667
Entoloma clypeatum (L.) P. Kumm.EntolomataceaeEntoloma 4SSAgaricsHMJAU60668
Entoloma holoconiotum (Largent & Thiers) Noordel. & Co-DavidEntolomataceaeEntoloma 4SSAgaricsHMJAU60669
Entoloma mediterraneense Noordel. & Hauskn.EntolomataceaeEntoloma 1SSAgaricsHMJAU60670
Entoloma rhodopolium (Fr.) P. Kumm.EntolomataceaeEntoloma 2SSAgaricsHMJAU60671
Entonaema liquescens MöllerHypoxylaceaeEntonaema 3WSLarger AscomytetesHMJAU60672
Favolus squamosus (Huds.) A. AmesPolyporaceaeFavolus 1WSPolyporoid fungiHMJAU60673
Flammulaster erinaceellus (Peck) WatlingTubariaceaeFlammulaster 6WSAgaricsHMJAU60674
Galerina helvoliceps (Berk. & M.A. Curtis) SingeHymenogastraceaeGalerina 4WSAgaricsHMJAU60675
Galerina marginata (Batsch) KühnerHymenogastraceaeGalerina 4WSAgaricsHMJAU60676
Geastrum triplex Jungh.GeastraceaeGeastrum 1LSGasteroid fungiHMJAU60677
Gerhardtia borealis (Fr.) Contu & A. OrtegaLyophyllaceaeGerhardtia 3SSAgaricsHMJAU60678
Gerronema nemorale Har. Takah.MarasmiaceaeGerronema 1WSAgaricsHMJAU60679
Gloeostereum incarnatum S. Ito & S. ImaiCyphellaceaeGloeostereum 4WSPolyporoid fungiHMJAU60680
Gomphidius maculatus (Scop.) Fr.GomphidiaceaeGomphidius 2EMCantharelloidHMJAU60681
Gymnopilus junonius (Fr.) P.D. OrtonHymenogastraceaeGymnopilus 3WSAgaricsHMJAU60682
Gymnopilus penetrans (Fr.) MurrillHymenogastraceaeGymnopilus 2WSAgaricsHMJAU60683
Gymnopilus suberis (Maire) SingerHymenogastraceaeGymnopilus 6WSAgaricsHMJAU60684
Gymnopus alnicola J.L. Mata & HallingOmphalotaceaeGymnopus 4LSAgaricsHMJAU60685
Gymnopus confluens (Pers.) Antonín, Halling & Noordel.OmphalotaceaeGymnopus 14LSAgaricsHMJAU60686OL884222
Gymnopus densilamellatus Antonín, Ryoo & KaOmphalotaceaeGymnopus 25LSAgaricsHMJAU60687OL884223
Gymnopus dryophilus (Bull.) MurrillOmphalotaceaeGymnopus 30LSAgaricsHMJAU60688OL891463
Gymnopus gibbosus (Corner) A.W. Wilson, Desjardin & E. HorakOmphalotaceaeGymnopus 7LSAgaricsHMJAU60689OL884224
Gymnopus loiseleurietorum (M.M. Moser, Gerhold & Tobies) Antonín & Noordel.OmphalotaceaeGymnopus 7LSAgaricsHMJAU60690
Harrya chromapes (Frost) Halling, Nuhn, Osmundson & Manfr.BoletaceaeHarrya 1EMBoletesHMJAU60691OL891492
Hebeloma birrus (Fr.) GilletHymenogastraceaeHebeloma 6EMAgaricsHMJAU60692OL891483
Heliocybe sulcata (Berk.) Redhead & GinnsGloeophyllaceaeHeliocybe 2WSAgaricsHMJAU60693
Helvella crispa (Scop.) Fr.HydnaceaeHelvella 2EMLarger AscomytetesHMJAU60694
Helvella elastica Bull.HelvellaceaeHelvella 1EMLarger AscomytetesHMJAU60695
Helvella macropus (Pers.) P. Karst.HelvellaceaeHelvella 3EMLarger AscomytetesHMJAU60696
Hemistropharia albocrenulata (Peck) Jacobsson & E. Larss.TubariaceaeHemistropharia 1SSAgaricsHMJAU60697
Hericium erinaceus (Bull.) Pers.HericiaceaeHericium 1WSHydnaceous fungiHMJAU60698
Humaria hemisphaerica (F.H. Wigg.) FuckelPyronemataceaeHumaria 1EMLarger AscomytetesHMJAU60699
Hydnellum aurantiacum (Batsch) P. Karst.BankeraceaeHydnellum 2EMHydnaceous fungiHMJAU60700OL891471
Hydnellum peckii BankerBankeraceaeHydnellum 2EMHydnaceous fungiHMJAU60701OL891487
Hygrocybe cantharellus (Schwein.) MurrillHygrophoraceaeHygrocybe 5SSAgaricsHMJAU60702
Hygrocybe chlorophana (Fr.) WünscheHygrophoraceaeHygrocybe 5SSAgaricsHMJAU60703
Hygrocybe coccinea (Schaeff.) P. Kumm.HygrophoraceaeHygrocybe 4SSAgaricsHMJAU60704
Hygrocybe coccineocrenata.D. Orton) M.M. MoserHygrophoraceaeHygrocybe 5SSAgaricsHMJAU60705
Hygrocybe miniata (Fr.) P. Kumm.HygrophoraceaeHygrocybe 4SSAgaricsHMJAU60706
Hygrocybe reidii KühnerHygrophoraceaeHygrocybe 1SSAgaricsHMJAU60707
Hygrophoropsis aurantiaca (Wulfen) MaireHygrophoropsidaceaeHygrophoropsis 7LSAgaricsHMJAU60708OL891484
Hygrophorus conicus (Schaeff.) Fr.HygrophoraceaeHygrophorus 6EMAgaricsHMJAU60709
Hygrophorus nemoreus (Pers.) Fr.HygrophoraceaeHygrophorus 9EMAgaricsHMJAU60710
Hygrophorus pudorinus (Fr.) Fr.HygrophoraceaeHygrophorus 1EMAgaricsHMJAU60711
Hygrophorus russula (Schaeff. ex Fr.) KauffmanHygrophoraceaeHygrophorus 2EMAgaricsHMJAU60712
Hypholoma capnoides (Fr.) P. Kumm.StrophariaceaeHypholoma 2WSAgaricsHMJAU60713
Hypholoma sublateritium (Fr.) Quél.StrophariaceaeHypholoma 4WSAgaricsHMJAU60714
Infundibulicybe geotropa (Bull.) HarmajaTricholomataceaeInfundibulicybe 2SSAgaricsHMJAU60715
Infundibulicybe gibba (Pers.) HarmajaTricholomataceaeInfundibulicybe 2SSAgaricsHMJAU60716
Inocybe assimilata Britzelm.InocybaceaeInocybe 2EMAgaricsHMJAU60717
Inocybe asterospora Quél.InocybaceaeInocybe 1EMAgaricsHMJAU60718
Inocybe suaveolens D.E. StuntzInocybaceaeInocybe 2EMAgaricsHMJAU60719OL891472
Inonotus hispidus (Bull.) P. Karst.HymenochaetaceaeInonotus 3WSPolyporoid fungiHMJAU60720
Laccaria amethystina CookeHydnangiaceaeLaccaria 4EMAgaricsHMJAU60721
Laccaria laccata (Scop.) CookeHydnangiaceaeLaccaria 4EMAgaricsHMJAU60722
Lactarius albidocinereus X.H. Wang, S.F. Shi & T. BauRussulaceaeLactarius 2EMAgaricsHMJAU60723OL891473
Lactarius brunneoviolascens BonRussulaceaeLactarius 1EMAgaricsHMJAU60724
Lactarius conglutinatus X.H. WangRussulaceaeLactarius 6EMAgaricsHMJAU60725
Lactarius deterrimus GrögerRussulaceaeLactarius 5EMAgaricsHMJAU60726
Lactarius flavidus Boud.RussulaceaeLactarius 1EMAgaricsHMJAU60727
Lactarius glyciosmus (Fr.) Fr.RussulaceaeLactarius 1EMAgaricsHMJAU60728
Lactarius hirtipes J.Z. YingRussulaceaeLactarius 3EMAgaricsHMJAU60729
Lactarius lilacinus Fr.RussulaceaeLactarius 3EMAgaricsHMJAU60730
Lactarius pallidus Pers.RussulaceaeLactarius 2EMAgaricsHMJAU60731
Lactarius piperatus (L.) Pers.RussulaceaeLactarius 1EMAgaricsHMJAU60732
Lactarius proximellus Beardslee & Burl.RussulaceaeLactarius 1EMAgaricsHMJAU60733
Lactarius pubescens Fr.RussulaceaeLactarius 1EMAgaricsHMJAU60734
Lactarius subvellereus PeckRussulaceaeLactarius 2EMAgaricsHMJAU60735
Lactarius torminosus (Schaeff.) Pers.RussulaceaeLactarius 2EMAgaricsHMJAU60736
Lactarius trivialis (Fr.) Fr.RussulaceaeLactarius 1EMAgaricsHMJAU60737OL891474
Lactarius vietus (Fr.) Fr.RussulaceaeLactarius 2EMAgaricsHMJAU60738
Lactarius volemus (Fr.) Fr.RussulaceaeLactarius 3EMAgaricsHMJAU60739
Lactarius zonarius (Bull.) Fr.RussulaceaeLactarius 2EMAgaricsHMJAU60740
Lactifluus bertillonii (Neuhoff ex Z. Schaef.) VerbekenRussulaceaeLactifluus 1EMAgaricsHMJAU60741OL891489
Lactifluus pilosus (Verbeken, H.T. Le & Lumyong) VerbekenRussulaceaeLactifluus 1EMAgaricsHMJAU60742
Laetiporus sulphureus (Bull.) MurrillLaetiporaceaeLaetiporus 2WSPolyporoid fungiHMJAU60743
Leccinum aurantiacum (Bull.) GrayBoletaceaeLeccinum 2EMBoletesHMJAU60744
Leccinum scabrum (Bull.) GrayBoletaceaeLeccinum 1EMBoletesHMJAU60745
Leccinum versipelle (Fr. & Hök) SnellBoletaceaeLeccinum 1EMBoletesHMJAU60746
Lentinellus ursinus (Fr.) KühnerAuriscalpiaceaeLentinellus 6WSAgaricsHMJAU60747
Lentinus edodes (Berk.) SingerOmphalotaceaeLentinus 2WSAgaricsHMJAU60748
Lentinus sajor-caju (Fr.) Fr.PolyporaceaeLentinus 6WSAgaricsHMJAU60749OL891475
Leotia lubrica (Scop.) Pers.LeotiaceaeLeotia 4SSLarger AscomytetesHMJAU60750
Lepiota castanea Quél.AgaricaceaeLepiota 5LSAgaricsHMJAU60751
Lepiota cristata (Bolton) P. Kumm.AgaricaceaeLepiota 4LSAgaricsHMJAU60752
Lepista nuda (Bull.) CookeTricholomataceaeLepista 9SSAgaricsHMJAU60753
Lepista personata (Fr.) CookeTricholomataceaeLepista 1SSAgaricsHMJAU60754
Leucocybe connata (Schumach.) Vizzini, P. Alvarado, G. Moreno & ConsiglioLyophyllaceaeLeucocybe 3EMAgaricsHMJAU60755
Lycoperdon mammiforme Pers.LycoperdaceaeLycoperdon 8SSAgaricsHMJAU60756
Lycoperdon perlatum Pers.LycoperdaceaeLycoperdon 5SSGasteroid fungiHMJAU60757
Lycoperdon umbrinum Pers.LycoperdaceaeLycoperdon 3SSGasteroid fungiHMJAU60758
Lyophyllum decastes (Fr.) SingerLyophyllaceaeLyophyllum 3EMAgaricsHMJAU60759
Lyophyllum infumatum (Bres.) KühnerLyophyllaceaeLyophyllum 1EMAgaricsHMJAU60760OL891476
Macrocystidia cucumis (Pers.) Joss.MacrocystidiaceaeMacrocystidia 2SSAgaricsHMJAU60761
Marasmius confertus Berk. & BroomeMarasmiaceaeMarasmius 2LSAgaricsHMJAU60762
Marasmius maximus HongoMarasmiaceaeMarasmius 8LSAgaricsHMJAU60763
Marasmius nigrodiscus (Peck) HallingMarasmiaceaeMarasmius 2LSAgaricsHMJAU60764
Marasmius occultatiformis Antonín, Ryoo & H.D. ShinMarasmiaceaeMarasmius 4LSAgaricsHMJAU60765
Marasmius siccus (Schwein.) Fr.MarasmiaceaeMarasmius 1LSAgaricsHMJAU60766
Megacollybia clitocyboidea R.H. Petersen, Takehashi & Nagas.MegacollybiaMegacollybia 4WSAgaricsHMJAU60767
Melanoleuca cognata (Huds.) Fr.TricholomataceaeMelanoleuca 1SSAgaricsHMJAU60768
Mucidula brunneomarginata Lj.N. Vassiljeva) R.H. PetersenPhysalacriaceaeMucidula 2WSAgaricsHMJAU60769
Mutinus caninus (Huds.) Fr.PhallaceaeMutinus 4LSGasteroid fungiHMJAU60770
Mycena galericulata (Scop.) GrayMycenaceaeMycena 5LSAgaricsHMJAU60771
Mycena haematopus (Pers.) P. Kumm.MycenaceaeMycena 3LSAgaricsHMJAU60772
Mycena pelianthina (Fr.) Quél.MycenaceaeMycena 1LSAgaricsHMJAU60773
Mycena polygramma (Bull.) GrayMycenaceaeMycena 2LSAgaricsHMJAU60774
Mycena pura (Pers.) P. Kumm.MycenaceaeMycena 4LSAgaricsHMJAU60775
Mycena roseocandida (Peck) Sacc.MycenaceaeMycena 1LSAgaricsHMJAU60776
Mycena sanguinolenta (Alb. & Schwein.) P. Kumm.MycenaceaeMycena 8LSAgaricsHMJAU60777
Mycena stylobates (Pers.) P. Kumm.MycenaceaeMycena 12LSAgaricsHMJAU60778
Neolentinus cyathiformis (Schaeff.) Della Magg. & Trassin.GloeophyllaceaeNeolentinus 15WSAgaricsHMJAU60779OL891477
Omphalina pyxidata (Bull.) Quél.TricholomataceaeOmphalina 3LSAgaricsHMJAU60780
Ophiocordyceps nutans (Pat.) G.H. Sung, J.M. Sung, Hywel-Jones & SpataforaOphiocordycipitaceaeOphiocordyceps 1EILarger AscomytetesHMJAU60781
Oudemansiella mucida (Schrad.) Höhn.PhysalacriaceaeOudemansiella 4WSAgaricsHMJAU60782
Paxillus involutus (Batsch) Fr.PaxillaceaePaxillus 2EMAgaricsHMJAU60783
Paxillus orientalis Gelardi, Vizzini, E. Horak & G. WuPaxillaceaePaxillus 1EMAgaricsHMJAU60784
Peziza domiciliana CookePezizaceaePeziza 3SSLarger AscomytetesHMJAU60785
Phallus tenuissimus T.H. Li, W.Q. Deng & B. LiuPhallaceaePhallus 2LSGasteroid fungiHMJAU60786
Phellinus pomaceus (Pers.) MaireHymenochaetaceaePhellinus 2WSPolyporoid fungiHMJAU60787
Pholiota aurivella (Batsch) P. Kumm.StrophariaceaePholiota 4WSAgaricsHMJAU60788
Pholiota squarrosoides (Peck) Sacc.StrophariaceaePholiota 3WSAgaricsHMJAU60789
Phylloporus yunnanensis N.K. Zeng, Zhu L. Yang & L.P. TangBoletaceaePhylloporus 2EMBoletesHMJAU60790
Phyllotopsis nidulans (Pers.) SingerPhyllotopsidaceaePhyllotopsis 7WSAgaricsHMJAU60791
Piptoporus soloniensis (Dubois) PilátFomitopsidaceaePiptoporus 2WSPolyporoid fungiHMJAU60792OL891488
Pleurotus citrinopileatus SingerPleurotaceaePleurotus 4WSAgaricsHMJAU60793
Pleurotus ostreatus (Jacq.) P. Kumm.PleurotaceaePleurotus 8WSAgaricsHMJAU60794OL891478
Pleurotus pulmonarius (Fr.) Quél.PleurotaceaePleurotus 2WSAgaricsHMJAU60795
Pluteus atromarginatus (Konrad) KühnerPluteaceaePluteus 2LSAgaricsHMJAU60796
Pluteus cervinus (Schaeff.) P. Kumm.PluteaceaePluteus 1LSAgaricsHMJAU60797
Pluteus hispidulus (Fr.) GilletPluteaceaePluteus 1LSAgaricsHMJAU60798
Pluteus leoninus (Schaeff.) P. KummPluteaceaePluteus 1LSAgaricsHMJAU60799
Pluteus phlebophorus (Ditmar) P. Kumm.PluteaceaePluteus 2LSAgaricsHMJAU60800
Pluteus pouzarianus SingerPluteaceaePluteus 2LSAgaricsHMJAU60801
Podoscypha nitidula (Berk.) Pat.PodoscyphaceaePodoscypha 3WSPolyporoid fungiHMJAU60802
Polyporus arcularius (Batsch) Fr.PolyporaceaePolyporus 10WSPolyporoid fungiHMJAU60803
Polyporus submelanopus H.J. Xue & L.W. ZhouPolyporaceaePolyporus 1WSPolyporoid fungiHMJAU60804
Polyporus umbellatus (Pers.) Fr.PolyporaceaePolyporus 4SSPolyporoid fungiHMJAU60805
Psathyrella delineata (Peck) A.H. Sm.PsathyrellaceaePsathyrella 1WSAgaricsHMJAU60806
Psathyrella typhae (Kalchbr.) A. Pearson & DennisPsathyrellaceaePsathyrella 4WSAgaricsHMJAU60807
Pseudolaccaria fellea (Peck) Vizzini, Matheny & Consiglio & M. MarchettiCallistosporiaceaePseudolaccaria 3WSAgaricsHMJAU60808
Pseudoplectania nigrella (Pers.) FuckelSarcosomataceaePseudoplectania 5SSLarger AscomytetesHMJAU60809
Pulveroboletus macrosporus G. Wu & Zhu L. YangBoletaceaePulveroboletus 1EMBoletesHMJAU60810
Ramaria cokeri R.H. PetersenGomphaceaeRamaria 2EMCoral fungiHMJAU60811
Ramaria fennica (P. Karst.) RickenGomphaceaeRamaria 1EMCoral fungiHMJAU60812
Ramaria marrii ScatesGomphaceaeRamaria 2EMCoral fungiHMJAU60813
Ramaria sanguinipes R.H. Petersen & M. ZangGomphaceaeRamaria 2EMCoral fungiHMJAU60814
Ramaria stricta (Pers.) Quél.GomphaceaeRamaria 3EMCoral fungiHMJAU60815
Rhodocollybia butyracea (Bull.) LennoxOmphalotaceaeRhodocollybia 12SSAgaricsHMJAU60816
Russula aeruginea Lindblad ex Fr.RussulaceaeRussula 3EMAgaricsHMJAU60817
Russula amoena Quél.RussulaceaeRussula 2EMAgaricsHMJAU60818
Russula cyanoxantha (Schaeff.) Fr.RussulaceaeRussula 1EMAgaricsHMJAU60819
Russula emetica (Schaeff.) Pers.RussulaceaeRussula 18EMAgaricsHMJAU60820
Russula foetens Pers.RussulaceaeRussula 3EMAgaricsHMJAU60821
Russula furcata Pers.RussulaceaeRussula 3EMAgaricsHMJAU60822
Russula grata Britzelm.RussulaceaeRussula 2EMAgaricsHMJAU60823
Russula lakhanpalii A. Ghosh, K. Das & R.P. BhattRussulaceaeRussula 2EMAgaricsHMJAU60824OL891479
Russula paludosa Britzelm.RussulaceaeRussula 6EMAgaricsHMJAU60825
Russula risigallina (Batsch) Sacc.RussulaceaeRussula 3EMAgaricsHMJAU60826
Russula rosea Pers.RussulaceaeRussula 4EMAgaricsHMJAU60827
Russula senecis S. ImaiRussulaceaeRussula 6EMAgaricsHMJAU60828
Russula sororia (Fr.) RomellRussulaceaeRussula 3EMAgaricsHMJAU60829
Russula veternosa Fr.RussulaceaeRussula 2EMAgaricsHMJAU60830
Russula vinosa LindbladRussulaceaeRussula 2EMAgaricsHMJAU60831
Russula virescens (Schaeff.) Fr.RussulaceaeRussula 1EMAgaricsHMJAU60832
Sarcodontia spumea (Sowerby) SpirinMeruliaceaeSarcodontia 3WSPolyporoid fungiHMJAU60833
Schizophyllum commune Fr.SchizophyllaceaeSchizophyllum 4WSAgaricsHMJAU60834
Scleroderma areolatum Ehrenb.SclerodermataceaeScleroderma 4EMGasteroid fungiHMJAU60835
Sowerbyella rhenana (Fuckel) J. MoravecPyronemataceaeSowerbyella 5EMLarger AscomytetesHMJAU60836
Spathularia flavida Pers.CudoniaceaeSpathularia 4SSLarger AscomytetesHMJAU60837
Stropharia rugosoannulata Farl. ex MurrillTubariaceaeStropharia 3SSAgaricsHMJAU60838
Suillus americanus (Peck) SnellSuillaceaeSuillus 1EMBoletesHMJAU60839
Suillus granulatus (L.) RousselSuillaceaeSuillus 1EMBoletesHMJAU60840
Suillus grevillei (Klotzsch) SingerSuillaceaeSuillus 10EMBoletesHMJAU60841OL891494
Suillus luteus (L.) RousselSuillaceaeSuillus 4EMBoletesHMJAU60842OL891496
Suillus placidus (Bonord.) SingerSuillaceaeSuillus 3EMBoletesHMJAU60843OL884444
Suillus subaureus (Peck) SnellSuillaceaeSuillus 5EMBoletesHMJAU60844OL891495
Suillus tomentosus Singer, Snell & E.A. DickSuillaceaeSuillus 3EMBoletesHMJAU60845
Sutorius brunneissimus (W.F. Chiu) G. Wu & Zhu L. YangBoletaceaeSutorius 1EMBoletesHMJAU60846
Tengioboletus glutinosus G. Wu & Zhu L. YangBoletaceaeTengioboletus 5EMBoletesHMJAU60847
Tremella Fuciformis Berk.TremellaceaeTremella 3WSJelly fungiHMJAU60848
Trichoderma rhododendri (Jaklitsch) Jaklitsch & VoglmayrHypocreaceaeTrichoderma 3WSLarger AscomytetesHMJAU60849
Tricholoma matsutake (S. Ito & S. Imai) SingerTricholomataceaeTricholoma 4EMAgaricsHMJAU60850
Tricholoma psammopus (Kalchbr.) Quél.TricholomataceaeTricholoma 5EMAgaricsHMJAU60851OL891480
Tricholoma saponaceum (Fr.) P. Kumm.TricholomataceaeTricholoma 2EMAgaricsHMJAU60852
Tricholoma sejunctum (Sowerby) Quél.SarcoscyphaceaeTricholoma 4EMAgaricsHMJAU60853OL891481
Tricholoma stans (Fr.) Sacc.TricholomataceaeTricholoma 2EMAgaricsHMJAU60854
Tricholoma subacutum PeckTricholomataceaeTricholoma 2EMAgaricsHMJAU60855
Tricholoma ustale (Fr.) P. Kumm.TricholomataceaeTricholoma 1EMAgaricsHMJAU60856OL891482
Tricholoma ustaloides Romagn.TricholomataceaeTricholoma 1EMAgaricsHMJAU60857
Tricholomopsis rutilans (Schaeff.) SingerTricholomataceaeTricholomopsis 2SSAgaricsHMJAU60858
Tylopilus eximius (Peck) SingerBoletaceaeTylopilus 1EMBoletesHMJAU60859OL891491
Tylopilus felleus (Bull.) P. Karst.BoletaceaeTylopilus 1EMBoletesHMJAU60860
Tylopilus virens (W.F. Chiu) HongoBoletaceaeTylopilus 2EMBoletesHMJAU60861OL891493
Tyromyces lacteus (Fr.) MurrillIncrustoporiaceaeTyromyces 1WSPolyporoid fungiHMJAU60862
Vanrija pseudolonga (M. Takash., Sugita, Shinoda & Nakase) WeißCryptococcaceaeVanrija 1EMBoletesHMJAU60863
Volvopluteus michiganensis (A.H. Sm.) Justo & MinnisPluteaceaeVolvopluteus 1SSBoletesHMJAU60864
Wynnea gigantea Berk. & M.A. CurtisWynneaceaeWynnea 5SSLarger AscomytetesHMJAU60865
Xerocomus ferrugineus (Schaeff.) AlessioBoletaceaeXerocomus 1EMBoletesHMJAU60866
Xerocomus magniporus M. Zang & R.H. PetersenBoletaceaeXerocomus 1EMBoletesHMJAU60867
Xeromphalina campanella (Batsch) Kühner & MaireMycenaceaeXeromphalina 1WSAgaricsHMJAU60868
Xylaria hypoxylon (L.) Grev.XylariaceaeXylaria 4WSLarger AscomytetesHMJAU60869
Xylaria polymorpha (Pers.) Grev.XylariaceaeXylaria 1WSLarger AscomytetesHMJAU60870
Note: Abbreviations: A = Q. mongolica forest; B = Broad-leaved forest; C = P. koraiensis and Q. mongolica mixed forest, with P. koraiensis as the dominant species; D = P. koraiensis and Q. mongolica mixed forest, with Q. mongolica as the dominant species; E = P. koraiensis forest; F = random collection; N = Number of fruiting bodies; ML = Mode of Life; SN = Specimen Number; EM = ectomycorrhizal; SS = soil saprotroph; WS = wood saprotroph; LS = litter saprotroph; DS = dung saprotroph; EI = endophyte-insect pathogen.

Appendix C. Species Scientific Names and Corresponding Abbreviations

SpeciesAcronymsSpeciesAcronymsSpeciesAcronymsSpeciesAcronymsSpeciesAcronyms
Amanita altipesAma1Cortinarius armillatusCor2 (A)Inocybe assimilataIno1 (A)Leccinum scabrumLec2 (D)Russula vinosaRu14
Amanita chepangianaAma2Cortinarius balaustinusCor3 (A)Inocybe asterosporaIno2 (A)Leccinum versipelleLec3 (A)Russula virescensRu15 (A)
Amanita excelsaAma3 (D)Cortinarius bivelusCor4Inocybe suaveolensIno3Leucocybe connataLeu1 (A)Scleroderma areolatumScl1
Amanita flavipesAma4Cortinarius caperatusCor5 (A)Laccaria amethystinaLac1 (D)Lyophyllum decastesLyo1 (A)Sowerbyella rhenanaSow1 (D)
Amanita fuligineaAma5Cortinarius cotoneusCor6Laccaria laccataLac2Lyophyllum infumatumLyo2Suillus americanusSui1
Amanita hemibaphaAma6Cortinarius ectypusCor7 (A)Lactarius albidocinereusLact1 (D)Paxillus involutusPax1Suillus grevilleiSui2
Amanita ibotengutakeAma7Cortinarius flammeouraceusCor8 (A)Lactarius brunneoviolascensLact2 (A)Paxillus orientalisPax2 (A)Suillus luteusSui3
Amanita oberwinkleranaAma8Cortinarius hesleriCor9 (A)Lactarius conglutinatusLact3 (A)Phylloporus yunnanensisPhy1 (A)Suillus placidusSui4
Amanita orsoniiAma9Cortinarius pholideusCor10 (D)Lactarius deterrimusLact4Pulveroboletus macrosporusPul1 (D)Suillus subaureusSui5 (A)
Amanita pallidocarneaAma10Cortinarius sanguineusCor11 (D)Lactarius flavidusLact5 (A)Ramaria cokeriRam 1Suillus tomentosusSui6 (A)
Amanita pallidoroseaAma11 (A)Cortinarius subbalaustinusCor12 (A)Lactarius glyciosmusLact6 (A)Ramaria marriiRam2 (A)Sutorius brunneissimusSut1
Amanita rimosaAma12 (A)Cortinarius torvusCor13 (A)Lactarius hirtipesLact7 (A)Ramaria sanguinipesRam 3Tengioboletus glutinosusTen1
Amanita rubescensAma13Craterellus cornucopioidesCra1(A)Lactarius lilacinusLact8 (A)Ramaria strictaRam 4Tricholoma matsutakeTri1
Amanita subglobosaAma14 (A)Gomphidius maculatusGom1Lactarius pallidusLact9Russula aerugineaRus1 (D)Tricholoma psammopusTri2
Amanita vaginataAma15Harrya chromapesHar1 (A)Lactarius piperatusLact10 (A)Russula amoenaRus2Tricholoma saponaceumTri3
Amanita virosaAma16Hebeloma birrusHeb1 (A)Lactarius proximellusLact11Russula cyanoxanthaRus3Tricholoma sejunctumTri4
Boletus aereusBol1Helvella crispaHel1Lactarius pubescensLact12 (A)Russula emeticaRus4Tricholoma stansTri5 (D)
Boletus edulisBol2Helvella elasticaHel2Lactarius subvellereusLact13 (A)Russula foetensRus5Tricholoma subacutumTri6
Bothia castanellaBot1 (A)Helvella macropusHel3Lactarius torminosusLact14 (D)Russula furcataRus6 (D)Tricholoma ustaleTri7 (D)
Butyriboletus regiusBut1 (A)Humaria hemisphaericaHum1Lactarius trivialisLact15 (A)Russula grataRus7(A)Tricholoma ustaloidesTri8 (A)
Butyriboletus roseoflavuBut2Hydnellum aurantiacumHyd1Lactarius vietusLact16 (A)Russula lakhanpaliiRus8 (D)Tylopilus eximiusTyl1 (D)
Chalciporus piperatusCha1Hydnellum peckiiHyd2Lactarius volemusLact17 (A)Russula paludosaRus9Tylopilus felleusTyl2
Chroogomphus helveticusChr1Hygrophorus conicusHyg1Lactarius zonariusLact18Russula roseaRus10Tylopilus virensTyl3 (A)
Coltricia crassaCol1Hygrophorus nemoreusHyg2Lactifluus bertilloniiLacti1 (A)Russula senecisRus11 (D)Vanrija pseudolongaVan1
Coltricia strigosipesCol2 (A)Hygrophorus pudorinusHyg3 (A)Lactifluus pilosusLacti2 (A)Russula sororiaRus12 (D)Xerocomus ferrugineusXer1
Cortinarius anomalusCor1 (D)Hygrophorus russulaHyg4 (A)Leccinum aurantiacumLec1 (A)Russula veternosaRus13 (A)Xerocomus magniporusXer2 (A)
Note: Abbreviations: Overlapping species labels are marked and noted in parentheses. A = Q. mongolica forest; D = P. koraiensis and Q. mongolica mixed forest, with Q. mongolica as the dominant species.

References

  1. Clemmensen, K.E.; Bahr, A.; Ovaskainen, O.; Dahlberg, A.; Ekblad, A.; Wallander, H.; Stenlid, J.; Finlay, R.D.; Wardle, D.A.; Lindahl, B.D. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 2013, 339, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
  2. Talbot, J.M.; Bruns, T.D.; Smith, D.P.; Branco, S.; Glassman, S.I.; Erlandson, S.; Vilgalys, R.; Peay, K.G. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biol. Biochem. 2013, 57, 282–291. [Google Scholar] [CrossRef]
  3. Liu, Y.; Li, X.; Kou, Y. Ectomycorrhizal fungi: Participation in nutrient turnover and community assembly pattern in forest ecosystems. Forests 2020, 11, 453. [Google Scholar] [CrossRef]
  4. Petre, C.V.; Balaes, T.; Tănase, C. Lignicolous basidiomycetes as valuable biotechnological agents. Mem. Sci. Sect. Rom. Acad. 2014, 37, 37–62. [Google Scholar]
  5. Cairney, J.W. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biol. Biochem. 2012, 47, 198–208. [Google Scholar] [CrossRef]
  6. Bahram, M.; Põlme, S.; Kõljalg, U.; Zarre, S.; Tedersoo, L. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol. 2012, 193, 465–473. [Google Scholar] [CrossRef] [PubMed]
  7. Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A. Global diversity and geography of soil fungi. Science 2014, 346, 6213. [Google Scholar] [CrossRef] [Green Version]
  8. Wang, J.; Shi, X.; Zheng, C.; Suter, H.; Huang, Z. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Sci. Total Environ. 2021, 755, 142449. [Google Scholar] [CrossRef]
  9. Mukhtar, H.; Lin, C.-M.; Wunderlich, R.F.; Cheng, L.-C.; Ko, M.-C.; Lin, Y.-P. Climate and land cover shape the fungal community structure in topsoil. Sci. Total Environ. 2021, 751, 141721. [Google Scholar] [CrossRef]
  10. Kujawska, M.B.; Rudawska, M.; Wilgan, R.; Leski, T. Similarities and differences among soil fungal assemblages in managed forests and formerly managed forest reserves. Forests 2021, 12, 353. [Google Scholar] [CrossRef]
  11. Claridge, A.W.; Barry, S.C.; Cork, S.J.; James, M. Diversity and habitat relationships of hypogeous fungi. II. Factors influencing the occurrence and number of taxa. Biodivers. Conserv. 2000, 9, 175–199. [Google Scholar] [CrossRef]
  12. Jones, M.D.; Durall, D.M.; Cairney, J.W.G. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 2003, 157, 399–422. [Google Scholar] [CrossRef] [Green Version]
  13. Kernaghan, G.; Widden, P.; Bergeron, Y.; Légaré, S.; Paré, D. Biotic and abiotic factors affecting ectomycorrhizal diversity in boreal mixed-woods. Oikos 2003, 102, 497–504. [Google Scholar] [CrossRef] [Green Version]
  14. Smith, M.E.; Douhan, G.W.; Fremier, A.K.; Rizzo, D.M. Are true multihost fungi the exception or the rule? Dominant ectomycorrhizal fungi on Pinus sabiniana differ from those on co-occurring Quercus species. New Phytol. 2009, 182, 295–299. [Google Scholar] [CrossRef] [PubMed]
  15. Komura, D.L.; Moncalvo, J.M.; Dambros, C.S.; Bento, L.S.; Neves, M.A.; Charles, E.; Zartman, C.E. How do seasonality, substrate, and management history influence macrofungal fruiting assemblages in a central Amazonian Forest? Biotropica 2017, 49, 643–652. [Google Scholar] [CrossRef]
  16. Olou, B.A.; Yorou, N.S.; Striegel, M.; Bässler, C.; Krah, F.S. Effects of macroclimate and resource on the diversity of tropical wood-inhabiting fungi. For. Ecol. Manag. 2019, 436, 79–87. [Google Scholar] [CrossRef]
  17. Lepinay, C.; Jiráska, L.; Tláskal, V.; Brabcová, V.; Vrška, T.; Baldrian, T. Successional Development of Fungal Communities Associated with Decomposing Deadwood in a Natural Mixed Temperate Forest. J. Fungi 2021, 7, 412. [Google Scholar] [CrossRef] [PubMed]
  18. Zhu, W.; Cai, X.; Liu, X.; Wang, J.X.; Cheng, S.; Zhang, X.Y.; Li, D.Y.; Li, M.H. Soil microbial population dynamics along a chronosequence of moist evergreen broad-leaved forest succession in southwestern China. J. Mt. Sci. 2010, 7, 327–338. [Google Scholar] [CrossRef]
  19. Weand, M.P.; Arthur, M.A.; Lovett, G.M.; Sikora, F.; Weathers, K.C. The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry 2010, 97, 159–181. [Google Scholar] [CrossRef]
  20. Ferris, R.; Peace, A.J.; Newton, A.C. Macrofungal communities of lowland Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karsten.) plantations in England: Relationships with site factors and stand structure. For. Ecol. Manag. 2000, 131, 255–267. [Google Scholar] [CrossRef]
  21. Ye, L.; Li, H.; Mortimer, P.E.; Xu, J.; Gui, H.; Karunarathna, S.C.; Kumar, A.; Hyde, K.D.; Shi, L. Substrate Preference Determines Macrofungal Biogeography in the Greater Mekong Sub-Region. Forests 2019, 10, 824. [Google Scholar] [CrossRef] [Green Version]
  22. Kutszegi, G.; Siller, I.; Dima, B.; Merényi, Z.; Varga, T.; Takács, K.; Turcsányi, G.; Bidló, A.; Ódor, P. Revealing hidden drivers of macrofungal species richness by analyzing fungal guilds in temperate forests, West Hungary. Community Ecol. 2021, 22, 13–28. [Google Scholar] [CrossRef]
  23. Chen, Y.; Yuan, Z.L.; Bi, S.; Wang, X.Y.; Ye, Y.Z.; Svenning, J.C. Macrofungal species distributions depend on habitat partitioning of topography, light, and vegetation in a temperate mountain forest. Sci. Rep. 2018, 8, 13589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Li, H.L.; Guo, J.Y.; Ye, L.; Gui, H.; Hyde, K.D.; Xu, J.C.; Mortimer, P.E. Composition of woody plant communities drives macrofungal community composition in three climatic regions. J. Veg. Sci. 2021, 32, e13001. [Google Scholar] [CrossRef]
  25. Alem, D.; Dejene, T.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Survey of macrofungal diversity and analysis of edaphic factors influencing the fungal community of church forests in Dry Afromontane areas of Northern Ethiopia. For. Ecol. Manag. 2021, 496, 119391. [Google Scholar] [CrossRef]
  26. Heine, P.; Hausen, J.; Ottermanns, R.; Schäffer, A.; Roß-Nickoll, M. Forest conversion from Norway spruce to European beech increases species richness and functional structure of above-ground macrofungal communities. For. Ecol. Manag. 2019, 432, 522–533. [Google Scholar] [CrossRef]
  27. Tomao, A.; Bonet, J.A.; Castaño, C.; de-Miguel, S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manag. 2020, 457, 117678. [Google Scholar] [CrossRef]
  28. Li, H.; Guo, J.; Karunarathna, S.C.; Ye, L.; Xu, J.; Hyde, K.D.; Mortimer, P.E. Native Forests Have a Higher Diversity of Macrofungi Than Comparable Plantation Forests in the Greater Mekong Subregion. Forests 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
  29. Kooch, Y.; Sanji, R.; Tabari, M. The effect of vegetation change in C and N contents in litter and soil organic fractions of a Northern Iran temperate forest. Catena 2019, 178, 32–39. [Google Scholar] [CrossRef]
  30. Aerts, R.; Ewald, M.; Nicolas, M.; Piat, J.; Skowronek, S.; Lenoir, J.; Hattab, T.; Garzón-López, C.X.; Feilhauer, H.; Schmidtlein, S.; et al. Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest. Front. Plant Sci. 2017, 8, 179. [Google Scholar] [CrossRef] [Green Version]
  31. Dobrovolny, L. Density and spatial distribution of beech (Fagus sylvatica L.) regeneration in Norway spruce (Piceaabies (L.) Karsten) stands in the central part of the Czech Republic. Ifor. Biogeosci. For. 2016, 9, 666–672. [Google Scholar] [CrossRef] [Green Version]
  32. Liang, J.H.; Tang, Z.Z. Ji’an Jilin National Nature Reserve key protected plants and protective measures. For. Investig. Des. 2015, 4, 80–83. [Google Scholar]
  33. Cox, F.; Barsoum, N.; Lilleskov, E.A.; Bidartondo, M.I. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol. Lett. 2010, 13, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
  34. Suz, L.M.; Barsoum, N.; Benham, S.; Dietrich, H.P.; Fetzer, K.D.; Fischer, R.; García, P.; Gehrman, J.; Kristöfel, F.; Manninger, M.; et al. Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Mol. Ecol. 2014, 23, 5628–5644. [Google Scholar] [CrossRef]
  35. Shuhada, S.N.; Salim, S.; Nobilly, F.; Lechner, A.M.; Azhar, B. Conversion of peat swamp forest to oil palm cultivation reduces the diversity and abundance of macrofungi. Glob. Ecol. Conserv. 2020, 23, e01122. [Google Scholar] [CrossRef]
  36. Wang, S. The Research on the Evaluation and satisfaction of the Ecologicalv Tourism Resources of Ji’an Wunvfeng National Forest Park. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2013. [Google Scholar]
  37. Shi, X.; Yu, D.; Xu, S.; Warner, E.D.; Wang, H.; Sun, W.; Zhao, Y.; Gong, Z. Cross-reference for relating Genetic Soil Classification of China with WRB at different scales. Geoderma 2010, 155, 344–350. [Google Scholar] [CrossRef]
  38. Chen, H.J.; Yu, H.B.; Ma, Y.G.; Chen, J.S.; Qian, C.; Liu, S.W.; Cui, T.R.; Zhong, H. Zircon U-Pb Age, Petrological Geochemistry and Tectonic Implication of Alkaline Granitein South-Eastern, Thin Province. J. Jilin Univ. (Earth Sci. Ed.) 2020, 50, 531–541. [Google Scholar] [CrossRef]
  39. Xing, P.; Xu, Y.; Gao, T.; Li, G.; Zhou, J.; Xie, M.; Ji, R. The community composition variation of Russulaceae associated with the Quercus mongolica forest during the growing season at Wudalianchi City, China. PeerJ 2020, 8, e8527. [Google Scholar] [CrossRef] [Green Version]
  40. Qin, N.; Bau, T. Recognition of Mycena sect. Amparoinasect. nov. (Mycenaceae, Agaricales), including four new species and revision of the limits of sect. Sacchariferae. Mycokeys 2019, 52, 103–124. [Google Scholar] [CrossRef]
  41. Li, Y.; Li, T.H.; Yang, Z.L.; Bau, T.; Dai, Y.C. Atlas of Chinase Macrofungal Resources; Central China Farmer’s Publishing House: Zhengzhou, China, 2015. [Google Scholar]
  42. Liu, X.L. The Macrofungi in China; HeNan Science and Technology Press: Zhengzhou, China, 2000. [Google Scholar]
  43. Manter, D.K.; Vivanco, J.M. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J. Microbiol. Methods 2007, 71, 7–14. [Google Scholar] [CrossRef]
  44. Thines, M.; Aoki, T.; Crous, P.W.; Hyde, K.D.; Lücking, R.; Malosso, E.; May, T.W.; Miller, A.N.; Redhead, S.A.; Yurkov, A.M. Setting scientific names at all taxonomic ranks in italics facilitates their quick recognition in scientific papers. IMA Fungus 2020, 11, 25. [Google Scholar] [CrossRef]
  45. Ter Braak, C.J.; Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
  46. Corporation, O.L. Origin, 9.0; Microcal Massachusetts: Northampton, MA, USA, 2012. [Google Scholar]
  47. He, F.; Yang, B.; Wang, H.; Yan, Q.; Cao, Y.; He, X. Changes in composition and diversity of fungal communities along Quercus mongolica forests developments in Northeast China. Appl. Soil Ecol. 2016, 100, 162–171. [Google Scholar] [CrossRef]
  48. García-Guzmán, O.M.; Garibay-Orijel, R.; Hernández, E.; Arellano-Torres, E.; Oyama, K. Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. Mycorrhiza 2017, 27, 811–822. [Google Scholar] [CrossRef] [PubMed]
  49. Barrico, L.; Rodríguez-Echeverría, S.; Freitas, H. Diversity of soil basidiomycete communities associated with Quercus suber L. in Portuguese montados. Eur. J. Soil Biol. 2010, 46, 280–287. [Google Scholar] [CrossRef]
  50. Herrera, M.; Montoya, L.; Bandala, V.M. Two Lactarius species (subgenus Plinthogalus) in ectomycorrhizal association with tropical Quercus trees in eastern Mexico. Mycologia 2018, 110, 1033–1046. [Google Scholar] [CrossRef]
  51. Khalid, A.N.; Naseer, A. Amanita pseudovaginata from Pakistan. World J. Biol. Biotechnol. 2020, 5, 19–21. [Google Scholar] [CrossRef]
  52. Wang, Q.; He, X.H.; Guo, L.-D. Ectomycorrhizal fungus communities of Quercus liaotungensis Koidz of different ages in a northern China temperate forest. Mycorrhiza 2012, 22, 461–470. [Google Scholar] [CrossRef] [PubMed]
  53. Zotti, M.; Ambrosio, E.; Di Piazza, S.; Bidaud, A.; Boccardo, F.; Pavarino, M.; Mariotti, M.; Vizzini, A. Ecology and diversity of Cortinarius species (Agaricales, Basidiomycota) associated with Quercus ilex L. in the Mediterranean area of Liguria (North-western Italy). Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2014, 148, 357–366. [Google Scholar] [CrossRef]
  54. Smith, J.; Molina, R.; Huso, M.M.; Luoma, D.; McKay, D.; Castellano, M.; Lebel, T.; Valachovic, Y. Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, USA. Can. J. Bot. 2002, 80, 186–204. [Google Scholar] [CrossRef] [Green Version]
  55. Hernández-Rodríguez, M.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Post-fire fungal succession in a Mediterranean ecosystem dominated by Cistus ladanifer L. For. Ecol. Manag. 2013, 289, 48–57. [Google Scholar] [CrossRef]
  56. Courty, P.-E.; Buée, M.; Diedhiou, A.G.; Frey-Klett, P.; Le Tacon, F.; Rineau, F.; Turpault, M.-P.; Uroz, S.; Garbaye, J. The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biol. Biochem. 2010, 42, 679–698. [Google Scholar] [CrossRef]
  57. Gao, T.T. Dynamic Changes of Ectomycorrhizal Fungal Community in Pinus Koraiensis with Time Scale and the Influencing Factors. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2020. [Google Scholar]
  58. Alem, D.; Dejene, T.; Oria-de-Rueda, J.A.; Geml, J.; Martín-Pinto, P. Soil Fungal Communities under Pinus patula Schiede ex Schltdl. & Cham. Plantation Forests of Different Ages in Ethiopia. Forests 2020, 11, 1109. [Google Scholar] [CrossRef]
  59. Dickie, I.A.; Bolstridge, N.; Cooper, J.A.; Peltzer, D.A. Co-invasion by Pinus and its mycorrhizal fungi. New Phytol. 2010, 187, 475–484. [Google Scholar] [CrossRef]
  60. Copot, O.; Mardari, C.; Bîrsan, C.C.; Tănase, C.C. Lignicolous fungal assemblages and relationships with environment in broadleaved and mixed forests from the North-East Region of Romania. Plant Ecol. Evol. 2020, 153, 45–58. [Google Scholar] [CrossRef]
  61. Gates, G.M.; Mohammed, C.; Wardlaw, T.; Ratkowsky, D.A.; Davidson, N.J. The ecology and diversity of wood-inhabiting macrofungi in a native Eucalyptus obliqua forest of southern Tasmania, Australia. Fungal Ecol. 2011, 4, 56–67. [Google Scholar] [CrossRef]
  62. Heilmann-Clausen, J. A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs. Mycol. Res. 2001, 105, 575–596. [Google Scholar] [CrossRef]
  63. Goia, I.; Gafta, D. Beech versus spruce deadwood as forest microhabitat: Does it make any difference to bryophytes? Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 2018. 153, 187–194. [Google Scholar] [CrossRef]
  64. Rudolf, K.; Morschhauser, T.; Pál-Fám, F. Macrofungal diversity in disturbed vegetation types in North-East Hungary. Open Life Sci. 2012, 7, 634–647. [Google Scholar] [CrossRef] [Green Version]
  65. Heilmann-Clausen, J.; Aude, E.; Dort, K.V.; Christensen, M.; Piltaver, A.; Veerkamp, M.; Walleyn, R.; Siller, I.; Standovár, T.; Òdor, P. Communities of wood-inhabiting bryophytes and fungi on dead beech logs in Europe-reflecting substrate quality or shaped by climate and forest conditions? J. Biogeogr. 2014, 41, 2269–2282. [Google Scholar] [CrossRef] [Green Version]
  66. Su, F.; Xu, S.; Sayer, E.J.; Chen, W.; Du, Y.; Lu, X. Distinct storage mechanisms of soil organic carbon in coniferous forest and evergreen broadleaf forest in tropical China. J. Environ. Manag. 2021, 295, 113–142. [Google Scholar] [CrossRef]
  67. Zakaria, A.J.; Boddy, L. Mycelial foraging by Resinicium bicolor: Interactive effects of resource quantity, quality and soil composition. FEMS Microbiol. Ecol. 2002, 40, 135–142. [Google Scholar] [CrossRef]
  68. Bahnmann, B.; Mašínová, T.; Halvorsen, R.; Davey, M.L.; Sedlák, P.; Tomšovský, M.; Baldrian, P. Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biol. Biochem. 2018, 119, 162–173. [Google Scholar] [CrossRef]
  69. Bahram, M.; Peay, K.G.; Tedersoo, L. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 2015, 205, 1454–1463. [Google Scholar] [CrossRef] [PubMed]
  70. Ferrari, B.C.; Bissett, A.; Snape, I.; van Dorst, J.; Palmer, A.S.; Ji, M.; Siciliano, S.D.; Stark, J.S.; Winsley, T.; Brown, M.V. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. Environ. Microbiol. 2016, 18, 1834–1849. [Google Scholar] [CrossRef] [PubMed]
  71. Shuhada, S.N.; Salim, S.; Nobilly, F.; Zubaid, A.; Azhar, B. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings. Ecol. Evol. 2017, 7, 7187–7200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Rousk, J.; Bååth, E.; Brookes, P.C.; Laube, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
  73. Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
  74. Yang, Y.; Gao, Y.; Wang, S.; Xu, D.; Yu, H.; Wu, L.; Lin, Q.; Hu, Y.; Li, X.; He, Z.; et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J. 2014, 8, 430–440. [Google Scholar] [CrossRef] [Green Version]
  75. Crowther, T.W.; Stanton, D.W.; Thomas, S.M.; A’Bear, A.D.; Hiscox, J.; Jones, T.H.; Voříšková, J.; Baldrian, P.; Boddy, L. Top-down control of soil fungal community composition by a globally distributed keystone consumer. Ecology 2013, 94, 2518–2528. [Google Scholar] [CrossRef] [PubMed]
  76. Koide, R.T.; Fernandez, C.; Malcolm, G. Determining place and process: Functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytol. 2014, 201, 433–439. [Google Scholar] [CrossRef]
  77. Van der Linde, S.; Suz, L.M.; Orme, C.D.L.; Cox, F.; Andreae, H.; Asi, E.; Atkinson, B.; Benham, S.; Carroll, C.; Cools, N. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 2018, 558, 243–248. [Google Scholar] [CrossRef] [Green Version]
  78. Taniguchi, T.; Kitajima, K.; Douhan, G.W.; Yamanaka, N.; Allen, M.F. A pulse of summer precipitation after the dry season triggers changes in ectomycorrhizal formation, diversity, and community composition in a Mediterranean forest in California, USA. Mycorrhiza 2018, 28, 665–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  79. Nickel, U.T.; Weikl, F.; Kerner, R.; Schäfer, C.; Kallenbach, C.; Munch, J.C.; Pritsch, K. Quantitative losses vs. qualitative stability of ectomycorrhizal community responses to 3 years of experimental summer drought in a beech–spruce forest. Glob. Change Biol. 2018, 24, e560–e576. [Google Scholar] [CrossRef] [PubMed]
  80. Swaty, R.L.; Deckert, R.J.; Whitham, T.G.; Gehring, C.A. Ectomycorrhizal abundance and community composition shifts with drought: Predictions from tree rings. Ecology 2004, 85, 1072–1084. [Google Scholar] [CrossRef]
  81. Allen, M.F.; Kitajima, K. In situ high-frequency observations of mycorrhizas. New Phytol. 2013, 200, 222–228. [Google Scholar] [CrossRef] [PubMed]
  82. Querejeta, J.; Egerton-Warburton, L.M.; Allen, M.F. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 2009, 90, 649–662. [Google Scholar] [CrossRef] [Green Version]
  83. Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
Figure 1. Sampling plot distribution and forest types in Wunvfeng National Forest Park. Note: Sampling plot distribution (A); Plots A1, A2, A3 = Q. mongolica forest (B); Plots B1, B2, B3 = Broad-leaved forest (C); Plots C1, C2, C3 = P. koraiensis and Q. mongolica mixed forest (P. koraiensis is the dominant species (D)); Plots D1, D2, D3 = P. koraiensis and Q. mongolica mixed forest, (Q. mongolica is the dominant species (E)); Plots E1, E2, E3 = P. koraiensis forest (F).
Figure 1. Sampling plot distribution and forest types in Wunvfeng National Forest Park. Note: Sampling plot distribution (A); Plots A1, A2, A3 = Q. mongolica forest (B); Plots B1, B2, B3 = Broad-leaved forest (C); Plots C1, C2, C3 = P. koraiensis and Q. mongolica mixed forest (P. koraiensis is the dominant species (D)); Plots D1, D2, D3 = P. koraiensis and Q. mongolica mixed forest, (Q. mongolica is the dominant species (E)); Plots E1, E2, E3 = P. koraiensis forest (F).
Jof 08 00098 g001
Figure 2. Field record of mushrooms and microscopic characteristic observation.
Figure 2. Field record of mushrooms and microscopic characteristic observation.
Jof 08 00098 g002
Figure 3. The proportion of different macrofungal types.
Figure 3. The proportion of different macrofungal types.
Jof 08 00098 g003
Figure 4. The relative proportions of macrofungi taxa at the genera level in five forest types. (A): Q. mongolica forest; (B): Broad-leaved forest; (C): P. koraiensis and Q. mongolica mixed forest with P. koraiensis being the dominant species; (D): P. koraiensis and Q. mongolica mixed forest with Q. mongolica being the dominant species; (E): Pinus koraiensis forest.
Figure 4. The relative proportions of macrofungi taxa at the genera level in five forest types. (A): Q. mongolica forest; (B): Broad-leaved forest; (C): P. koraiensis and Q. mongolica mixed forest with P. koraiensis being the dominant species; (D): P. koraiensis and Q. mongolica mixed forest with Q. mongolica being the dominant species; (E): Pinus koraiensis forest.
Jof 08 00098 g004
Figure 5. Sample-based rarefaction curves (n = 195 observations per forest type within 3 years). (A): Q. mongolica forest; (B): broad-leaved forest; (C): P. koraiensis and Q. mongolica mixed forest with P. koraiensis being the dominant species; (D): P. koraiensis and Q. mongolica mixed forest with Q. mongolica being the dominant species; (E): P. koraiensis forest.
Figure 5. Sample-based rarefaction curves (n = 195 observations per forest type within 3 years). (A): Q. mongolica forest; (B): broad-leaved forest; (C): P. koraiensis and Q. mongolica mixed forest with P. koraiensis being the dominant species; (D): P. koraiensis and Q. mongolica mixed forest with Q. mongolica being the dominant species; (E): P. koraiensis forest.
Jof 08 00098 g005
Figure 6. A Venn diagram of 283 fungal species shows shared and unique fungi for the five forest types. The numbers in parentheses are the values of all observed fungi in each forest type studied (cumulative species richness).
Figure 6. A Venn diagram of 283 fungal species shows shared and unique fungi for the five forest types. The numbers in parentheses are the values of all observed fungi in each forest type studied (cumulative species richness).
Jof 08 00098 g006
Figure 7. Canonical correspondence analysis (CCA) of selected variables and the ectomycorrhizal fungi species (dominant group). All displayed variables passed the most significant test (p < 0.05); QM: the number of Q. mongolica; SWC: soil water content; (A): Q. mongolica forest; (B): Broad–leaved forest; (C): P. koraiensis and Q. mongolica mixed forest with P. koraiensis being the dominant species; (D): P. koraiensis and Q. mongolica mixed forest with Q. mongolica being the dominant species; (E): P. koraiensis forest. Letters are composed of the first three–letter abbreviations of the scientific name of the species and a number, and the corresponding names are provided in Appendix C. Some species’ labels are overlapping. See Appendix C.
Figure 7. Canonical correspondence analysis (CCA) of selected variables and the ectomycorrhizal fungi species (dominant group). All displayed variables passed the most significant test (p < 0.05); QM: the number of Q. mongolica; SWC: soil water content; (A): Q. mongolica forest; (B): Broad–leaved forest; (C): P. koraiensis and Q. mongolica mixed forest with P. koraiensis being the dominant species; (D): P. koraiensis and Q. mongolica mixed forest with Q. mongolica being the dominant species; (E): P. koraiensis forest. Letters are composed of the first three–letter abbreviations of the scientific name of the species and a number, and the corresponding names are provided in Appendix C. Some species’ labels are overlapping. See Appendix C.
Jof 08 00098 g007
Table 1. Quercus mongolica content and selected environmental variables properties in five forest types.
Table 1. Quercus mongolica content and selected environmental variables properties in five forest types.
Environment ParametersForest
ABCDE
N (mg/kg)68.2 a56.59 b44.07 c46.65 c47.94 c
P (mg/kg)20.99 b24.37 a18.33 b14.99 c20.49 b
K (mg/kg)408.9 a372.73 ab325.44 b267.35 c264.69 c
SOM (g/kg)37.1 a16.76 c25.03 b39.69 a28.64 b
Soil pH5.48 c5.96 a5.69 b5.34 c5.75 b
Temp1 (°C)24 a21.48 b22.12 b22.07 b22.07 b
Temp2 (°C)19.1 a18.93 a20.14 a19.99 a19.34 a
SWC (g/20 g)6 a5.2 a3.8 b5.6 a4.8 ab
RH0.82 a0.83 a0.83 a0.83 a0.86 a
QM275 a179 b42 c183 b0 d
Note: Abbreviations: N = soil effective nitrogen; P = soil available phosphorus; K = soil available potassium; SOM = soil organic matter; pH = soil pH; Temp1 = soil temperature; Temp2 = air temperature; SWC = soil water content; RH = air relative humidity; QM = Number of Q. mongolica; Different lowercase letters indicate significantly different QM and environment parameter values among five forest type (p < 0.05).
Table 2. Dominant families (≥10 species) of macrofungi in Wunvfeng National Forest Park.
Table 2. Dominant families (≥10 species) of macrofungi in Wunvfeng National Forest Park.
FamilyNumber of SpeciesPercentage (%)
Russulaceae3612.72%
Tricholomataceae217.42%
Boletaceae196.71%
Amanitaceae165.65%
Cortinariaceae144.95%
Hygrophoraceae113.89%
Agaricaceae103.53%
Hymenochaetaceae103.53%
Meruliaceae103.53%
Total14751.94%
Table 3. Dominant genera (≥5 species) of macrofungi in Wunvfeng National Forest Park.
Table 3. Dominant genera (≥5 species) of macrofungi in Wunvfeng National Forest Park.
GeneraNumber of SpeciesPercentage (%)
Lactarius186.36%
Amanita165.65%
Russula165.65%
Cortinarius124.24%
Tricholoma93.18%
Mycena82.83%
Suillus72.47%
Entoloma72.47%
Agaricus62.12%
Gymnopus62.12%
Hygrocybe62.12%
Pluteus62.12%
Clitocybe51.77%
Marasmius51.77%
Ramaria51.77%
total13246.64%
Table 4. Diversity indices of macrofungi in five forest types.
Table 4. Diversity indices of macrofungi in five forest types.
Forest TypeNumber of SpeciesNumber of CollectionsRichness IndexDiversity IndexEvenness Index
RDE
A1423687.40234.72960.9543
B862465.48324.2070.9445
C351532.82963.20480.9014
D491114.65093.70740.9526
E18622.2862.61460.9046
Note: Abbreviations: A = Q. mongolica forest; B = Broad-leaved forest; C = P, koraiensis and Q. mongolica mixed forest, with P. koraiensis as the dominant species; D = P. koraiensis and Q. mongolica mixed forest, with Q. mongolica as the dominant species; E = P. koraiensis forest. The number of collections is the cumulative number of fruiting bodies per species.
Table 5. Cumulative species richness of functional groups in five forest types.
Table 5. Cumulative species richness of functional groups in five forest types.
Forest TypeTrophic Groups
EM (133)WS (57)SS (52)LS (38)EI (2)DS (1)
A7126252010
B2728181101
C13391000
D3652600
E1022400
Note: Abbreviations: EM = Ectomycorrhizal fungi; WS = Wood-decaying fungi; SS = Soil saprotroph; LS = Litter saprotroph; EI = Endophyte-insect pathogen; DS = Dung saprotroph. Values shown are the cumulative number of macrofungal functional groups in each forest type.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Tuo, Y.; Rong, N.; Hu, J.; Zhao, G.; Wang, Y.; Zhang, Z.; Qi, Z.; Li, Y.; Zhang, B. Exploring the Relationships between Macrofungi Diversity and Major Environmental Factors in Wunvfeng National Forest Park in Northeast China. J. Fungi 2022, 8, 98. https://doi.org/10.3390/jof8020098

AMA Style

Tuo Y, Rong N, Hu J, Zhao G, Wang Y, Zhang Z, Qi Z, Li Y, Zhang B. Exploring the Relationships between Macrofungi Diversity and Major Environmental Factors in Wunvfeng National Forest Park in Northeast China. Journal of Fungi. 2022; 8(2):98. https://doi.org/10.3390/jof8020098

Chicago/Turabian Style

Tuo, Yonglan, Na Rong, Jiajun Hu, Guiping Zhao, Yang Wang, Zhenhao Zhang, Zhenxiang Qi, Yu Li, and Bo Zhang. 2022. "Exploring the Relationships between Macrofungi Diversity and Major Environmental Factors in Wunvfeng National Forest Park in Northeast China" Journal of Fungi 8, no. 2: 98. https://doi.org/10.3390/jof8020098

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop