Next Article in Journal
Search for Cryptococcus neoformans/gattii Complexes and Related Genera (Filobasidium, Holtermanniella, Naganishia, Papiliotrema, Solicoccozyma, Vishniacozyma) spp. Biotope: Two Years Surveillance of Wild Avian Fauna in Southern France
Next Article in Special Issue
Taxonomic Reappraisal of Periconiaceae with the Description of Three New Periconia Species from China
Previous Article in Journal
New Species of Aspergillus (Aspergillaceae) from Tropical Islands of China
Previous Article in Special Issue
Description of Crinitomyces reliqui gen. nov., sp. nov. and Reassignment of Trichosporiella flavificans and Candida ghanaensis to the Genus Crinitomyces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates

1
School of Agriculture, Abhilashi University, Mandi 175028, Himachal Pradesh, India
2
Department of Plant Pathology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
3
School of Studies in Botany, Jiwaji University, Gwalior 474011, Madhya Pradesh, India
4
Department of Biosciences, Chandigarh University, Gharuan 140413, Punjab, India
5
Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet 605014, Pondicherry, India
6
Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar 791112, Arunachal Pradesh, India
7
Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
*
Authors to whom correspondence should be addressed.
J. Fungi 2022, 8(3), 226; https://doi.org/10.3390/jof8030226
Submission received: 30 January 2022 / Revised: 19 February 2022 / Accepted: 20 February 2022 / Published: 24 February 2022
(This article belongs to the Special Issue Polyphasic Identification of Fungi)

Abstract

:
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.

1. Introduction

Biodiversity is one of the most interesting aspects of biology, which has attracted the attention of scientists and researchers for some time. Biological diversity generally represents the variety of living beings from all sources, including terrestrial, marine and other aquatic ecosystems, covering the diversity of plants, animals, insects, pests and microbes. The information on biodiversity yet to be fully discovered may be useful from many beneficial and harmful aspects of life. Based on available information, biodiversity can be of species which are genetic and ecological, and found to be distributed in a variety of environments. The various life forms are adapted to live in specific environments, referred to as terrestrial and aquatic. In addition, these diverse life forms show great variability based on the type of habitats [1]. Fungi is an important component of biodiversity, which play an important role in various ecological cycles [2,3].
Fungi present enormous species diversity with respect to morphological, ecological and nutritional modes. Fungi are considered the largest organismic group after insects [4], andareknown to exist in a wide variety of morphologies, lifestyles, developmental patterns anda wide range of habitats such as soil, water, air, animals, plants and in environments with extreme conditions such as low or high temperature, high concentration of metals and salts [5,6,7]. It has been estimated that 1.5 and 5.1 million species of fungi are believed to exist in various ecosystems of Earth, of which nearly 150,000 species of fungi have been described [8,9,10].
Fungi are an important and diverse component of biodiversity in various ecosystems. These organisms consist of a diverse range of all major fungal groups and play the role of both foe and friend. While some fungi may cause numerous diseases in humans, animals, plants and other biological substrates, others may play an important role in the nutrient cycle. In addition, fungi have beneficial applications in the agriculture, industrial and pharmaceutical sectors. The occurrence of fungi, however, varies greatly with respect to various ecosystems and environments. The study of fungi is not easy due to the extremely high level of diversity and difficulty in the prediction ofexact estimates. However, different researchers predicted fungal diversity on the planet and provided different estimates of fungal species [3,11,12].
Identification based on morphological, phylogenetic or ecological characteristics is one of the most important aspectsof mycological studies. The classical methods of fungal identification which rely on direct observation of fungi either in a natural condition or after culturing on growth media are still most popularly in use. Despitethe use of molecular methods as more advanced modern techniques of fungal identification, the classical methods still have many advantages for studying fungal diversity. Some fungi produce visible structures useful in their identification. The culturing of some of the fungi is still not very successful; therefore, molecular techniques have proved to be very helpful in exploring their taxonomic identity [13,14]. The use of molecular methods along with conventional methods (morphological studies) helped mycologists to investigate the new fungal samples or reinvestigate the preserved ones. This has been led the fungal taxonomists to propose or establish many new taxa.
In the present paper, a general outline with current estimates of fungal diversity in all environments is presented. A complete section on general methods (classical and modern methods) used for fungal identification, along with their advantages and disadvantages, was also presentedin order to provide an updated account on fungal identification. Moreover, adetailed account of culture dependent and culture independent methods was providedin order to highlight their importancein fungal identification and their usefulness in finding updated fungal diversity estimates. Overall, this review will be a document containing present day information on various aspects of fungi.

2. Fungal Diversity: General Outline with Updated Estimates

Fungi constitute one of the largest groups of eukaryotes which play a significant role as decomposers, mutualists and pathogens. They are among the key components of global biodiversity, playing a powerful role in global biogeochemistry, recycling carbon and mobilizing nitrogen, phosphorus and other bio-elements. Besides performing this key role, fungi provide essential support to plant life in the form of endophytes and mycorrhizae, in addition to causing numerous plant and animal diseases. The industrial applications of various fungi nowadays are worth appreciating. Fungi as an important food source, and researchis still in progress to use fungal biomass to fulfil the basic needs of food, clothe and shelter [15,16]. Despite multiple uses, updated information of these organisms about the number of species are described, as well as global estimates of their diversitywhich are essential to accurately describe their taxonomic characteristics. Through the use of advanced methods of isolating and identifying fungi, a number of novel taxa have been established over the past decade, including new divisions, classes, orders and new families. Therefore, this section provides complete information on how to estimate fungal diversity based on the available literature.
Classification of fungi or their various groups is a continuous process because of the regular inclusion of data based on morpho-taxonomy and molecular studies. The frequent inclusion of data from DNA sequences in recent studies is updating fungal outlines and their estimates constantly. The outline of fungi classification provided by Wijayawardene et al. [17] is used here as a starting point for this section of the paper. An outline of fungi and fungus-like taxa provides a summary of the classification of the kingdom Fungi (including fossil fungi, i.e., dispersed spores, mycelia, sporophores and mycorrhizas). A total of 19 phyla were presented with the placement of all fungal genera with the described number of species per genus at the class-, order-and family-level [17]. Several earlier studies have also focused on fungal diversity. Some glimpses of different types of fungi found in various habitats are presented in Figure 1 and Figure 2.
Based on phylogenies and the divergence time of particular taxa, Tedersoo et al. [18] proposed classification of kingdom Fungi into 18 phyla Ascomycota, Aphelidiomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Because this study was based on only 111 taxa, its universal acceptance remained a matter of thinking. In this agreement, Wijayawardene et al. [19] provided a revised classification system for basal clades of fungi from phyla to genera in the same year. A total of 16 phyla were accepted among the above-mentioned except viz. Ascomycota and Basidiomycota. The detailed information to fully resolved tree of life was reviewed by James et al. [20], where they provide detailed information on advancements in genomic technologies during the last 15 years to understand the revolution in fungal systematics in the phylogenomic era. However, the recently updated outline of fungi given by Wijayawardene et al. [17] revised the number of phyla upto 19 in addition to Caulochytriomycota. This group of researchers also included fungal-like taxa in this study and incorporated them in this outline. Similar studies on outlined fungal phyla were carried outoccasionally. These studies proved very useful for researchers engaged in updating fungal classification. A list of selected literature based on various taxonomical studies carried out by several researchers is presented in Table 1.
These are studies on defining boundaries and providing the classification of different levels of fungal classification: Ascomycota [21,22,23], Diaporthales [24,25,26,27,28,29], Leotiomycetes [30], Magnaporthales [31], Orbiliaceae (Orbiliomycetes) [32], Discomycetes [33], Sordariomycetes [34,35,36], Sclerococcomycetidae [35,37], Xylariales [38], Xylariomycetidae [39] and Pezizomycetes [40]. Based on this, a brief outline of the classification of the kingdom Fungi (including fossil fungi, i.e., dispersed spores, mycelia, sporophores, mycorrhizas) given by Wijayawardene et al. [17] is provided herein tabulated form (Table 2).
Table 1. Selected literature on various taxonomical studies of fungi.
Table 1. Selected literature on various taxonomical studies of fungi.
TitleReference
Orders of Ascomycetes[41]
Laboulbeniales as a separate class of Ascomycota, Laboulbeniomycetes[42]
One hundred and seventeen clades of euagarics[43]
Toward resolving family-level relationships in rust fungi (Uredinales)[44]
Higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences[45]
A phylogenetic overview of the family Pyronemataceae (Ascomycota, Pezizales)[46]
A higher-level phylogenetic classification of the Fungi[47]
Dictionary of the Fungi. (10th edn)[48]
Outline of Ascomycota[49]
Glomeromycota: two new classes and a new order[50]
Entomophthoromycota: a new phylum and reclassification for entomophthoroid fungi[51]
Incorporating anamorphic fungi in a natural classification checklist and notes for 2011[52]
Taxonomic revision of Ustilago, Sporisorium and Macalpinomyces[53]
Phylogenetic systematics of the Gigasporales[54]
List of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi, and plants[55]
A phylogeny of the highly diverse cup fungus family Pyronemataceae (Pezizomycetes, Ascomycota)[56]
Families of Dothideomycetes[57]
Taxonomic revision of the Lyophyllaceae (Basidiomycota, Agaricales) based on a multigene phylogeny[58]
Recommended names for pleomorphic genera in Dothideomycetes[27]
Towards a natural classification and backbone tree for Sordariomycetes[34]
Phylogenetic classification of yeasts and related taxa within Pucciniomycotina[59]
Entomophthoromycota: a new overview of some of the oldest terrestrial fungi[60]
Systematics of Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina[61]
A phylum-level phylogenetic classification of Zygomycete fungi based on genome–scale data[62]
Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota[63]
Sequence–based classification and identification of fungi[64]
Morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria[65]
Families of Sordariomycetes[35]
Proposal to conserve the name Diaporthe eres, with a conserved type, against all other competing names (Ascomycota, Diaporthales, Diaporthaceae)[66]
Taxonomy and phylogeny of dematiaceous Coelomycetes[67]
Multigene phylogeny of Endogonales[68]
Classification of lichenized fungi in the Ascomycota and Basidiomycota-Approaching one thousand genera[69]
Taxonomy and phylogeny of the Auriculariales (Agaricomycetes, Basidiomycota) with stereoid basidiocarps[70]
An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence[71]
Families, genera, and species of Botryosphaeriales[72]
Ranking higher taxa using divergence times: a case study in Dothideomycetes[73]
A revised family-level classification of the Polyporales (Basidiomycota)[74]
Notes for genera: Ascomycota[22]
Towards incorporating asexual fungi in a natural classification: checklist and
notes 2012–2016
[23]
Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)[19]
Outline of Ascomycota: 2017[75]
Classification of orders and families in the two major subclasses of Lecanoromycetes (Ascomycota) based on a temporal approach[76]
A taxonomic summary and revision of Rozella (Cryptomycota)[77]
Sexual and asexual generic names in Pucciniomycotina and Ustilaginomycotina (Basidiomycota)[78]
Evolutionary complexity between rust fungi (Pucciniales) and their plant hosts[79]
High-level classification of the Fungi and a tool for evolutionary ecological analyses[18]
Taxonomy and phylogeny of operculate Discomycetes: Pezizomycetes[33]
Molecular phylogeny of the Laboulbeniomycetes (Ascomycota)[80]
Families in Botryosphaeriales[81]
Natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae[82]
Classification of the Dictyostelids[83]
Revisiting Salisapiliaceae[84]
Phylogenetic revision of Savoryellaceae[85]
Notes, outline and divergence times of Basidiomycota[86]
A new phylogenetic classification for the Leotiomycetes[87]
Taxonomy and phylogeny of hyaline-spored Coelomycetes[88]
Refined families of Sordariomycetes[36]
Outline of Fungi and fungus-like taxa[17]
The genera of Coelomycetes[89]
A higher-rank classification for rust fungi, with notes on genera[90]
Indian Pucciniales: taxonomic outline with important descriptive notes[91]
Incorporating asexually reproducing fungi in the natural classification and notes for pleomorphic genera[92]
How to publish a new fungal species, or name, version 3.0[93]
Table 2. A brief presentation on outline of fungi.
Table 2. A brief presentation on outline of fungi.
PhylumClassOrderFamilyGenera
Aphelidiomycota1114
Ascomycota211486244511
Basidiobolomycota1112
Basidiomycota19692401521
Blastocladiomycota24812
Calcarisporiellomycota1112
Caulochytriomycota1111
Chytridiomycota9135297
Entomophthoromycota22520
Entorrhizomycota1222
Glomeromycota351649
Kickxellomycota66761
Monoblepharomycota3379
Mortierellomycota1116
Mucoromycota331762
Neocallimastigomycota11111
Olpidiomycota1114
Rozellomycota2741162
Zoopagomycota11525
Total7927010316561
As one of the ancient and most diverse branches of the tree of life, kingdom Fungi contains an estimated 4–5 million species distributed all across the globe and plays vital roles in terrestrial and aquatic ecosystems [94,95,96,97]. Of the total estimated number, so far, less than 2% of fungiis described [98]. Because of the vast diversity of these organisms and the addition of new fungi year by year, mycologists are facing major difficulties to define their boundaries accurately. The regular advancement in mycological techniques enables mycologists to describe new fungi all around the world every year based on decade evaluations. The description and addition of new species are estimated at 2626 from 2000 to 2012, while it was around 2326 between 1980 and 1999 [99,100,101]. This ongoing process of describing new fungi changes the overall estimate of fungi regularly. However, the suspense of undescribed fungi is still the same, which also added more uncertainty over defining their estimate exactly. In addition to natural habitats still waiting to explored, requirements of reassessment of dried herbarium samples based on molecular methods, along with morpho-taxonomy and lack of molecular facilities, still hinder mycologists in describing new fungi and attaining full estimate boundaries. Because of the importance of a total number of fungi estimates in their diversity and taxonomy (systematics, resources and classification) [12,102], many estimates have been put forward to elucidate the fungal species diversity in the world. Previous estimates of fungal diversity were based mainly on the plant-associated fungi [3]. Summarizing a comprehensive account of previous estimates of fungal diversity, we start with the estimate of about 100,000 presented by Bisby and Ainsworth [102]. Then, the number of fungi was estimated to be between 0.25–2.7 during the second half of the twentieth century. It was estimated (in millions) as follows: 0.25 [103], 2.7 [104], 1.5 [12,105,106], 1.0 [107,108,109], 1.3 [110], 0.27 [111] and 0.5 [112]. Similarly, the estimates on total described numbers of fungi during the twenty-first century were found to be between 2.3–5.1 million. The fungal estimate (1.5 million) provided by Hawksworth [12] has been most widely accepted for two decades. However, updated estimates of fungal species were provided in the current century as 3.5–5.1 [113], 5.1 [10], 2.2–3.8 [11]. The updated estimates were provided based on DNA based molecular techniques and next-generation sequencing. However, Hyde et al. [114] pointed out that more than 90% of the collected samples of fungi were neglected by mycological taxonomists around the globe. The total number of described fungi may be increased many times after processing these samples. The fungal estimates provided by various mycologists are presented in detail in Figure 3.
In addition to estimating the total number of fungi, the global biodiversity of fungi has been extensively investigated for predicting their accurate estimate on earth. The number of advanced techniques, along with the number of numerical analytical methods, enabled researchers not only to identify and describe those fungi which are either not described, incorrectlyidentified or described incompletely, but also in understanding plant: fungus ratios [12,99], quantitative macroecological grid-based approaches [115,116,117], ecological scaling laws and methods based on environmental sequence data including plant: fungus ratios [10,113]. These studies on estimates proved fungi to be one of the largest groups of living organisms on this planet. An updated estimate of global fungal diversity is 2.2 to 3.8 million provided by Hawksworth and Lücking [11], however, also pointed out that this estimate would be a thousand times higher than the current highest estimate of 10 million species. A regression relationship between time and described fungal species by using Sigma State 3.5.SPSS (USA) was constructed and presented by Wu et al. [3]. With the help of this equation model, Wu et al. [3] presented the description rate of fungi. They indicated that 1.5 million fungal species, estimated by Hawksworth [12], could be described only by the year 2184, while the estimates of 2.2 and 3.8 million could be described by the years 2210 and 2245, respectively.

3. General Methods of Fungal Identification

The correct identification of fungi is one of the essential tools required for documenting fungi at the genus and species levels. There are several methods of fungal identification that differ in scope and content. However, the actual identification procedure is almost the same in each of the methods. Colonial morphological features, along with growth rate and microscopic observations, are some important criteria used to study different fungi. However, technological advancements have added more improved and sophisticated methods in this series. Generally, the fungal identification techniques are, broadly, three types, i.e., truly classical, culture and modern methods. While truly classical methods were based on the study of morphological features, the culture methods involved culture media technique. In modern methods, DNA-based techniques are utilized.

3.1. Classical Methods

Classical methods are most widely used in the documentation of fungi in relation to their identification and distribution on any substrate over a specific area. In general, these methods have been developed for studying any substratum or group of fungi [118]. Classical methods of fungal identification generally include incubation of substrata in moist chambers, direct sampling of fungal fruiting bodies, culturing of endophytes and particle plating. The following are basic types of classical methods.

3.1.1. Opportunistic Approach

In general, the opportunistic approach is one of the different types of classical methods used by mycologists to collect fruiting bodies of macromycetes. The availability of good condition fruiting bodies of macrofungi is generally a prerequisite for this efficient method of detecting new species or new records in a study area. The requirement of highly skilled mycologists for collection, processing and identification is a major limitation of this method, along with the risk of toxicity from these fungi [118].

3.1.2. Substrate Based Approach

The substrate-based protocols are another important approach used for the identification of fungi. The importance of these methods can be imagined because while some fungi fruit rather dependably, others fruit only sporadically. The substrate-based methods are mostly used for fungi that occur only on discrete, discontinuous or patchy resources, or are restricted to a particular host. The fungi forming sporocarps on soil, trees, large woody stumps, leaf litter, twigs and small branches are generally included in such methods. The fungi that form fruiting bodies on soil and ectomycorrhizal association with the trees provides a better understanding of their identification and diversity. The selection of a study plot is an important step that should be considered while using these methods [119,120]. In the case of fungi that form fruiting bodies on large woody debris, use of the log-based sampling method is generally preferred, keeping in view the substrate characteristics such as diameter, decay classes, upright, suspended, or grounded and host information [118,121]. Similarly, the use of a plot-based or band transect method is generally suggested in fungi, giving rise to fruiting bodies on fine debris (leaf litter, twigsand small branches). Here, size of the sample plot is generally kept in mind during the collection of fungal samples [119,120,122,123,124].

3.1.3. Moist Chambers Techniques

Moist Chambers Techniquesis one of the earliest and more effective methodsbeing utilized by mycologists in fungal taxonomy. This technique is used for fungi growing on leaves or small woody debris, such as ascomycetes, hyphomycetes and coelomycetes [124,125] and slime molds [126], and fungi growing on dung [127,128,129,130]. Here, the fungal samples collected from various substrates were processed for the production of fruiting bodies in a moist chamber for some duration and evaluated periodically for approximately 2 to 6 weeks.

3.1.4. Culture Media Technique

The use of culture media to inoculate fungi from the natural environment and incubate it to grow in controlled conditions for their isolation and identification is also one of the popular and widely used techniques. Numbers of artificial culture media are used here to provide growth substrate and required nutrition to inoculated fungi. Along with morphological characteristics, this technique proves quite useful in identifyinga fungal taxon. The easy and economic implication of this method has made it popular among mycologists. The numberof fungal groups such as endophytes, saprophytes and parasites—except obligate—can be isolated on various culture media from symptomless but fully expanded leaves, petioles, twigs, branches and roots, etc. [131]. Similarly, culturing of leaf washes is another culture media-based technique to assess the composition of spores on leaf surfaces. Commonly known as phylloplane fungi, these are considered to have good biocontrol potential [132,133]. Another culture based method known as the particle filtration method [134,135,136] is mainly meant for reducing the number of isolates derived from dormant spores in cultures taken from decomposing plant debris. Vegetatively active mycelia are generally cultured with the use of this method.

3.1.5. Advantages and Disadvantages of Truly Classical and Culture Based Methods

When we compare classical and culture based-methods with other advanced techniques, they still hold a key position in all the methods being utilized for assessing identification, diversity and distribution of fungi. Although these techniques are still in use globally, they also have certain disadvantages. In order tomake mycologistsaware of all aspects of basic methods (truly classical and culture based), a brief discussion on some of their important advantages/disadvantages is given below:

Advantages of Truly Classical and Culture Based Methods

  • These methods are still considered as the sources which can provide complete information on fungal communities of different areas with variable habitats. Because of the non-availability of DNA-based sequence data of all the fungi, it is the only criteria to determine basic information about individual species, such as geographic range, host relationships and ecological distribution.
  • The effects of abiotic variables (pH, soil nutrient content, weather-related variables) and biotic variables on fungi of the variable substrate and environmental conditions can be more easily studied by these methods.
  • As compared to an advanced one, these methods are more economical and can be executed with less specialized equipment.
  • Overall, the developing nations where adequate research funding is still a big challenge; these methods are important considerations for many investigators.

Disadvantages of Classical and Culture Based Methods

  • For the fungi which are unable to grow or produce reproductive structures on culture or hardly reproduce naturally, these methods are not suitable and become a major limitation in identifying, classifying and outlining fungi of a specific area.
  • The detailed procedure of sampling, culturing, isolation and identification methods are considerably more time consuming in comparison to more advanced techniques. The confirmation of new genera or species can be predicted more efficiently and accurately from the repeatedly sampled areas [120].
  • Due to the above-mentioned disadvantages, classical taxonomists are now considered to be endangered, as the interests of young researchers in classical methods is considerably reducing. If one willing to peruse a career in classical mycology, it takes a long duration of training. Similarly, to identify all of the collections based on the classical approach increases the time duration to find out final results. In molecular methods, technical expertise is quite enough to carry out research which also poses a major limitation to classical methods.

3.1.6. Advantages and Disadvantages of DNA Based Modern Methods

Besides having many advantages, the DNA-based methods also have some limitations, while modern methods are proven to be more efficient in the confirmation of new genera or species inlesser in time consumption. When classical methods are not able to study the fungi more specifically due to overlapping characters, i.e., a high degree of phenotypic plasticity, cryptic species and occurrence of different morphs for the same taxa [67,137,138], there are molecular methods which prove helpful to resolve such issues more accurately.
Like other methods, these methods also have certain disadvantages. The information we obtained with the help of this method is not so detailed as to be compared to classical methods; e.g., when we study basidiomata classically, we obtain a lot of information that we will never learn from DNA. Based on DNA-based techniques, numbers of new species are proposed, solely on the basis of unavailability of their sequences in the databases. Additionally, the submission of improper DNA sequences of many described fungi without proper editing is another drawback caused by molecular methods. Besides, poor taxon coverage in public depositories remains the principal impediment for successful species identification through molecular methods. The interpretation of BLAST results is regarded as the most important aspect in DNA-based methods of fungal identification. The availability of appropriate taxonomic and molecular experts in limited numbers is one of the major drawbacks of these methods. In addition, the contamination of DNA samples is another problem associated with molecular methods. Lastly, these methods are not cost effective in comparison to classical ones.
Keeping in view both advantages and disadvantages, it was found that mycological studies based on classical methods can perform better when combined with molecular analyses.

4. Assessment of Fungal Taxonomy and Diversity

Fungal taxonomy is the fundamental aspect of immense value utilized during mycological studies. The taxonomy of fungi based on morphological characters has been used for centuries and is still in use. Fungal taxonomy is generally required to identify and define existing and new fungi, andis ultimately useful in the assessment of their diversity and distribution. With the passage of time, the use of new and varied methods of fungal assessment came into existence which revolutionize the traditional methods based on morpho-taxonomy. However, both the methods based on morphology and molecular data care are still used equally and have their own levels of importance. It is primarily significant to use morphological-based methods and follow other approaches such as chemical, ecological, molecular or physiological analyses [139]. However, some technologies are expensive or inconvenient in terms ofuse in laboratories where the infrastructure is basic. Morphological analyses are, however, low-cost and results are acquired rapidly. These novel technologies have a relatively high cost. In cases wherethere is a limited quantity of a specimen or lack of sequence data, morphological data then play an important role in identification. In GenBank, there are many sequences which are wrongly named with errors. In such cases, detailed and extensive morphological characters help to resolve the taxonomy of them [140]. Therefore, morphology is still the most common technique to study fungi.
However, in recent times progress has driven taxonomic inferences towards DNA-based methods, and these procedures have parallel pros and cons. Modern mycotaxonomy has moved onward using morphological characters with a combination of chemotaxonomy, ecology, genetics, molecular biology and phylogeny [139,141,142,143,144,145]. The exploitation of sequence data for phylogenetic, biological, genetic and evolutionary analyses has offered a lot of understanding into the diversity and relationships of various fungal groups [71,139,146,147,148].
In DNA-based molecular characters, culture dependent and culture-independent methods are in practice nowadays to estimate fungal diversity. Culture-based approaches have been traditional, used to analyse microorganisms in indoor environments, including settled floor dust samples. However, this approach can be biased, for example, by microbial viability and/or culturability on a given nutrient medium. The advent of growth-independent molecular biology-based techniques, such as polymerase chain reaction (PCR) and DNA sequencing, has circumvented these difficulties. However, few studies have directly compared culture-based morphological identification methods with culture-independent DNA sequencing-based approaches. For example, a previous study compared the presence or absence of fungal species detected by a culture-based morphological identification method and a culture independent DNA sequencing method [149]. However, only a qualitative comparison was conducted between these two different approaches and a quantitative comparison was not conducted (Table 3 and Table 4). A detailed account of general tools and repositories generally used in DNA-based identification of fungi are presented in Table 5.
Likewise, a listing of Sequence Independent methodsand High-throughput sequencing platforms are summarized in Table 6. The pictorial overview on different molecular techniques, as well as the general protocol of culture dependent and culture independent DNA-based molecular techniques used in fungal sample analyses, is also present here (Figure 4 and Figure 5).

5. Polyphasic Identification

The correct identification of species is a crucial goal in taxonomy. Information about each identified fungal species (e.g., biochemical properties, ecological roles, morphological description, physiological and societal risks or benefits) is a vital component in this process. Identification is a never-ending and apparently lengthy process with several amendments of the taxonomic outlines.
The polyphasic approaches comprise the use of varied procedures based on the grouping of scientific information. Various approaches such as biochemical, micro-and macro-morphology, and molecular biology studies are applied (Figure 6). Microbial spectral analysis based on mass spectrometry (particularly matrix assisted laser desorption/ionization time-of-flight mass spectrometry//MALDI-TOF MS) has been developed and used as an important step in the polyphasic identification of fungi [355].
A polyphasic method based on ecology, morphology and molecular data based techniques (multigene sequencing) is highly advocated to identify the fungal species precisely. Phylogenetic analyses have been comprehensively used to interpret species limitations in several fungal genera [356,357] shown in Table 7. There are several fungal species that have not been correctly identified. However, there are numerous boundaries associated with phylogenetic analyses for species identification [358,359]. There is an absence of molecular data for many fungal species, including reference sequences, and few species only have ITS sequences, which obstructs molecular-based techniques [360,361]. Moreover, phylogenetic analyses do not account for hybridization events and horizontal gene transfer [359]. The internal transcribed spacer (ITS) region has been accepted as a nearly universal barcode for fungi owing to the ease of amplification and its wide utility across the kingdom; however, it can often only be used for placement of taxa up to the genus level [361,362]. There is also a lack of ex-type or authenticated sequences for several pathogenic genera [355]. The identification of species boundaries is, thus, important to better understand genetic variation in nature to develop sustainable control measures [363].
It is also recommended to use diverse methods, including Bayesian inference, maximum likelihood, maximum parsimony coupled with automatic barcode gap discovery, coalescent-based methods or genealogical concordance phylogenetic species recognition to explore species boundaries in various fungal genera [358,360,364].
Table 7. An overview of polyphasic approach on analyses of plant pathogenic fungi.
Table 7. An overview of polyphasic approach on analyses of plant pathogenic fungi.
FamilyGenusGenetic Marker for Genus LevelGenetic Markers for Species LevelReferences
PleosporaceaeAlternariaLSU and SSUITS, GAPDH, rpb2 and tef1-α[365,366,367,368]
PhysalacriaceaeArmillariaITSITS, IGS1 and tef1-α[369,370]
BotryosphaeriaceaeBarriopsisITStef1-α[371,372]
DidymellaceaeAscochyta, Boeremia, Didymella, Epicoccum, PhomaLSU and ITSrpb2, tub2 and tef1-α[373,374,375,376]
PleosporaceaeBipolarisGPDHITS, tef1-α and GPDH[377]
BotryosphaeriaceaeBotryosphaeriaLSU, SSU and ITStub and tef1-α[378,379]
NectriaceaeCalonectria, CylindrocladiumLSU and ITSITS, tub, tef1-α, cmdA, His3 and ACT[380,381,382,383,384]
MycosphaerellaceaeCercosporaLSU and ITSITS, tef1-α, ACT, CAL, HIS, tub2, rpb2 and GAPDH[385,386,387,388,389]
CryptobasidiaceaeClinoconidiumITS and LSUITS and LSU[390,391,392]
ChoanephoraceaeChoanephoraITSITS[393]
GlomerellaceaeColletotrichumGPDH, tub; ApMat-Intergenic region of apn2 and MAT1-2-1 genes can resolve within the
C. gloeosporioides complex
GS-glutamine synthetase-CHS-1, HIS3-Histone3 and ACT-Actin-Placement within the genus and also some species-level delineation[394,395,396]
SchizoparmaceaeConiellaLSU and ITSITS, LSU, tef1-α, rpb2 and His3[397,398,399,400,401]
PleosporaceaeCurvulariaLSUGDPH[402,403,404]
NectriaceaeCylindrocladiellaITS and LSUHIS, tef1-α and tub2[405,406]
CyphellophoraceaeCyphellophoraLSU and SSUITS, LSU, tub2 and rpb1[407,408]
BotryosphaeriaceaeDiplodiaITS, tef1-α and tubLSU and SSU[378,409]
BotryosphaeriaceaeDothiorellatubtef1-α[378,410]
ElsinoaceaeElsinoeITSrpb2 and tef1-α[411,412]
XylariaceaeEntoleucaLSU and ITSrpb2 and tub2[413]
EntylomataceaeEntylomaITSITS[80,414,415]
CorticiaceaeErythriciumLSUITS[416]
BotryosphaeriaceaeEutiarosporellaLSU and SSUITS and LSU[372,417,418]
HymenochaetaceaeFomitiporiaITSLSU, ITS, tef1-α and rpb2[419,420,421,422,423]
HymenochataceaeFulvifomesLSUITS, tef1-α and rpb2[424,425]
NectriaceaeFusariumATP citrate lyase (Acl1), tef1-α and ITSCalmodulin encoding gene (CmdA), tub2, tef1-α, rpb1 and rpb2[426,427,428]
GanodermataceaeGanodermaITSrpb2 and tef1-α[429,430,431,432,433,434,435]
ErysiphaceaeGolovinomycesITS and LSUITS and LSU, IGS, rpb2 and CHS[436,437,438,439,440]
BondarzewiaceaeHeterobasidionLSUrpb1 and rpb2[441]
NectriaceaeIlyonectriaITS, LSU, tef1-α and tub2tef1-α, tub2 and His3[442,443,444,445,446]
CorticiaceaeLaetisaria, LimonomycesLSUITS[447,448]
BotryosphaeriaceaeLasiodiplodiaSSU and LSUITS, tef1-α and tub2[378,449]
BotryosphaeriaceaeMacrophominaLSU and SSUITS, tef1-α, ACT, CmdA and tub2[378,450]
MedeolariaceaeMedeolariaITSITS[451]
CaloscyphaceaeCaloscyphaSSU and LSUSSU, LSU[452]
MeliolaceaeMeliolaLSU and SSUITS[453,454]
MucoraceaeMucorLSU and SSUITS and rpb1[455,456,457,458,459]
ErysiphaceaeNeoerysipheITS and LSUITS[460,461,462]
DermataceaeNeofabraeaLSUITS, LSU, rpb2 and tub2[463]
BotryosphaeriaceaeNeofusicoccumSSU, LSUITS, tef1-α, tub2 and rpb2[464]
NectriaceaeNeonectriaLSU, ITS, tef1-α and tub2ITS, tef1-α and tub2[446]
SporocadaceaeNeopestalotiopsisLSUITS, tub2 and tef1-α[465,466,467]
DidymellaceaeNothophomaLSU and ITStub2 and rpb2[468,469,470,471]
SporocadaceaePestalotiopsisLSUITS, tub2 and tef1-α[472,473]
TogninicaceaePhaeoacremoniumSSU and LSUACT and tub2[474,475,476]
HymenochataceaePhellinotusLSUITS, tef1-α and rpb2[477]
HymenochaetaceaePhellinusLSUITS, tef1-α and rpb2[478,479,480,481]
PhyllostictaceaePhyllostictaITSITS, LSU, tef1-α, GAPDH and ACT[57,482,483]
PeronosporacaePhytophthoraLSU, SSU and COX2LSU, tub2 and COX2[484,485]
PeronosporaceaePlasmoparaLSULSU[486]
LeptosphaeriaceaePlenodomusLSUITS, tub2 and rpb2[487]
SporocadaceaePseudopestalotiopsisLSUITS, tub2 and tef1[488,489]
PyriculariaceaePseudopyriculariaLSU and rpb1ACT, rpb1, ITS and CAL[490,491]
SaccotheciaceaePseudoseptoriaLSULSU, ITS and rpb2[492,493]
RhizopodaceaeRhizopusITS and rpb1SSU, LSU and ACT[494,495,496]
XylariaceaeRoselliniaLSU and ITSITS[497,498,499,500]
DidymellaceaeStagonosporopsisITStub2 and rpb2[373,501,502]
PleosporaceaeStemphyliumITSCmdA and GAPDH[503,504,505,506]
DothidotthiaceaeThyrostromaLSUITS, tef1-α, rpb2 and tub2[507,508]
TilletiaceaeTilletiaLSUITS[509,510,511,512]
UstilaginaceaeUstilagoLSUITS[53,513]
VenturiaceaeVenturiaLSU and SSUITS[514,515]

6. Conclusions and Future Perspectives

After compiling this manuscript, it was concluded thatabout 4–5 million species of fungi are distributed all across the globe, and less than 2% of them have been described to date. Different estimates of fungal species ranging between 0.1–9.9 million have been provided by different mycologists working continuously on the taxonomy and diversity of fungi. The addition of new fungal taxa (genera and species) is an ongoing process, as a number of natural environments and a variety of habitatsare still waiting to be explored in terms of their fungal diversity. Based on a regression relationship between time and described fungal species, the description rate of fungi was calculated, and new proposed estimates were also presented. As per the description rate observed after this regression relationship, the estimation of 1.5 million fungal species could be achieved by the year 2184, while the estimation of 2.2 million could be achieved by 2210 and 5.1 million by 2245.
Both classical and DNA-based methods to study fungi have their own utility and importance. While classical methods are still used widely due to low cost, ease of identifying species and ability to sample wide areas or many pieces of substrata, modern methods have also gained popularity due to their accuracy in characterizing the fungi which are not possible with traditional classical methods. When traditional morphology based species identification utilizes the overall morphology of an organism, DNA-based modern techniques require a very small amount of fungal sample. However, modern mycologists have accepted integrated approaches using both morphological and molecular data.
In the integral approach of traditional and modern methods of fungal analyses, fungal culture plays an important role. Production of different morphs on culture and other accessory structures are important for identification and characterization. Due to this non sporulation of many fungi neither on the natural substrate nor artificial culture media, the modern DNA-based technique proved to be more efficient to understand their taxonomy. New generation sequencing or metagenomic techniques are of much use to analyze the fungal diversity of different environments. There area large number of sequences from environmental samples (unculturable and dark taxa) available in GenBank which signifies the use of modern methods to describe many important fungi. The advancement in sequencing technologies of DNA and RNA is regularly helping researchers to study fungi in an integrative way and understand their biology, ecology and taxonomy in a better way. More than a billion HTS-derived ITS reads are available publicly in available databases and can be used by researchers during various mycological studies. It is important to use this data to assemble evidence hitherto overlooked, as well as new hypotheses, research questions and theories. If cultures of all fungi are deposited in culture collections and made easily available to researchers, it may perhaps add value to basic taxonomy research.
The future of fungal taxonomy is challenging, as fungal systematics research requires well-trained mycologists with good expertise in traditional fungal classification, molecular systematics and bioinformatics/genomics. In order to produce experienced mycologists, the number of training programmers on fungal systematics should be organized more frequently for younger researchers. Molecular systematics training is comparatively expensive in nature and requires a decent facility for sequencing and/orcomputation. Research funding is not so uniform for taxonomic studies and is one of the possible reasons for declining fungal taxonomists. If this all goes at the same pace, the lack of well-trained fungal taxonomists will be a problem not only in the field of fungal taxonomy, but other scientific fields that rely on knowledge of fungal biodiversity and evolutionary biology. Therefore, adequate funding for research on taxonomic work is necessary to come out of this deprived situation. For young minds in college or plant pathology departments, more field research and highly advanced training programs should be organized to stimulate their interest in mycology.

Author Contributions

Conceptualization, A.K.G. and R.K.V.; methodology, A.K.G. and S.A.; software, R.K.V., A.K.G., B.D. and M.N.; validation, A.K.G., R.K.V., N.S. and S.A.; formal analysis, A.K.G., N.S., Y.B. and M.N.; investigation, A.K.G. and R.K.V.; resources, A.K.G., R.K.V., S. and N.S.; data curation, A.K.G., R.K.V. and N.S.; writing—original draft preparation, A.K.G., R.K.V. and N.S.; writing—review and editing, N.S. and A.K.G.; visualization, N.S., R.K.V. and A.K.G.; supervision, A.K.G. and N.S.; project administration, A.K.G., R.K.V. and N.S.; funding acquisition, N.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

Authors wish to thank their respective organizations for providing the necessary laboratory facilities and valuable support during the study. The publication of this article was support by Chiang Mai University, Thailand.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Tsioumani, E.; Tsioumanis, A. International Institute for Sustainable Development Photo: NASA (CC0 1.0) STILL ONLY ONE EARTH: Lessons from 50 Years of UN Sustainable Development Policy Biological Diversity: Protecting the Variety of Life on Earth Key Messages. 2020. Available online: https://www.iisd.org/system/files/2020-09/still-one-earth-biodiversity.pdf (accessed on 15 October 2021).
  2. Schmit, J.P.; Mueller, G.M. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 2007, 16, 99–111. [Google Scholar] [CrossRef]
  3. Wu, B.; Hussain, M.; Zhang, W.; Stadler, M.; Liu, X.; Xiang, M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 2019, 10, 127–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Hasan, S.; Gupta, G. Fungal Biodiversity: Evolution & Distribution—A Review. Int. J. Appl. Res. Stud. 2012, 1, 1–8. [Google Scholar]
  5. Cox, R.J. Polyketides, proteins and genes in fungi: Programmed nano-machines begin to reveal their secrets. Org. Biomol. Chem. 2007, 5, 2010–2026. [Google Scholar] [CrossRef]
  6. Devi, R.; Kaur, T.; Kour, D.; Rana, K.L.; Yadav, A.; Yadav, A.N. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb. Biosyst. 2020, 5, 21–47. [Google Scholar] [CrossRef]
  7. Rana, K.L.; Kour, D.; Sheikh, I.; Yadav, N.; Yadav, A.N.; Kumar, V.; Singh, B.P.; Dhaliwal, H.S.; Saxena, A.K. Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In Advances in Endophytic Fungal Research; Springer International Publishing: Cham, Switzerland, 2019; pp. 105–144. [Google Scholar]
  8. Berbee, M.L.; James, T.Y.; Strullu-Derrien, C. Early Diverging Fungi: Diversity and Impact at the Dawn of Terrestrial Life. Annu. Rev. Microbiol. 2017, 71, 41–60. [Google Scholar] [CrossRef] [Green Version]
  9. Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Aoki, T.; Ariyawansa, H.A.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Fungal taxonomy and sequence-based nomenclature. Nat. Microbiol. 2021, 6, 540–548. [Google Scholar] [CrossRef]
  10. Blackwell, M. The fungi: 1, 2, 3… 5.1 million species? Am. J. Bot. 2011, 98, 426–438. [Google Scholar] [CrossRef]
  11. Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
  12. Hawksworth, D.L. The fungal dimension of biodiversity: Magnitude, significance, and conservation. Mycol. Res. 1991, 95, 641–655. [Google Scholar] [CrossRef]
  13. Peršoh, D. Plant-associated fungal communities in the light of meta’omics. Fungal Divers. 2015, 75, 1–25. [Google Scholar] [CrossRef]
  14. Bálint, M.; Bahram, M.; Eren, A.M.; Faust, K.; Fuhrman, J.; Lindahl, B.; O’Hara, R.B.; Öpik, M.; Sogin, M.L.; Unterseher, M.; et al. Millions of reads, thousands of taxa: Microbial community structure and associations analyzed via marker genes. FEMS Microbiol. Rev. 2016, 40, 686–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Wojciechowska, I. The Leather Underground: Biofabrication Offers New Sources for Fabrics. AATCC Rev. 2017, 17, 18–23. [Google Scholar] [CrossRef]
  16. Jones, M.; Bhat, T.; Huynh, T.; Kandare, E.; Yuen, K.K.R.; Wang, C.-H.; John, S. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater. 2018, 42, 816–825. [Google Scholar] [CrossRef]
  17. Wijayawardene, N.N.; Hyde, K.; Al-Ani, L.; Tedersoo, L.; Haelewaters, D.; Rajeshkumar, K.; Zhao, R.; Aptroot, A.; Leontyev, D.; Saxena, R.K.; et al. Outline of fungi and fungus-like taxa. Mycosphere 2020, 11, 1060–1456. [Google Scholar] [CrossRef]
  18. Tedersoo, L.; Sánchez-Ramírez, S.; Kõljalg, U.; Bahram, M.; Döring, M.; Schigel, D.; May, T.; Ryberg, M.; Abarenkov, K. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 2018, 90, 135–159. [Google Scholar] [CrossRef] [Green Version]
  19. Wijayawardene, N.N.; Pawłowska, J.; Letcher, P.M.; Kirk, P.M.; Humber, R.A.; Schüßler, A.; Wrzosek, M.; Muszewska, A.; Okrasińska, A.; Istel, Ł.; et al. Notes for genera: Basal clades of fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). Fungal Divers. 2018, 92, 43–129. [Google Scholar]
  20. James, T.Y.; Stajich, J.E.; Hittinger, C.T.; Rokas, A. Toward a Fully Resolved Fungal Tree of Life. Annu. Rev. Microbiol. 2020, 74, 291–313. [Google Scholar] [CrossRef]
  21. Rossman, A.Y.; Allen, W.C.; Braun, U.; Castlebury, L.; Chaverri, P.; Crous, P.W.; Hawksworth, D.L.; Hyde, K.D.; Johnston, P.; Lombard, L.; et al. Overlooked competing asexual and sexually typified generic names of Ascomycota with recommendations for their use or protection. IMA Fungus 2016, 7, 289–308. [Google Scholar] [CrossRef]
  22. Wijayawardene, N.N.; Hyde, K.D.; Rajeshkumar, K.C.; Hawksworth, D.L.; Madrid, H.; Kirk, P.M.; Braun, U.; Singh, R.V.; Crous, P.W.; Kukwa, M.; et al. Notes for genera: Ascomycota. Fungal Divers. 2017, 86, 1–594. [Google Scholar] [CrossRef] [Green Version]
  23. Wijayawardene, N.N.; Hyde, K.D.; Tibpromma, S.; Wanasinghe, D.N.; Thambugala, K.M.; Tian, Q.; Wang, Y. Towards incorporating asexual fungi in a natural classification: Checklist and notes 2012–2016. Mycosphere 2017, 8, 1457–1555. [Google Scholar] [CrossRef]
  24. Rossman, A.Y.; Seifert, K.A.; Samuels, G.J.; Minnis, A.M.; Schroers, H.J.; Lombard, L.; Crous, P.W.; Põldmaa, K.; Cannon, P.F.; Summerbell, R.C.; et al. Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus 2013, 4, 41–51. [Google Scholar] [CrossRef] [PubMed]
  25. Mortimer, P.E.; Jeewon, R.; Xu, J.-C.; Lumyong, S.; Wanasinghe, D.N. Morpho-Phylo Taxonomy of Novel Dothideomycetous Fungi Associated with Dead Woody Twigs in Yunnan Province, China. Front. Microbiol. 2021, 12, e654683. [Google Scholar] [CrossRef]
  26. Wijayawardene, N.N.; Crous, P.W.; Kirk, P.M.; Hawksworth, D.L.; Boonmee, S.; Braun, U.; Dai, D.-Q.; D’Souza, M.J.; Diederich, P.; Dissanayake, A.J.; et al. Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names. Fungal Divers. 2014, 69, 1–55. [Google Scholar] [CrossRef]
  27. Rossman, A.Y.; Crous, P.W.; Hyde, K.D.; Hawksworth, D.L.; Aptroot, A.; Bezerra, J.L.; Bhat, J.D.; Boehm, E.; Braun, U.; Boonmee, S.; et al. Recommended names for pleomorphic genera in Dothideomycetes. IMA Fungus 2015, 6, 507–523. [Google Scholar] [CrossRef] [PubMed]
  28. Hongsanan, S.; Hyde, K.D.; Phookamsak, R.; Wanasinghe, D.N.; McKenzie, E.H.C.; Sarma, V.V.; Lücking, R.; Boonmee, S.; Bhat, J.D.; Liu, N.-G.; et al. Refined families of Dothideomycetes: Orders and families incertaesedis in Dothideomycetes. Fungal Divers. 2020, 105, 17–318. [Google Scholar] [CrossRef]
  29. Hongsanan, S.; Hyde, K.D.; Phookamsak, R.; Wanasinghe, D.N.; McKenzie, E.H.C.; Sarma, V.V.; Boonmee, S.; Lücking, R.; Bhat, D.J.; Liu, N.G. Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 2020, 11, 1533–2107. [Google Scholar] [CrossRef]
  30. Johnston, P.R.; Seifert, K.A.; Stone, J.K.; Rossman, A.Y.; Marvanová, L. Recommendations on generic names competing for use in Leotiomycetes (Ascomycota). IMA Fungus 2014, 5, 91–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  31. Zhang, N.; Luo, J.; Rossman, A.Y.; Aoki, T.; Chuma, I.; Crous, P.W.; Dean, R.; de Vries, R.; Donofrio, N.; Hyde, K.D.; et al. Generic names in Magnaporthales. IMA Fungus 2016, 7, 155–159. [Google Scholar] [CrossRef]
  32. Baral, H.-O.; Weber, E.; Gams, W.; Hagedorn, G.; Liu, B.; Liu, X.; Marson, G.; Marvanová, L.; Stadler, M.; Weiß, M. Generic names in the Orbiliaceae (Orbiliomycetes) and recommendations on which names should be protected or suppressed. Mycol. Prog. 2018, 17, 5–31. [Google Scholar] [CrossRef] [Green Version]
  33. Ekanayaka, A.H.; Hyde, K.D.; Jones, E.B.G.; Zhao, Q. Taxonomy and phylogeny of operculate Discomycetes: Pezizomycetes. Fungal Divers. 2018, 90, 161–243. [Google Scholar] [CrossRef]
  34. Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Huang, S.-K.; Abdel-Wahab, M.A.; Daranagama, D.A.; Dayarathne, M.; D’Souza, M.J.; Goonasekara, I.D.; et al. Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers. 2015, 72, 199–301. [Google Scholar] [CrossRef]
  35. Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Bhat, J.D.; Dayarathne, M.C.; Huang, S.-K.; Norphanphoun, C.; Senanayake, I.C.; Perera, R.H.; et al. Families of Sordariomycetes. Fungal Divers. 2016, 79, 1–317. [Google Scholar] [CrossRef]
  36. Hyde, K.D.; Norphanphoun, C.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Jones, E.B.G.; Bundhun, D.; Chen, Y.J.; Bao, D.F.; Boonmee, S.; Calabon, M.S.; et al. Refined families of Sordariomycetes. Mycosphere 2020, 11, 305–1059. [Google Scholar] [CrossRef]
  37. Réblová, M.; Untereiner, W.A.; Štěpánek, V.; Gams, W. Disentangling Phialophora section Catenulatae: Disposition of taxa with pigmented conidiophores and recognition of a new subclass, Sclerococcomycetidae (Eurotiomycetes). Mycol. Prog. 2017, 16, 27–46. [Google Scholar] [CrossRef]
  38. Smith, G.J.; Liew, E.C.Y.; Hyde, K.D. The Xylariales: A monophyletic order containing 7 families. Fungal Divers. 2003, 13, 185–218. [Google Scholar]
  39. Senanayake, I.C.; Maharachchikumbura, S.; Hyde, K.D.; Bhat, J.D.; Jones, E.B.G.; McKenzie, E.H.C.; Dai, D.Q.; Daranagama, D.A.; Dayarathne, M.C.; Goonasekara, I.D.; et al. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers. 2015, 73, 73–144. [Google Scholar] [CrossRef]
  40. Healy, R.A.; Bonito, G.; Trappe, J.M. Calongea, a new genus of truffles in the Pezizaceae (Pezizales). Anales del JardínBotánico de Madrid 2009, 66, 25–32. [Google Scholar] [CrossRef] [Green Version]
  41. Hawksworth, D.L.; Eriksson, O.E. The names of accepted orders of ascomycetes. Syst. Ascomycetum 1986, 5, 175–184. [Google Scholar]
  42. Weir, A.; Blackwell, M. Molecular data support the Laboulbeniales as a separate class of Ascomycota, Laboulbeniomycetes. Mycol. Res. 2001, 105, 1182–1190. [Google Scholar] [CrossRef]
  43. Moncalvo, J.-M.; Vilgalys, R.; Redhead, S.A.; Johnson, J.E.; James, T.Y.; Aime, M.C.; Hofstetter, V.; Verduin, S.J.; Larsson, E.; Baroni, T.J.; et al. One hundred and seventeen clades of euagarics. Mol. Phylogenet. Evol. 2002, 23, 357–400. [Google Scholar] [CrossRef]
  44. Aime, M.C. Toward resolving family-level relationships in rust fungi (Uredinales). Mycoscience 2006, 47, 112–122. [Google Scholar] [CrossRef]
  45. Aime, M.C.; Matheny, P.B.; Henk, D.A.; Frieders, E.M.; Nilsson, R.H.; Piepenbring, M.; McLaughlin, D.J.; Szabo, L.J.; Begerow, D.; Sampaio, J.P.; et al. An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit RDNA sequences. Mycologia 2006, 98, 896–905. [Google Scholar] [CrossRef] [PubMed]
  46. Perry, B.A.; Hansen, K.; Pfister, D.H. A phylogenetic overview of the family Pyronemataceae (Ascomycota, Pezizales). Mycol. Res. 2007, 111, 549–571. [Google Scholar] [CrossRef]
  47. Hibbett, D.S.; Binder, M.; Bischoff, J.F.; Blackwell, M.; Cannon, P.F.; Eriksson, O.E.; Huhndorf, S.; James, T.; Kirk, P.M.; Lücking, R.; et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 2007, 111, 509–547. [Google Scholar] [CrossRef]
  48. Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Dictionary of the Fungi, 10th ed.; CABI: Wallingford, UK, 2008. [Google Scholar]
  49. Lumbsch, H.T.; Huhndorf, S.M. Myconet Volume 14. Part One. Outline of Ascomycota—2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113. Fieldiana Life Earth Sci. 2010, 1, 1–64. [Google Scholar] [CrossRef]
  50. Oehl, F.; Alves a Silva, G.; Goto, B.T.; Costa Maia, L.; Sieverding, E. Glomeromycota: Two new classes andaneworder. Mycotaxon 2011, 116, 365–379. [Google Scholar] [CrossRef]
  51. Humber, R.A. Entomophthoromycota: A new phylum and reclassification for entomophthoroid fungi. Mycotaxon 2012, 120, 477–492. [Google Scholar] [CrossRef]
  52. Wijayawardene, D.N.N.; McKenzie, E.H.C.; Hyde, K.D. Towards incorporating anamorphic fungi in a natural classification checklist and notes for 2011. Mycosphere 2012, 3, 157–228. [Google Scholar] [CrossRef]
  53. McTaggart, A.R.; Shivas, R.G.; Geering, A.D.W.; Vánky, K.; Scharaschkin, T. Taxonomic revision of Ustilago, Sporisorium and Macalpinomyces. Persoonia 2012, 29, 116–132. [Google Scholar] [CrossRef] [Green Version]
  54. Silva, G.; Maia, L.C.; Oehl, F. Phylogenetic systematics of the Gigasporales. Mycotaxon 2013, 122, 207–220. [Google Scholar] [CrossRef]
  55. Kirk, P.M.; Stalpers, J.A.; Braun, U.; Crous, P.W.; Hansen, K.; Hawksworth, D.L.; Hyde, K.D.; Lücking, R.; Lumbsch, T.H.; Rossman, A.Y.; et al. A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi, and plants. IMA Fungus 2013, 4, 381–443. [Google Scholar] [CrossRef] [Green Version]
  56. Hansen, K.; Perry, B.A.; Dranginis, A.W.; Pfister, D.H. A phylogeny of the highly diverse cup-fungus family Pyronemataceae (Pezizomycetes, Ascomycota) clarifies relationships and evolution of selected life history traits. Mol. Phylogenet. Evol. 2013, 67, 311–335. [Google Scholar] [CrossRef] [PubMed]
  57. Hyde, K.D.; Jones, E.B.G.; Liu, J.-K.; Ariyawansa, H.; Boehm, E.W.A.; Boonmee, S.; Braun, U.; Chomnunti, P.; Crous, P.W.; Dai, D.-Q.; et al. Families of Dothideomycetes. Fungal Divers. 2013, 63, 1–313. [Google Scholar] [CrossRef]
  58. Hofstetter, V.; Redhead, S.A.; Kauff, F.; Moncalvo, J.-M.; Matheny, P.B.; Vilgalys, R. Taxonomic Revision and Examination of Ecological Transitions of the Lyophyllaceae (Basidiomycota, Agaricales) Based on a Multigene Phylogeny. Cryptogam. Mycol. 2014, 35, 399–425. [Google Scholar] [CrossRef]
  59. Wang, Q.-M.; Yurkov, A.; Göker, M.; Lumbsch, H.; Leavitt, S.; Groenewald, M.; Theelen, B.; Liu, X.-Z.; Boekhout, T.; Bai, F.-Y. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud. Mycol. 2015, 81, 149–189. [Google Scholar] [CrossRef] [Green Version]
  60. Humber, R.A. Entomophthoromycota: A new overview of some of the oldest terrestrial fungi. In Biology of Microfungi; Springer International Publishing: Cham, Switzerland, 2016; pp. 127–145. [Google Scholar]
  61. Benny, G.L.; Smith, M.E.; Kirk, P.M.; Tretter, E.D.; White, M.M. Challenges and future perspectives in the systematics of Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. In Biology of Microfungi; Springer International Publishing: Cham, Switzerland, 2016; pp. 65–126. [Google Scholar]
  62. Spatafora, J.W.; Chang, Y.; James, T.Y.; O’Donnell, K.; Roberson, R.W.; Taylor, T.N.; Uehling, J.; Vilgalys, R.; White, M.M.; Stajich, J.E.; et al. A phylum-level phylogenetic classification of Zygomycete fungi based on genome-scale data. Mycologia 2016, 108, 1028–1046. [Google Scholar] [CrossRef] [Green Version]
  63. Galindo, L.J.; López-García, P.; Torruella, G.; Karpov, S.; Moreira, D. Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat. Commun. 2021, 12, 4973. [Google Scholar] [CrossRef]
  64. Hibbett, D.S.; Abarenkov, K.; Koljalg, U.; Öpik, M.; Chai, B.; Cole, J.R.; Wang, Q.; Crous, P.; Robert, V.A.R.G.; Helgason, T.; et al. Sequence-based classification and identification of Fungi. Mycologia 2016, 108, 1049–1068. [Google Scholar]
  65. Jaklitsch, W.M.; Gardiennet, A.; Voglmayr, H. Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia 2016, 37, 82–105. [Google Scholar] [CrossRef] [Green Version]
  66. Rossman, A.Y.; Udayanga, D.; Castlebury, L.A.; Hyde, K. Proposal to conserve the name Diaporthe eres against all other competing names (Ascomycota, Diaporthales, Diaporthaceae). Taxon 2014, 63, 934–935. [Google Scholar] [CrossRef]
  67. Wijayawardene, N.N.; Hyde, K.D.; Wanasinghe, D.N.; Papizadeh, M.; Goonasekara, I.D.; Camporesi, E.; Bhat, D.J.; McKenzie, E.H.C.; Phillips, A.J.L.; Diederich, P.; et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers. 2016, 77, 1–316. [Google Scholar] [CrossRef]
  68. Desirò, A.; Rimington, W.R.; Jacob, A.; Pol, N.V.; Smith, M.E.; Trappe, J.M.; Bidartondo, M.I.; Bonito, G. Multigene phylogeny of Endogonales, an early diverging lineage of fungi associated with plants. IMA Fungus 2017, 8, 245–257. [Google Scholar] [CrossRef] [PubMed]
  69. Lücking, R.; Hodkinson, B.P.; Leavitt, S.D. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota—Approaching one thousand genera. Bryologist 2017, 119, 361–416. [Google Scholar] [CrossRef]
  70. Malysheva, V.; Spirin, V. Taxonomy and phylogeny of the Auriculariales (Agaricomycetes, Basidiomycota) with stereoid basidiocarps. Fungal Biol. 2017, 121, 689–715. [Google Scholar] [CrossRef] [Green Version]
  71. Hongsanan, S.; Maharachchikumbura, S.; Hyde, K.D.; Samarakoon, M.C.; Jeewon, R.; Zhao, Q.; Al-Sadi, A.; Bahkali, A.H. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers. 2017, 84, 25–41. [Google Scholar] [CrossRef]
  72. Yang, T.; Groenewald, J.Z.; Cheewangkoon, R.; Jami, F.; Abdollahzadeh, J.; Lombard, L.; Crous, P.W. Families, genera, and species of Botryosphaeriales. Fungal Biol. 2017, 121, 322–346. [Google Scholar] [CrossRef]
  73. Liu, J.-K.; Hyde, K.D.; Jeewon, R.; Phillips, A.; Maharachchikumbura, S.; Ryberg, M.; Liu, Z.-Y.; Zhao, Q. Ranking higher taxa using divergence times: A case study in Dothideomycetes. Fungal Divers. 2017, 84, 75–99. [Google Scholar] [CrossRef]
  74. Justo, A.; Miettinen, O.; Floudas, D.; Ortiz-Santana, B.; Sjökvist, E.; Lindner, D.; Nakasone, K.; Niemelä, T.; Larsson, K.-H.; Ryvarden, L.; et al. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 2017, 121, 798–824. [Google Scholar] [CrossRef]
  75. Wijayawardene, N.N.; Hyde, K.D.; Lumbsch, T.; Liu, J.-K.; Maharachchikumbura, S.; Ekanayaka, A.H.; Tian, Q.; Phookamsak, R. Outline of Ascomycota: 2017. Fungal Divers. 2018, 88, 167–263. [Google Scholar] [CrossRef]
  76. Kraichak, E.; Huang, J.-P.; Nelsen, M.; Leavitt, S.D.; Lumbsch, H.T. A revised classification of orders and families in the two major subclasses of Lecanoromycetes (Ascomycota) based on a temporal approach. Bot. J. Linn. Soc. 2018, 188, 233–249. [Google Scholar] [CrossRef]
  77. Letcher, P.M.; Powell, M.J. A taxonomic summary and revision of Rozella (Cryptomycota). IMA Fungus 2018, 9, 383–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  78. Aime, M.C.; Castlebury, L.; Abbasi, M.; Begerow, D.; Berndt, R.; Kirschner, R.; Marvanová, L.; Ono, Y.; Padamsee, M.; Scholler, M.; et al. Competing sexual and asexual generic names in Pucciniomycotina and Ustilaginomycotina (Basidiomycota) and recommendations for use. IMA Fungus 2018, 9, 75–89. [Google Scholar] [CrossRef] [PubMed]
  79. Aime, M.C.; Bell, C.D.; Wilson, A.W. Deconstructing the evolutionary complexity between rust fungi (Pucciniales) and their plant hosts. Stud. Mycol. 2018, 89, 143–152. [Google Scholar] [CrossRef]
  80. Goldmann, L.; Weir, A. Molecular phylogeny of the Laboulbeniomycetes (Ascomycota). Fungal Biol. 2018, 122, 87–100. [Google Scholar] [CrossRef]
  81. Phillips, A.J.L.; Hyde, K.D.; Alves, A.; Liu, J.-K. Families in Botryosphaeriales: A phylogenetic, morphological and evolutionary perspective. Fungal Divers. 2019, 94, 1–22. [Google Scholar] [CrossRef]
  82. Daranagama, D.A.; Hyde, K.D.; Sir, E.B.; Thambugala, K.M.; Tian, Q.; Samarakoon, M.C.; McKenzie, E.H.C.; Jayasiri, S.C.; Tibpromma, S.; Bhat, J.D.; et al. Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Divers. 2018, 88, 1–165. [Google Scholar] [CrossRef]
  83. Sheikh, S.; Thulin, M.; Cavender, J.C.; Escalante, R.; Kawakami, S.-I.; Lado, C.; Landolt, J.C.; Nanjundiah, V.; Queller, D.C.; Strassmann, J.E.; et al. A New Classification of the Dictyostelids. Protist 2018, 169, 1–28. [Google Scholar] [CrossRef] [Green Version]
  84. Bennett, R.; Thines, M. Revisiting Salisapiliaceae. Fungal Syst. Evol. 2019, 3, 171–185. [Google Scholar] [CrossRef]
  85. Dayarathne, M.C.; Maharachchikumbura, S.S.N.; Jones, E.B.G.; Dong, W.; Devadatha, B.; Yang, J.; Ekanayaka, A.H.; De Silva, W.; Sarma, V.V.; Al-Sadi, A.M.; et al. Phylogenetic Revision of Savoryellaceae and Evidence for Its Ranking as a Subclass. Front. Microbiol. 2019, 10, 840. [Google Scholar] [CrossRef] [Green Version]
  86. He, M.-Q.; Zhao, R.-L.; Hyde, K.D.; Begerow, D.; Kemler, M.; Yurkov, A.; McKenzie, E.H.C.; Raspé, O.; Kakishima, M.; Sánchez-Ramírez, S.; et al. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 2019, 99, 105–367. [Google Scholar] [CrossRef] [Green Version]
  87. Johnston, P.R.; Quijada, L.; Carl, S.; López-Giráldez, F.; Wang, Z.; Townsend, J.P.; Smith, C.; Baral, H.-O.; Hosoya, T.; Baschien, C.; et al. A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus 2019, 10, 1. [Google Scholar] [CrossRef] [PubMed]
  88. Li, W.-J.; McKenzie, E.H.C.; Liu, J.-K.; Bhat, D.J.; Dai, D.-Q.; Camporesi, E.; Tian, Q.; Maharachchikumbura, S.S.N.; Luo, Z.-L.; Shang, Q.-J.; et al. Taxonomy and phylogeny of hyaline-spored Coelomycetes. Fungal Divers. 2020, 100, 279–801. [Google Scholar] [CrossRef]
  89. Wijayawardene, N.N.; Dai, D.Q.; Tang, L.Z.; Fiuza, P.O.; Barbosa, F.R.; Cantillo-Perez, T.; Rajeshkumar, K.C. The genera of Coelomycetes; including genera of lichen forming, sexual morphs and synasexual morphs with coelomycetous morphs (A–C). MycoAsia 2020, 3, 1–92. [Google Scholar]
  90. Aime, M.; McTaggart, A. A higher-rank classification for rust fungi, with notes on genera. Fungal Syst. Evol. 2021, 7, 21–47. [Google Scholar] [CrossRef] [PubMed]
  91. Gautam, A.K.; Avasthi, S.; Verma, R.K.; Devadatha, B.; Jayawardena, R.S.; Sushma; Ranadive, K.R.; Kashyap, P.L.; Bhadauria, R.; Prasher, I.B.; et al. Indian Pucciniales: Taxonomic outline with important descriptive notes. Mycosphere 2021, 12, 89–162. [Google Scholar] [CrossRef]
  92. Wijayawardene, N.N.; Hyde, K.D.; Anand, G.; Dissanayake, L.S.; Tang, L.Z.; Dai, D.Q. Towards incorporating asexually reproducing fungi in the natural classification and notes for pleomorphic genera. Mycosphere 2021, 12, 238–405. [Google Scholar] [CrossRef]
  93. Aime, M.C.; Miller, A.N.; Aoki, T.; Bensch, K.; Cai, L.; Crous, P.W.; Hawksworth, D.L.; Hyde, K.D.; Kirk, P.M.; Lücking, R.; et al. How to publish a new fungal species, or name, version 3.0? IMA Fungus 2021, 12, e11. [Google Scholar] [CrossRef]
  94. Heitman, J.; Howlett, B.J.; Crous, P.W.; Stukenbrock, E.H.; James, T.Y.; Gow, N.A.R. The Fungal Kingdom; John Wiley & Sons: Hoboken, NJ, USA; American Society for Microbiology: Washington, DC, USA, 2017. [Google Scholar]
  95. Blackwell, M.; Haelewaters, D.; Pfister, D.H. Laboulbeniomycetes: Evolution, natural history, and Thaxter’s final word. Mycologia 2020, 112, 1048–1059. [Google Scholar] [CrossRef]
  96. Genevieve, L.; Pierre-Luc, C.; Roxanne, G.-T.; Amélie, M.; Danny, B.; Vincent, M.; Hugo, G. Estimation of fungal diversity and identification of major abiotic drivers influencing fungal richness and communities in northern temperate and Boreal Quebec Forests. Forests 2019, 10, 1096. [Google Scholar] [CrossRef] [Green Version]
  97. Wijayawardene, N.N.; Bahram, M.; Sánchez-Castro, I.; Dai, D.-Q.; Ariyawansa, K.G.S.U.; Jayalal, U.; Suwannarach, N.; Tedersoo, L. Current Insight into Culture-Dependent and Culture-Independent Methods in Discovering Ascomycetous Taxa. J. Fungi 2021, 7, 703. [Google Scholar] [CrossRef] [PubMed]
  98. Willis, K.J. State of the World’s Fungi; Report; Kew Publishing: Kew, UK, 2018. [Google Scholar]
  99. Hawksworth, D.L. The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol. Res. 2001, 105, 1422–1432. [Google Scholar] [CrossRef] [Green Version]
  100. Hibbett, D.S.; Ohman, A.; Glotzer, D.; Nuhn, M.; Kirk, P.; Nilsson, R.H. Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol. Rev. 2011, 25, 38–47. [Google Scholar] [CrossRef]
  101. Dai, Y.-C.; Cui, B.; Si, J.; He, S.-H.; Hyde, K.D.; Yuan, H.-S.; Liu, X.-Y.; Zhou, L.-W. Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycol. Prog. 2015, 14, 62. [Google Scholar] [CrossRef]
  102. Bisby, G.; Ainsworth, G. The numbers of fungi. Trans. Br. Mycol. Soc. 1943, 26, 16–19. [Google Scholar] [CrossRef]
  103. Martin, G.W. The numbers of fungi. Proc. Iowa Acad. Sci. 1951, 58, 175–178. [Google Scholar]
  104. Pascoe, I. History of systematic mycology in Australia. In History of Systematic Botany in Australia; Short, P.S., Ed.; Australian Syst. Bot. Soc.: South Yarra, Australia, 1990; pp. 259–264. [Google Scholar]
  105. Hywel-Jones, N. A systematic survey of insect fungi from natural tropical forest in Thailand. In Aspects of Tropical Mycology; Isaac, S., Frankland, J.C., Watling, R., Whalley, A.J.S., Eds.; Cambridge University Press: Cambridge, UK, 1993; pp. 300–301. [Google Scholar]
  106. Hammond, P.M. The current magnitude of biodiversity. In Global Biodiversity Assessment; Heywood, V., Ed.; Cambridge University Press: Cambridge, UK, 1995; pp. 113–138. [Google Scholar]
  107. Hammond, P.M. Species inventory. In Global Biodiversity: Status of the Earth‘s Living Resources; Groombridge, B., Ed.; Chapman and Hall: London, UK, 1992; pp. 17–39. [Google Scholar]
  108. Smith, D.; Waller, J.M. Culture collections of microorganisms: Their importance in tropical plant pathology. Fitopatol. Bras. 1992, 17, 1–8. [Google Scholar]
  109. Rossman, A.Y. Strategy for an all-taxa inventory of fungal biodiversity. In Biodiversity and Terrestrial Ecosystems; Peng, C.I., Chou, C.H., Eds.; Academia Sinica Monograph Series No. 14; Institute of BotanyAcademia Sinica: Taipei, Taiwan, 1994; pp. 169–194. [Google Scholar]
  110. Dreyfuss, M.M.; Chapela, I.H. Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In The Discovery of Natural Products with Therapeutic Potential; Gullo, V., Ed.; Butterworth Heinemann: London, UK, 1994; pp. 49–80. [Google Scholar]
  111. Shivas, R.G.; Hyde, K.D. Biodiversity of plant pathogenic fungi in the tropics. In Biodiversity of Tropical Microfungi; Hyde, K.D., Ed.; Hong Kong University Press: Hong Kong, China, 1997; pp. 47–56. [Google Scholar]
  112. May, R.M. The dimensions of life on earth. In Nature and Human Society: The Quest for a Sustainable World; Raven, P.H., Williams, T., Eds.; National Academy Press: Washington, DC, USA, 2000; pp. 30–45. [Google Scholar]
  113. O’Brien, H.E.; Parrent, J.L.; Jackson, J.A.; Moncalvo, J.M.; Vilgalys, R. Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples. Appl. Environ. Microbiol. 2005, 71, 5544–5550. [Google Scholar] [CrossRef] [Green Version]
  114. Hyde, K.D.; Norphanphoun, C.; Chen, J.; Dissanayake, A.J.; Doilom, M.; Hongsanan, S.; Jayawardena, R.; Jeewon, R.; Perera, R.H.; Thongbai, B.; et al. Thailand’s amazing diversity: Up to 96% of fungi in northern Thailand may be novel. Fungal Divers. 2018, 93, 215–239. [Google Scholar] [CrossRef]
  115. Lücking, R.; Forno, M.D.; Sikaroodi, M.; Gillevet, P.M.; Bungartz, F.; Moncada, B.; Yánez-Ayabaca, A.; Chaves, J.L.; Coca, L.F.; Lawrey, J.D. A single macrolichen constitutes hundreds of unrecognized species. Proc. Natl. Acad. Sci. USA 2014, 111, 11091–11096. [Google Scholar] [CrossRef] [Green Version]
  116. Lücking, R.; Johnston, M.K.; Kalb, K.; Mangold, A.; Manoch, L.; Mercado-Diaz, J.A.; Moncada, B.; Mongkolsuk, P.; Papong, K.B.; Parnmen, S.; et al. One hundred and seventy-five new species of Graphidaceae: Closing the gap or a drop in the bucket? Phytotaxa 2014, 189, 7–38. [Google Scholar] [CrossRef]
  117. Aptroot, A.; Cáceres, M.E.S.; Johnston, M.K.; Lücking, R. How diverse is the lichenized fungal family Trypetheliaceae (Ascomycota: Dothideomycetes)? A quantitative prediction of global species richness. Lichenologist 2016, 48, 983–994. [Google Scholar] [CrossRef] [Green Version]
  118. Lodge, D.J.; Ammirati, J.; O’Dell, T.E.; Mueller, G.M. Collecting and describing macrofungi. In Biodiversity of Fungi: Inventory and Monitoring Methods; Mueller, G.M., Bills, G.F., Foster, M.S., Eds.; Academic Press: New York, NY, USA, 2004; pp. 123–168. [Google Scholar]
  119. Straatsma, G.; Ayer, F.; Egli, S. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol. Res. 2001, 105, 515–523. [Google Scholar] [CrossRef] [Green Version]
  120. Schmit, J.P.; Murphy, J.F.; Mueller, G.M. Macrofungal diversity of a temperate oak forest: A test of species richness estimators. Can. J. Bot. 1999, 77, 1014–1027. [Google Scholar]
  121. Huhndorf, S.M.; Lodge, D.J.; Wang, C.J.K.; Stokland, J. Macrofungi on woody substrata. In Biodiversity of Fungi: Inventory and Monitoring Methods; Mueller, G.M., Bills, G.F., Foster, M.S., Eds.; Academic Press: New York, NY, USA, 2004; pp. 123–168. [Google Scholar]
  122. Cantrell, S.A. Sampling methods to assess discomycete diversity in wet tropical forests. Caribb. J. Sci. 2004, 40, 8–16. [Google Scholar]
  123. Lodge, D.J.; Cantrell, S. Diversity of litter agarics at Cuyabeno, Ecuador: Calibrating sampling efforts in tropical rainforest. Mycologist 1995, 9, 149–151. [Google Scholar] [CrossRef] [Green Version]
  124. Polishook, J.D.; Bills, G.; Lodge, D.J. Microfungi from decaying leaves of two rain forest trees in Puerto Rico. J. Ind. Microbiol. Biotechnol. 1996, 17, 284–294. [Google Scholar] [CrossRef]
  125. Rambelli, A.; Mulas, B.; Pasqualetti, M. Comparative studies on microfungi in tropical ecosystems in Ivory Coast forest litter: Behaviour on different substrata. Mycol. Res. 2004, 108, 325–336. [Google Scholar] [CrossRef]
  126. Schnittler, M.; Stephenson, S.L. Myxomycete biodiversity in four different forest types in Costa Rica. Mycologia 2000, 92, 626–637. [Google Scholar] [CrossRef]
  127. Bills, G.F.; Polishook, J.D. Selective isolation of fungi from dung of Odocoileus hemionus (mule deer). Nova Hedwigia 1993, 57, 195–206. [Google Scholar]
  128. Krug, J.C.; Benny, G.L.; Keller, H.W. Coprophilous fungi. In Biodiversity of Fungi: Inventory and Monitoring Methods; Mueller, G.M., Bills, G.F., Foster, M.S., Eds.; Academic Press: New York, NY, USA, 2004; pp. 467–500. [Google Scholar]
  129. Richardson, M.J. Diversity and occurrence of coprophilous fungi. Mycol. Res. 2001, 105, 387–402. [Google Scholar] [CrossRef]
  130. Trappe, J.M.; Rossman, A.Y.; Tulloss, R.E.; O’Dell, T.E.; Thorn, R.G. Protocols for an All Taxa Biodiversity Inventory of Fungi in a Costa Rican Conservation Area. Mycologia 1998, 90, e1093. [Google Scholar] [CrossRef] [Green Version]
  131. Hyde, K.D.; Soytong, K. The fungal endophyte dialema. Fungal Divers. 2008, 33, 163–173. [Google Scholar]
  132. Bélanger, R.; Avis, T. Ecological processes and interactions in leaf surface fungi. In Phyllosphere Microbiology; Lindow, S.E., Hecht-Poinar, E.I., Elliot, V.J., Eds.; American Phytopathological Society Press: St. Paul, MN, USA, 2002; pp. 193–207. [Google Scholar]
  133. Lindow, S.E.; Hecht-Poinar, E.I.; Elliot, V.J. Phyllosphere Microbiology; American Phytopathological Society Press: St. Paul, MN, USA, 2002. [Google Scholar]
  134. Bills, G.F.; Polishook, J.D. Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 1994, 86, 187–198. [Google Scholar] [CrossRef]
  135. Bills, G.F.; Polishook, J.D. Microfungi from decaying leaves of Heliconia mariae (Heliconiaceae). Brenesia 1994, 41/42, 27–43. [Google Scholar]
  136. Basu, S.; Bose, C.; Ojha, N.; Das, N.; Das, J.; Pal, M.; Khurana, S. Evolution of bacterial and fungal growth media. Bioinformation 2015, 11, 182–184. [Google Scholar] [CrossRef]
  137. Hyde, K.D.; Hongsanan, S.; Jeewon, R.; Bhat, D.J.; McKenzie, E.H.C.; Jones, E.B.G.; Phookamsak, R.; Ariyawansa, H.; Boonmee, S.; Zhao, Q.; et al. Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 80, 1–270. [Google Scholar] [CrossRef]
  138. Jeewon, R.; Hyde, K.D. Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere 2016, 7, 1669–1677. [Google Scholar] [CrossRef]
  139. Manawasinghe, I.S.; Dissanayake, A.J.; Li, X.; Liu, M.; Wanasinghe, D.; Xu, J.; Zhao, W.; Zhang, W.; Zhou, Y.; Hyde, K.D.; et al. High Genetic Diversity and Species Complexity of Diaporthe Associated with Grapevine Dieback in China. Front. Microbiol. 2019, 10, e1936. [Google Scholar] [CrossRef]
  140. Hyde, K.D.; Bahkali, A.H.; Moslem, M.A. Fungi—An unusual source for cosmetics. Fungal Divers. 2010, 43, 1–9. [Google Scholar] [CrossRef]
  141. Senanayake, I.; Crous, P.; Groenewald, J.; Maharachchikumbura, S.; Jeewon, R.; Phillips, A.; Bhat, J.; Perera, R.; Li, Q.; Li, W.; et al. Families of Diaporthales based on morphological and phylogenetic evidence. Stud. Mycol. 2017, 86, 217–296. [Google Scholar] [CrossRef]
  142. Senanayake, I.C.; Jeewon, R.; Chomnunti, P.; Wanasinghe, D.N.; Norphanphoun, C.; Karunarathna, A.; Pem, D.; Perera, R.H.; Camporesi, E.; McKenzie, E.H.C.; et al. Taxonomic circumscription of Diaporthales based on multigene phylogeny and morphology. Fungal Divers. 2018, 93, 241–443. [Google Scholar] [CrossRef]
  143. Dissanayake, A.J.; Liu, M.; Zhang, W.; Chen, Z.; Udayanga, D.; Chukeatirote, E.; Li, X.H.; Yan, J.Y.; Hyde, K.D. Morphological and molecular characterization of Diaporthe species associated with grapevine trunk disease in China. Fungal Biol. 2015, 119, 283–294. [Google Scholar] [CrossRef] [PubMed]
  144. Phukhamsakda, C.; McKenzie, E.H.C.; Phillips, A.J.L.; Jones, E.B.G.; Bhat, D.J.; Stadler, M.; Bhunjun, C.S.; Wanasinghe, D.N.; Thongbai, B.; Camporesi, E.; et al. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Divers. 2020, 102, 1–203. [Google Scholar] [CrossRef]
  145. Wibberg, D.; Stadler, M.; Lambert, C.; Bunk, B.; Spröer, C.; Rückert, C.; Kalinowski, J.; Cox, R.J.; Kuhnert, E. High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. Fungal Divers. 2021, 106, 7–28. [Google Scholar] [CrossRef]
  146. de Silva, N.I.; Maharachchikumbura, S.S.N.; Thambugala, K.M.; Bhat, D.J.; Karunarathna, S.C.; Tennakoon, D.S.; Phookamsak, R.; Jayawardena, R.S.; Lumyong, S.; Hyde, K.D. Morphomolecular taxonomic studies reveal a high number of endophytic fungi from Magnolia candolli and M. garrettii in China and Thailand. Mycosphere 2021, 11, 163–237. [Google Scholar] [CrossRef]
  147. Shinohara, N.; Woo, C.; Yamamoto, N.; Hashimoto, K.; Yoshida-Ohuchi, H.; Kawakami, Y. Comparison of DNA sequencing and morphological identification techniques to characterize environmental fungal communities. Sci. Rep. 2021, 11, 2633. [Google Scholar] [CrossRef]
  148. Walker, A.K.; Robicheau, B.M. Fungal diversity and community structure from coastal and barrier island beaches in the United States Gulf of Mexico. Sci. Rep. 2021, 11, 3889. [Google Scholar] [CrossRef]
  149. Haelewaters, D.; Gorczak, M.; Kaishian, P.; De Kesel, A.; Blackwell, M. Laboulbeniomycetes, enigmatic fungi with a turbulent taxonomic history. In Encyclopedia of Mycology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 263–283. [Google Scholar]
  150. Hartmann, M.; Howes, C.G.; VanInsberghe, D.; Yu, H.; Bachar, D.; Christen, R.; Nilsson, R.H.; Hallam, S.J.; Mohn, W.W. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J. 2012, 6, 2199–2218. [Google Scholar] [CrossRef] [Green Version]
  151. Ihrmark, K.; Bödeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandström-Durling, M.; Clemmensen, K.E.; et al. New primers to amplify the fungal ITS2 region—Evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef]
  152. Davey, M.L.; Heegaard, E.; Halvorsen, R.; Ohlson, M.; Kauserud, H. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol. 2012, 195, 844–856. [Google Scholar] [CrossRef] [PubMed]
  153. Peay, K.G.; Baraloto, C.; Fine, P. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 2013, 7, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
  154. Davey, M.L.; Heegaard, E.; Halvorsen, R.; Kauserud, H.; Ohlson, M. Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Mol. Ecol. 2013, 22, 368–383. [Google Scholar] [CrossRef]
  155. Talbot, J.M.; Bruns, T.D.; Taylor, J.W.; Smith, D.P.; Branco, S.; Glassman, S.I.; Erlandson, S.; Vilgalys, R.; Liao, H.-L.; Smith, M.E.; et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl. Acad. Sci. USA 2014, 111, 6341–6346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  156. Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, e1256688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  157. Kadowaki, K.; Sato, H.; Yamamoto, S.; Tanabe, A.; Hidaka, A.; Toju, H. Detection of the horizontal spatial structure of soil fungal communities in a natural forest. Popul. Ecol. 2014, 56, 301–310. [Google Scholar] [CrossRef]
  158. Geml, J.; Gravendeel, B.; Van Der Gaag, K.; Neilen, M.; Lammers, Y.; Raes, N.; Semenova, T.A.; De Knijff, P.; Noordeloos, M.E. The Contribution of DNA Metabarcoding to Fungal Conservation: Diversity Assessment, Habitat Partitioning and Mapping Red-Listed Fungi in Protected Coastal Salix repens Communities in the Netherlands. PLoS ONE 2014, 9, e99852. [Google Scholar] [CrossRef]
  159. Davey, M.L.; Kauserud, H.; Ohlson, M. Forestry impacts on the hidden fungal biodiversity associated with bryophytes. FEMS Microbiol. Ecol. 2014, 90, 313–325. [Google Scholar] [CrossRef] [Green Version]
  160. McHugh, T.A.; Schwartz, E. Changes in plant community composition and reduced precipitation have limited effects on the structure of soil bacterial and fungal communities present in a semiarid grassland. Plant Soil 2015, 388, 175–186. [Google Scholar] [CrossRef]
  161. Op De Beeck, M.; Lievens, B.; Busschaert, P.; Declerck, S.; Vangronsveld, J.; Colpaert, J.V. Comparison and Validation of Some ITS Primer Pairs Useful for Fungal Metabarcoding Studies. PLoS ONE 2014, 9, e97629. [Google Scholar] [CrossRef] [Green Version]
  162. Yamamoto, S.; Sato, H.; Tanabe, A.S.; Hidaka, A.; Kadowaki, K.; Toju, H. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercusspecies. PLoS ONE 2014, 9, e96363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  163. Walker, D.M.; Lawrence, B.R.; Esterline, D.; Graham, S.P.; Edelbrock, M.A.; Wooten, J.A. A metagenomics-based approach to the top-down effect on the detritivore food web: A salamanders influence on fungal communities within a deciduous forest. Ecol. Evol. 2014, 4, 4106–4116. [Google Scholar] [CrossRef] [PubMed]
  164. Veach, A.; Dodds, W.K.; Jumpponen, A. Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem. FEMS Microbiol. Ecol. 2015, 91, fiv109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  165. Zhang, T.; Wei, X.-L.; Zhang, Y.-Q.; Liu, H.-Y.; Yu, L.-Y. Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing. Sci. Rep. 2015, 5, e14850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  166. Elliott, D.R.; Caporn, S.J.M.; Nwaishi, F.; Nilsson, H.; Sen, R. Bacterial and Fungal Communities in a Degraded Ombrotrophic Peatland Undergoing Natural and Managed Re-Vegetation. PLoS ONE 2015, 10, e0124726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  167. Geml, J.; Morgado, L.N.; Semenova, T.A.; Welker, J.M.; Walker, M.D.; Smets, E. Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi. FEMS Microbiol. Ecol. 2015, 91, fiv095. [Google Scholar] [CrossRef]
  168. Hoppe, B.; Purahong, W.; Wubet, T.; Kahl, T.; Bauhus, J.; Arnstadt, T.; Hofrichter, M.; Buscot, F.; Krüger, D. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers. 2016, 77, 367–379. [Google Scholar] [CrossRef]
  169. Jarvis, S.G.; Woodward, S.; Taylor, A.F.S. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol. 2015, 206, 1145–1155. [Google Scholar] [CrossRef] [Green Version]
  170. Chaput, D.L.; Hansel, C.M.; Burgos, W.D.; Santelli, C.M. Profiling Microbial Communities in Manganese Remediation Systems Treating Coal Mine Drainage. Appl. Environ. Microbiol. 2015, 81, 2189–2198. [Google Scholar] [CrossRef] [Green Version]
  171. van der Wal, A.; Ottosson, E.; de Boer, W. Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology 2015, 96, 124–133. [Google Scholar] [CrossRef] [Green Version]
  172. Clemmensen, K.E.; Finlay, R.; Dahlberg, A.; Stenlid, J.; Wardle, D.; Lindahl, B.D. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 2015, 205, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
  173. Gao, C.; Zhang, Y.; Shi, N.; Zheng, Y.; Chen, L.; Wubet, T.; Bruelheide, H.; Both, S.; Buscot, F.; Ding, Q.; et al. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytol. 2015, 205, 771–785. [Google Scholar] [CrossRef] [PubMed]
  174. Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 2015, 83, 29–39. [Google Scholar] [CrossRef]
  175. Oja, J.; Kohout, P.; Tedersoo, L.; Kull, T.; Kõljalg, U. Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytol. 2015, 205, 1608–1618. [Google Scholar] [CrossRef]
  176. Goldmann, K.; Schöning, I.; Buscot, F.; Wubet, T. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems. Front. Microbiol. 2015, 6, 1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  177. Tedersoo, L.; Anslan, S.; Bahram, M.; Põlme, S.; Riit, T.; Liiv, I.; Kõljalg, U.; Kisand, V.; Nilsson, H.; Hildebrand, F.; et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 2015, 10, 1–43. [Google Scholar] [CrossRef]
  178. Rime, T.; Hartmann, M.; Brunner, I.; Widmer, F.; Zeyer, J.; Frey, B. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol. Ecol. 2015, 24, 1091–1108. [Google Scholar] [CrossRef]
  179. Sterkenburg, E.; Bahr, A.; Durling, M.B.; Clemmensen, K.; Lindahl, B.D. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol. 2015, 207, 1145–1158. [Google Scholar] [CrossRef] [Green Version]
  180. Štursová, M.; Bárta, J.; Šantrůčková, H.; Baldrian, P. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol. Ecol. 2016, 92, fiw185. [Google Scholar] [CrossRef] [Green Version]
  181. Semenova, T.A.; Morgado, L.N.; Welker, J.M.; Walker, M.D.; Smets, E.; Geml, J. Compositional and functional shifts in arctic fungal communities in response to experimentally increased snow depth. Soil Biol. Biochem. 2016, 100, 201–209. [Google Scholar] [CrossRef] [Green Version]
  182. Santalahti, M.; Sun, H.; Jumpponen, A.; Pennanen, T.; Heinonsalo, J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol. Ecol. 2016, 92, fiw170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  183. Rime, T.; Hartmann, M.; Frey, B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J. 2016, 10, 1625–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  184. Roy-Bolduc, A.; Laliberté, E.; Hijri, M. High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecol. Evol. 2016, 6, 349–362. [Google Scholar] [CrossRef] [PubMed]
  185. Roy-Bolduc, A.; Laliberté, E.; Boudreau, S.; Hijri, M. Strong linkage between plant and soil fungal communities along a successional coastal dune system. FEMS Microbiol. Ecol. 2016, 92, fiw156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  186. Tedersoo, L.; Bahram, M.; Cajthaml, T.; Põlme, S.; Hiiesalu, I.; Anslan, S.; Harend, H.; Buegger, F.; Pritsch, K.; Koricheva, J.; et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 2016, 10, 346–362. [Google Scholar] [CrossRef] [Green Version]
  187. Wilhelm, R.C.; Cardenas, E.; Leung, H.; Maas, K.; Hartmann, M.; Hahn, A.; Hallam, S.; Mohn, W.W. A metagenomic survey of forest soil microbial communities more than a decade after timber harvesting. Sci. Data 2017, 4, 170092. [Google Scholar] [CrossRef]
  188. Urbina, H.; Scofield, D.G.; Cafaro, M.; Rosling, A. DNA-metabarcoding uncovers the diversity of soil-inhabiting fungi in the tropical island of Puerto Rico. Mycoscience 2016, 57, 217–227. [Google Scholar] [CrossRef]
  189. Valverde, A.; De Maayer, P.; Oberholster, T.; Henschel, J.; Louw, M.K.; Cowan, D. Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a Living Fossil. PLoS ONE 2016, 11, e0153353. [Google Scholar] [CrossRef]
  190. Nacke, H.; Goldmann, K.; Schöning, I.; Pfeiffer, B.; Kaiser, K.; Castillo-Villamizar, G.A.; Schrumpf, M.; Buscot, F.; Daniel, R.; Wubet, T. Fine spatial scale variation of soil microbial communities under European Beech and Norway Spruce. Front. Microbiol. 2016, 7, 2067. [Google Scholar] [CrossRef] [Green Version]
  191. Newsham, K.K.; Hopkins, D.; Carvalhais, L.C.; Fretwell, P.T.; Rushton, S.P.; O’Donnell, A.G.; Dennis, P.G. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Chang. 2016, 6, 182–186. [Google Scholar] [CrossRef] [Green Version]
  192. Nguyen, D.; Boberg, J.; Ihrmark, K.; Stenström, E.; Stenlid, J. Do foliar fungal communities of Norway spruce shift along a tree species diversity gradient in mature European forests? Fungal Ecol. 2016, 23, 97–108. [Google Scholar] [CrossRef] [Green Version]
  193. Goldmann, K.; Schröter, K.; Pena, R.; Schöning, I.; Schrumpf, M.; Buscot, F.; Polle, A.; Wubet, T. Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Sci. Rep. 2016, 6, e31439. [Google Scholar] [CrossRef] [PubMed]
  194. Bahram, M.; Kohout, P.; Anslan, S.; Harend, H.; Abarenkov, K.; Tedersoo, L. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J. 2016, 10, 885–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  195. Gehring, C.A.; Hayer, M.; Flores-Rentería, L.; Krohn, A.F.; Schwartz, E.; Dijkstra, P. Cheatgrass invasion alters the abundance and composition of dark septate fungal communities in sagebrush steppe. Botany 2016, 94, 481–491. [Google Scholar] [CrossRef] [Green Version]
  196. Gourmelon, V.; Maggia, L.; Powell, J.; Gigante, S.; Hortal, S.; Gueunier, C.; Letellier, K.; Carriconde, F. Environmental and Geographical Factors Structure Soil Microbial Diversity in New Caledonian Ultramafic Substrates: A Metagenomic Approach. PLoS ONE 2016, 11, e0167405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  197. Bissett, A.; Fitzgerald, A.; Meintjes, T.; Mele, P.M.; Reith, F.; Dennis, P.G.; Breed, M.; Brown, B.; Brown, M.V.; Brugger, J.; et al. Introducing BASE: The Biomes of Australian Soil Environments soil microbial diversity database. GigaScience 2016, 5, 21. [Google Scholar] [CrossRef] [Green Version]
  198. Cox, F.; Newsham, K.K.; Bol, R.; Dungait, J.A.J.; Robinson, C.H. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol. Lett. 2016, 19, 528–536. [Google Scholar] [CrossRef] [Green Version]
  199. Oh, S.-Y.; Fong, J.J.; Park, M.S.; Lim, Y.W. Distinctive Feature of Microbial Communities and Bacterial Functional Profiles in Tricholoma matsutake Dominant Soil. PLoS ONE 2016, 11, e0168573. [Google Scholar] [CrossRef]
  200. Frey, B.; Rime, T.; Phillips, M.; Stierli, B.; Hajdas, I.; Widmer, F.; Hartmann, M. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 2016, 92, fiw018. [Google Scholar] [CrossRef] [Green Version]
  201. de Gannes, V.; Bekele, I.; Dipchansingh, D.; Wuddivira, M.N.; De Cairies, S.; Boman, M.; Hickey, W.J. Microbial Community Structure and Function of Soil Following Ecosystem Conversion from Native Forests to Teak Plantation Forests. Front. Microbiol. 2016, 7, 1976. [Google Scholar] [CrossRef] [Green Version]
  202. Li, Y.; Wang, S.; Jiang, L.; Zhang, L.; Cui, S.; Meng, F.; Wang, Q.; Li, X.; Zhou, Y. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ. 2016, 222, 213–222. [Google Scholar] [CrossRef]
  203. Kielak, A.M.; Scheublin, T.R.; Mendes, L.W.; Van Veen, J.A.; Kuramae, E.E. Bacterial Community Succession in Pine-Wood Decomposition. Front. Microbiol. 2016, 7, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  204. Ji, M.; van Dorst, J.; Bissett, A.; Brown, M.V.; Palmer, A.S.; Snape, I.; Siciliano, S.D.; Ferrari, B.C. Microbial diversity at Mitchell Peninsula, Eastern Antarctica: A potential biodiversity “hotspot”. Polar Biol. 2016, 39, 237–249. [Google Scholar] [CrossRef]
  205. Baldrian, P.; Zrůstová, P.; Tláskal, V.; Davidová, A.; Merhautová, V.; Vrška, T. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 2016, 23, 109–122. [Google Scholar] [CrossRef]
  206. Barnes, C.J.; Maldonado, C.; Frøslev, T.G.; Antonelli, A.; Rønsted, N. Unexpectedly High Beta-Diversity of Root-Associated Fungal Communities in the Bolivian Andes. Front. Microbiol. 2016, 7, 1377. [Google Scholar] [CrossRef]
  207. Porter, T.M.; Shokralla, S.; Baird, D.; Golding, G.B.; Hajibabaei, M. Ribosomal DNA and Plastid Markers Used to Sample Fungal and Plant Communities from Wetland Soils Reveals Complementary Biotas. PLoS ONE 2016, 11, e0142759. [Google Scholar] [CrossRef] [Green Version]
  208. Zhou, J.; Deng, Y.; Shen, L.; Wen, C.; Yan, Q.; Ning, D.; Qin, Y.; Xue, K.; Wu, L.; He, Z.; et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 2016, 7, 12083. [Google Scholar] [CrossRef] [Green Version]
  209. Zhou, X.; Tian, L.; Zhang, J.; Ma, L.; Li, X.; Tian, C. Rhizospheric Fungi and Their link with the nitrogen-fixing Frankia harbored in host plant Hippophaerhamnoides L. J. Basic Microbiol. 2017, 57, 1055–1064. [Google Scholar] [CrossRef]
  210. Wang, W.; Zhai, Y.; Cao, L.; Tan, H.; Zhang, R. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol. Res. 2016, 188–189, 1–8. [Google Scholar] [CrossRef]
  211. Žifčáková, L.; Větrovský, T.; Howe, A.; Baldrian, P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter: Seasonal dynamics of a soil microbial community. Environ. Microbiol. 2016, 18, 288–301. [Google Scholar] [CrossRef]
  212. Van Der Wal, A.; Gunnewiek, P.J.A.K.; Cornelissen, J.H.C.; Crowther, T.W.; De Boer, W. Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere 2016, 7, 01393. [Google Scholar] [CrossRef] [Green Version]
  213. Varenius, K.; Lindahl, B.D.; Dahlberg, A. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests. FEMS Microbiol. Ecol. 2017, 93, fix105. [Google Scholar] [CrossRef] [PubMed]
  214. van der Wal, A.; Klein Gunnewiek, P.; de Hollander, M.; de Boer, W. Fungal diversity and potential tree pathogens in decaying logs and stumps. For. Ecol. Manag. 2017, 406, 266–273. [Google Scholar] [CrossRef]
  215. Wang, M.; Chen, M.; Yang, Z.; Chen, N.; Chi, X.; Pan, L.; Wang, T.; Yu, S.; Guo, X. Influence of Peanut Cultivars and Environmental Conditions on the Diversity and Community Composition of Pod Rot Soil Fungi in China. Mycobiology 2017, 45, 392–400. [Google Scholar] [CrossRef] [Green Version]
  216. van der Wal, A.; kleinGunnewiek, P.; de Boer, W. Soil-wood interactions: Influence of decaying coniferous and broadleaf logs on composition of soil fungal communities. Fungal Ecol. 2017, 30, 132–134. [Google Scholar] [CrossRef]
  217. Vasutova, M.; Edwards-Jonášová, M.; Baldrian, P.; Čermák, M.; Cudlín, P. Distinct environmental variables drive the community composition of mycorrhizal and saprotrophic fungi at the alpine treeline ecotone. Fungal Ecol. 2017, 27, 116–124. [Google Scholar] [CrossRef]
  218. Vaz, A.B.; Fonseca, P.; Góes-Neto, A.; Leite, L.R.; Badotti, F.; Salim, A.C.; Araujo, F.M.; Cuadros-Orellana, S.; Duarte, Â.A.; Rosa, C.A.; et al. Using next-generation sequencing (NGS) to uncover diversity of wood-decaying fungi in neotropical Atlantic forests. Phytotaxa 2017, 295, 1–21. [Google Scholar] [CrossRef] [Green Version]
  219. Yang, T.; Adams, J.; Shi, Y.; He, J.-S.; Jing, X.; Chen, L.; Tedersoo, L.; Chu, H. Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytol. 2017, 215, 756–765. [Google Scholar] [CrossRef] [Green Version]
  220. Wicaksono, C.Y.; Gutiérrez, J.A.; Nouhra, E.; Pastor, N.; Raes, N.; Pacheco, S.; Geml, J. Contracting montane cloud forests: A case study of the Andean alder (Alnus acuminata) and associated fungi in the Yungas. Biotropica 2017, 49, 141–152. [Google Scholar] [CrossRef]
  221. Yang, T.; Adams, J.; Shi, Y.; Sun, H.; Cheng, L.; Zhang, Y.; Chu, H. Fungal community assemblages in a high elevation desert environment: Absence of dispersal limitation and edaphic effects in surface soil. Soil Biol. Biochem. 2017, 115, 393–402. [Google Scholar] [CrossRef] [Green Version]
  222. Zhang, W.; Lu, Z.; Yang, K.; Zhu, J. Impacts of conversion from secondary forests to larch plantations on the structure and function of microbial communities. Appl. Soil Ecol. 2017, 111, 73–83. [Google Scholar] [CrossRef]
  223. Zhang, Z.; Zhou, X.; Tian, L.; Ma, L.; Luo, S.; Zhang, J.; Li, X.; Tian, C. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China. PLoS ONE 2017, 12, e0187575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  224. Purahong, W.; Pietsch, K.A.; Lentendu, G.; Schöps, R.; Bruelheide, H.; Wirth, C.; Buscot, F.; Wubet, T. Characterization of Unexplored Deadwood Mycobiome in Highly Diverse Subtropical Forests Using Culture-independent Molecular Technique. Front. Microbiol. 2017, 8, 574. [Google Scholar] [CrossRef] [PubMed]
  225. Poosakkannu, A.; Nissinen, R.; Männistö, M.; Kytöviita, M.-M. Microbial community composition but not diversity changes along succession in arctic sand dunes: Deschampsiaflexuosa associated microbiomes. Environ. Microbiol. 2017, 19, 698–709. [Google Scholar] [CrossRef] [Green Version]
  226. Bergottini, V.; Hervé, V.; Sosa, D.; Otegui, M.; Zapata, P.D.; Junier, P. Exploring the diversity of the root-associated microbiome of Ilex paraguariensis St. Hil. (Yerba Mate). Appl. Soil Ecol. 2017, 109, 23–31. [Google Scholar] [CrossRef]
  227. Dean, S.L.; Tobias, T.B.; Phippen, W.B.; Clayton, A.W.; Gruver, J.; Porras-Alfaro, A. A study of Glycine max (soybean) fungal communities under different agricultural practices. Plant Gene 2017, 11, 8–16. [Google Scholar] [CrossRef]
  228. Fernández-Martínez, M.A.; Pérez-Ortega, S.; Pointing, S.B.; Green, T.G.A.; Pintado, A.; Rozzi, R.; Sancho, L.; Rios, A.D.L. Microbial succession dynamics along glacier forefield chronosequences in Tierra del Fuego (Chile). Polar Biol. 2017, 40, 1939–1957. [Google Scholar] [CrossRef]
  229. Ge, Z.-W.; Brenneman, T.; Bonito, G.; Smith, M.E. Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis). Plant Soil 2017, 418, 493–505. [Google Scholar] [CrossRef]
  230. Gomes, S.I.F.; Aguirre-Gutiérrez, J.; Bidartondo, M.I.; Merckx, V.S.F.T. Arbuscular mycorrhizal interactions of mycoheterotrophic Thismia are more specialized than in autotrophic plants. New Phytol. 2017, 213, 1418–1427. [Google Scholar] [CrossRef] [Green Version]
  231. Almario, J.; Jeena, G.; Wunder, J.; Langen, G.; Zuccaro, A.; Coupland, G.; Bucher, M. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc. Natl. Acad. Sci. USA 2017, 114, E9403–E9412. [Google Scholar] [CrossRef] [Green Version]
  232. Anthony, M.A.; Frey, S.D.; Stinson, K.A. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere 2017, 8, e01951. [Google Scholar] [CrossRef] [Green Version]
  233. Grau, O.; Geml, J.; Pérez-Haase, A.; Ninot, J.M.; Semenova-Nelsen, T.A.; Peñuelas, J. Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic. Mol. Ecol. 2017, 26, 4798–4810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  234. Hiiesalu, I.; Bahram, M.; Tedersoo, L. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol. Ecol. 2017, 26, 4846–4858. [Google Scholar] [CrossRef] [PubMed]
  235. Nguyen, D.; Boberg, J.; Cleary, M.; Bruelheide, H.; Hönig, L.; Koricheva, J.; Stenlid, J. Foliar fungi of Betula pendula: Impact of tree species mixtures and assessment methods. Sci. Rep. 2017, 7, 41801. [Google Scholar] [CrossRef] [Green Version]
  236. Kolaříková, Z.; Kohout, P.; Krüger, C.; Janoušková, M.; Mrnka, L.; Rydlová, J. Root-associated fungal communities along a primary succession on a mine spoil: Distinct ecological guilds assemble differently. Soil Biol. Biochem. 2017, 113, 143–152. [Google Scholar] [CrossRef]
  237. Kyaschenko, J.; Clemmensen, K.; Hagenbo, A.; Karltun, E.; Lindahl, B.D. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 2017, 11, 863–874. [Google Scholar] [CrossRef]
  238. Oja, J.; Vahtra, J.; Bahram, M.; Kohout, P.; Kull, T.; Rannap, R.; Kõljalg, U.; Tedersoo, L. Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands. Mycorrhiza 2017, 27, 355–367. [Google Scholar] [CrossRef]
  239. Miura, T.; Sánchez, R.; Castañeda, L.E.; Godoy, K.; Barbosa, O. Is microbial terroir related to geographic distance between vineyards? Environ. Microbiol. Rep. 2017, 9, 742–749. [Google Scholar] [CrossRef]
  240. Oono, R.; Rasmussen, A.; Lefèvre, E. distance decay relationships in foliar fungal endophytes are driven by rare taxa: Distance decay in fungal endophytes. Environ. Microbiol. 2017, 19, 2794–2805. [Google Scholar] [CrossRef]
  241. Kamutando, C.N.; Vikram, S.; Kamgan-Nkuekam, G.; Makhalanyane, T.P.; Greve, M.; Le Roux, J.J.; Richardson, D.; Cowan, D.; Valverde, A. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Sci. Rep. 2017, 7, 6472. [Google Scholar] [CrossRef] [Green Version]
  242. Shen, Z.; Penton, C.R.; Lv, N.; Xue, C.; Yuan, X.; Ruan, Y.; Li, R.; Shen, Q. Banana Fusarium Wilt Disease Incidence Is Influenced by Shifts of Soil Microbial Communities under Different Monoculture Spans. Microb. Ecol. 2018, 75, 739–750. [Google Scholar] [CrossRef] [PubMed]
  243. Smith, M.E.; Henkel, T.W.; Williams, G.C.; Aime, M.C.; Fremier, A.K.; Vilgalys, R. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbecorymbosa. New Phytol. 2017, 215, 443–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  244. Tian, H.; Wang, H.; Hui, X.; Wang, Z.; Drijber, R.A.; Liu, J. Changes in soil microbial communities after 10 years of winter wheat cultivation versus fallow in an organic-poor soil in the Loess Plateau of China. PLoS ONE 2017, 12, e0184223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  245. Tu, B.; Domene, X.; Yao, M.; Li, C.; Zhang, S.; Kou, Y.; Wang, Y.; Li, X. Microbial diversity in Chinese temperate steppe: Unveiling the most influential environmental drivers. FEMS Microbiol. Ecol. 2017, 93, fix031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  246. Sharma-Poudyal, D.; Schlatter, D.; Yin, C.; Hulbert, S.; Paulitz, T. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems. PLoS ONE 2017, 12, e0184611. [Google Scholar] [CrossRef] [Green Version]
  247. Cross, H.; Sønstebø, J.H.; Nagy, N.E.; Timmermann, V.; Solheim, H.; Børja, I.; Kauserud, H.; Carlsen, T.; Rzepka, B.; Wasak, K.; et al. Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus. New Phytol. 2017, 213, 1405–1417. [Google Scholar] [CrossRef]
  248. Kazartsev, I.; Shorohova, E.; Kapitsa, E.; Kushnevskaya, H. Decaying Piceaabies log bark hosts diverse fungal communities. Fungal Ecol. 2018, 33, 1–12. [Google Scholar] [CrossRef]
  249. Bickford, W.A.; Goldberg, D.E.; Kowalski, K.P.; Zak, D.R. Root endophytes and invasiveness: No difference between native and non-native Phragmites in the Great Lakes Region. Ecosphere 2018, 9, 02526. [Google Scholar] [CrossRef] [Green Version]
  250. Cline, L.C.; Schilling, J.S.; Menke, J.; Groenhof, E.; Kennedy, P.G. Ecological and functional effects of fungal endophytes on wood decomposition. Funct. Ecol. 2018, 32, 181–191. [Google Scholar] [CrossRef] [Green Version]
  251. Cregger, M.A.; Veach, A.; Yang, Z.K.; Crouch, M.J.; Vilgalys, R.; Tuskan, G.A.; Schadt, C.W. The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome 2018, 6, e31. [Google Scholar] [CrossRef]
  252. Marasco, R.; Mosqueira, M.J.; Fusi, M.; Ramond, J.-B.; Merlino, G.; Booth, J.M.; Maggs-Kölling, G.; Cowan, D.A.; Daffonchio, D. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome 2018, 6, e215. [Google Scholar] [CrossRef] [PubMed]
  253. Glynou, K.; Nam, B.; Thines, M.; Maciá-Vicente, J.G. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytol. 2018, 217, 1190–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  254. Montagna, M.; Berruti, A.; Bianciotto, V.; Cremonesi, P.; Giannico, R.; Gusmeroli, F.; Lumini, E.; Pierce, S.; Pizzi, F.; Turri, F.; et al. Differential biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an Alpine succession gradient. Mol. Ecol. 2018, 27, 3671–3685. [Google Scholar] [CrossRef] [PubMed]
  255. Schlegel, M.; Queloz, V.; Sieber, T.N. The Endophytic Mycobiome of European Ash and Sycamore Maple Leaves—Geographic Patterns, Host Specificity and Influence of Ash Dieback. Front. Microbiol. 2018, 9, e2345. [Google Scholar] [CrossRef]
  256. Schneider-Maunoury, L.; Leclercq, S.; Clément, C.; Covès, H.; Lambourdière, J.; Sauve, M.; Richard, F.; Selosse, M.-A.; Taschen, E. Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants? Fungal Ecol. 2018, 31, 59–68. [Google Scholar] [CrossRef]
  257. Schön, M.E.; Nieselt, K.; Garnica, S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS ONE 2018, 13, e0208493. [Google Scholar] [CrossRef]
  258. Rasmussen, P.U.; Hugerth, L.W.; Blanchet, F.G.; Andersson, A.; Lindahl, B.D.; Tack, A.J.M. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. New Phytol. 2018, 220, 1248–1261. [Google Scholar] [CrossRef] [Green Version]
  259. Rogers, T.J.; Leppanen, C.; Brown, V.; Fordyce, J.A.; LeBude, A.; Ranney, T.; Simberloff, D.; Cregger, M.A. Exploring variation in phyllosphere microbial communities across four hemlock species. Ecosphere 2018, 9, e02524. [Google Scholar] [CrossRef] [Green Version]
  260. Purahong, W.; Wubet, T.; Kahl, T.; Arnstadt, T.; Hoppe, B.; Lentendu, G.; Baber, K.; Rose, T.; Kellner, H.; Hofrichter, M.; et al. Increasing N deposition impacts neither diversity nor functions of deadwood-inhabiting fungal communities, but adaptation and functional redundancy ensure ecosystem function. Environ. Microbiol. 2018, 20, 1693–1710. [Google Scholar] [CrossRef]
  261. Qian, X.; Chen, L.; Guo, X.; He, D.; Shi, M.; Zhang, D. Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting Mussaenda shikokiana along an elevation gradient. PeerJ 2018, 6, e5767. [Google Scholar] [CrossRef] [Green Version]
  262. Park, M.S.; Eimes, J.A.; Oh, S.H.; Suh, H.J.; Oh, S.-Y.; Lee, S.; Park, K.H.; Kwon, H.J.; Kim, S.-Y.; Lim, Y.W. Diversity of fungi associated with roots of Calanthe orchid species in Korea. J. Microbiol. 2018, 56, 49–55. [Google Scholar] [CrossRef] [PubMed]
  263. Mirmajlessi, S.M.; Bahram, M.; Mänd, M.; Najdabbasi, N.; Mansouripour, S.; Loit, E. Survey of Soil Fungal Communities in Strawberry Fields by Illumina Amplicon Sequencing. Eurasian Soil Sci. 2018, 51, 682–691. [Google Scholar] [CrossRef]
  264. Purahong, W.; Wubet, T.; Lentendu, G.; Hoppe, B.; Jariyavidyanont, K.; Arnstadt, T.; Baber, K.; Otto, P.; Kellner, H.; Hofrichter, M.; et al. Determinants of deadwood-inhabiting fungal communities in temperate forests: Molecular evidence from a large scale deadwood decomposition experiment. Front. Microbiol. 2018, 9, 2120. [Google Scholar] [CrossRef] [PubMed]
  265. Si, P.; Shao, W.; Yu, H.; Yang, X.; Gao, D.; Qiao, X.; Wang, Z.; Wu, G. Rhizosphere Microenvironments of Eight Common Deciduous Fruit Trees Were Shaped by Microbes in Northern China. Front. Microbiol. 2018, 9, e3147. [Google Scholar] [CrossRef]
  266. Saitta, A.; Anslan, S.; Bahram, M.; Brocca, L.; Tedersoo, L. Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem. Mycorrhiza 2018, 28, 39–47. [Google Scholar] [CrossRef]
  267. Santalahti, M.; Sun, H.; Sietiö, O.-M.; Köster, K.; Berninger, F.; Laurila, T.; Pumpanen, J.; Heinonsalo, J. Reindeer grazing alter soil fungal community structure and litter decomposition related enzyme activities in boreal coniferous forests in Finnish Lapland. Appl. Soil Ecol. 2018, 132, 74–82. [Google Scholar] [CrossRef]
  268. Sukdeo, N.; Teen, E.; Rutherford, P.M.; Massicotte, H.B.; Egger, K.N. Selecting fungal disturbance indicators to compare forest soil profile re-construction regimes. Ecol. Indic. 2018, 84, 662–682. [Google Scholar] [CrossRef]
  269. Zhu, S.; Wang, Y.; Xu, X.; Liu, T.; Wu, D.; Zheng, X.; Tang, S.; Dai, Q. Potential use of high-throughput sequencing of soil microbial communities for estimating the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud). PLoS ONE 2018, 13, e0197095. [Google Scholar] [CrossRef] [Green Version]
  270. Zhang, J.; Zhang, B.; Liu, Y.; Guo, Y.; Shi, P.; Wei, G. Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Sci. Total Environ. 2018, 644, 791–800. [Google Scholar] [CrossRef]
  271. Zhang, B.; Zhang, Y.; Li, X.; Zhang, Y. Successional changes of fungal communities along the biocrust development stages. Biol. Fertil. Soils 2018, 54, 285–294. [Google Scholar] [CrossRef]
  272. Sun, R.; Li, W.; Dong, W.; Tian, Y.; Hu, C.; Liu, B. Tillage changes vertical distribution of soil bacterial and fungal communities. Front. Microbiol. 2018, 9, 699. [Google Scholar] [CrossRef] [PubMed]
  273. Weißbecker, C.; Wubet, T.; Lentendu, G.; Kühn, P.; Scholten, T.; Bruelheide, H.; Buscot, F. Experimental evidence of functional group-dependent effects of tree diversity on soil fungi in subtropical forests. Front. Microbiol. 2018, 9, 2312. [Google Scholar] [CrossRef] [PubMed]
  274. Purahong, W.; Mapook, A.; Wu, Y.T.; Chen, C.T. Characterization of the Castanopsis carlesii deadwood mycobiome by pacbio sequencing of the full-length fungal nuclear ribosomal Internal Transcribed Spacer (ITS). Front. Microbiol. 2019, 10, 983. [Google Scholar] [CrossRef] [PubMed]
  275. Egidi, E.; Delgado-Baquerizo, M.; Plett, J.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  276. Frøslev, T.G.; Kjøller, R.; Bruun, H.H.; Ejrnæs, R.; Hansen, A.J.; Læssøe, T.; Heilmann-Clausen, J. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biol. Conserv. 2019, 233, 201–212. [Google Scholar] [CrossRef]
  277. Ogwu, M.C.; Takahashi, K.; Dong, K.; Song, H.-K.; Moroenyane, I.; Waldman, B.; Adams, J.M. Fungal elevational rapoport pattern from a high mountain in Japan. Sci. Rep. 2019, 9, 6570. [Google Scholar] [CrossRef] [Green Version]
  278. Ovaskainen, O.; Abrego, N.; Somervuo, P.; Palorinne, I.; Hardwick, B.; Pitkänen, J.-M.; Andrew, N.R.; Niklaus, P.A.; Schmidt, N.M.; Seibold, S.; et al. Monitoring fungal communities with the global spore sampling project. Front. Ecol. Evol. 2020, 7, 511. [Google Scholar] [CrossRef] [Green Version]
  279. Qian, X.; Li, H.; Wang, Y.; Wu, B.; Wu, M.; Chen, L.; Li, X.; Zhang, Y.; Wang, X.; Shi, M.; et al. Leaf and root endospheres harbor lower fungal diversity and less complex fungal co-occurrence patterns than rhizosphere. Front. Microbiol. 2019, 10, 1015. [Google Scholar] [CrossRef]
  280. Ramirez, K.S.; Snoek, L.B.; Koorem, K.; Geisen, S.; Bloem, L.J.; ten Hooven, F.; Kostenko, O.; Krigas, N.; Manrubia, M.; Caković, D.; et al. Range-expansion effects on the belowground plant microbiome. Nat. Ecol. Evol. 2019, 3, 604–611. [Google Scholar] [CrossRef]
  281. Pellitier, P.T.; Zak, D.R.; Salley, S. Environmental filtering structures fungal endophyte communities in tree bark. Mol. Ecol. 2019, 28, 5188–5198. [Google Scholar] [CrossRef]
  282. Semenova-Nelsen, T.A.; Platt, W.J.; Patterson, T.R.; Huffman, J.; Sikes, B.A. Frequent fire reorganizes fungal communities and slows decomposition across a heterogeneous pine savanna landscape. New Phytol. 2019, 224, 916–927. [Google Scholar] [CrossRef] [PubMed]
  283. Sheng, Y.; Cong, J.; Lu, H.; Yang, L.; Liu, Q.; Li, D.; Zhang, Y. Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. Microbiology Open 2019, 8, e874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  284. Shigyo, N.; Umeki, K.; Hirao, T. Seasonal dynamics of soil fungal and bacterial communities in cool-temperate montane forests. Front. Microbiol. 2019, 10, 1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  285. Schröter, K.; Wemheuer, B.; Pena, R.; Schöning, I.; Ehbrecht, M.; Schall, P.; Ammer, C.; Daniel, R.; Polle, A. Assembly processes of trophic guilds in the root mycobiome of temperate forests. Mol. Ecol. 2019, 28, 348–364. [Google Scholar] [CrossRef]
  286. Singh, J.; Silva, K.J.P.; Fuchs, M.; Khan, A. Potential role of weather, soil and plant microbial communities in rapid decline of apple trees. PLoS ONE 2019, 14, e0213293. [Google Scholar] [CrossRef]
  287. Song, H.; Singh, D.; Tomlinson, K.W.; Yang, X.; Ogwu, M.C.; Slik, J.W.F.; Adams, J.M. Tropical forest conversion to rubber plantation in southwest China results in lower fungal beta diversity and reduced network complexity. FEMS Microbiol. Ecol. 2019, 95, fiz092. [Google Scholar] [CrossRef] [Green Version]
  288. U’Ren, J.M.; Lutzoni, F.; Miadlikowska, J.; Zimmerman, N.B.; Carbone, I.; May, G.; Arnold, A.E. Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nat. Ecol. Evol. 2019, 3, 1430–1437. [Google Scholar] [CrossRef]
  289. Unuk, T.; Martinović, T.; Finžgar, D.; Šibanc, N.; Grebenc, T.; Kraigher, H. Root-associated fungal communities from two phenologically contrasting silver fir (Abies alba Mill.) groups of trees. Front. Plant Sci. 2019, 10, 214. [Google Scholar] [CrossRef] [Green Version]
  290. Araya, J.P.; González, M.; Cardinale, M.; Schnell, S.; Stoll, A. Microbiome dynamics associated with the atacama flowering desert. Front. Microbiol. 2020, 10, 3160. [Google Scholar] [CrossRef] [Green Version]
  291. Álvarez-Garrido, L.; Viñegla, B.; Hortal, S.; Powell, J.R.; Carreira, J.A. Distributional shifts in ectomycorrizhal fungal communities lag behind climate-driven tree upward migration in a conifer forest-high elevation shrubland ecotone. Soil Biol. Biochem. 2019, 137, e107545. [Google Scholar] [CrossRef]
  292. Wei, Z.; Yu, D. Rhizosphere fungal community structure succession of Xinjiang continuously cropped cotton. Fungal Biol. 2018, 123, 42–50. [Google Scholar] [CrossRef] [PubMed]
  293. Pan, H.; Chen, M.; Feng, H.; Wei, M.; Song, F.; Lou, Y.; Cui, X.; Wang, H.; Zhuge, Y. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res. 2020, 198, 104540. [Google Scholar] [CrossRef]
  294. Detheridge, A.P.; Cherrett, S.; Clasen, L.A.; Medcalf, K.; Pike, S.; Griffith, G.W.; Scullion, J. Depauperate soil fungal populations from the St. Helena endemic Commidendrum robustum are dominated by Capnodiales. Fungal Ecol. 2020, 45, e100911. [Google Scholar] [CrossRef]
  295. Li, S.-P.; Wang, P.; Chen, Y.; Wilson, M.C.; Yang, X.; Ma, C.; Lu, J.; Chen, X.-Y.; Wu, J.; Shu, W.-S.; et al. Island biogeography of soil bacteria and fungi: Similar patterns, but different mechanisms. ISME J. 2020, 14, 1886–1896. [Google Scholar] [CrossRef] [PubMed]
  296. Barghoorn, E.S.; Linder, D.H. Marine fungi: Their taxonomy and biology. Farlowia 1944, 1, 395–467. [Google Scholar] [CrossRef]
  297. Roth, F.J., Jr.; Orpurt, P.A.; Ahearn, D.G. Occurrence and distribution of fungi in a subtropical marine environment. Can. J. Bot. 1964, 42, 375–383. [Google Scholar] [CrossRef]
  298. Höhnk, W. Über den pilzlichen Befall kalkigerHartteile von Meerestieren. Ber. Dtsch. Wiss. Komm. Meeresforsch. 1969, 20, 129–140. [Google Scholar]
  299. Gaertner, A.N. mit Pollen koderbare marine Pilzediesseits und jenseits des Island-Faroer-RiickensimOberflachenwasser und im Sediment. Veroeff. Inst. Meeresforsch. Bremerhav. 1968, 11, 65–82. [Google Scholar]
  300. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Illustrated Key to the Filamentous Higher Marine Fungi. Bot. Mar. 1991, 34, 1–61. [Google Scholar] [CrossRef]
  301. Raghukumar, C.; Raghukumar, S. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat. Microb. Ecol. 1998, 15, 153–163. [Google Scholar] [CrossRef] [Green Version]
  302. Nagahama, T.; Hamamoto, M.; Nakase, T.; Horikoshi, K. Rhodotorula lamellibrachii sp. nov., a new yeast species from a tubeworm collected at the deep-sea floor in Sagami bay and its phylogenetic analysis. Antonie Leeuwenhoek 2001, 80, 317–323. [Google Scholar] [CrossRef] [PubMed]
  303. Edgcomb, V.P.; Kysela, D.T.; Teske, A.; de Vera Gomez, A.; Sogin, M.L. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc. Natl. Acad. Sci. USA 2002, 99, 7658–7662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  304. Lopez-Garcia, P.; Philippe, H.; Gail, F.; Moreira, D. Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc. Natl. Acad. Sci. USA 2003, 100, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  305. Raghukumar, C.; Raghukumar, S.; Sheelu, G.; Gupta, S.; Nagendernath, B.; Rao, B. Buried in time: Culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 1759–1768. [Google Scholar] [CrossRef]
  306. Biddle, J.; House, C.H.; Brenchley, J.E. Microbial stratification in deeply buried marine sediment reflects changes in sulfate/methane profiles. Geobiology 2005, 3, 287–295. [Google Scholar] [CrossRef]
  307. Damare, S.; Raghukumar, C.; Raghukumar, S. Fungi in deep-sea sediments of the Central Indian Basin. Deep Sea Res. Part I Oceanogr. Res. Pap. 2006, 53, 14–27. [Google Scholar] [CrossRef] [Green Version]
  308. Takishita, K.; Tsuchiya, M.; Reimer, J.D.; Maruyama, T. Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 2006, 10, 165–169. [Google Scholar] [CrossRef]
  309. Damare, S.; Raghukumar, C.; Muraleedharan, U.D.; Raghukumar, S. Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzym. Microb. Technol. 2006, 39, 172–181. [Google Scholar] [CrossRef]
  310. Bass, D.; Howe, A.; Brown, N.; Barton, H.; Demidova, M.; Michelle, H.; Li, L.; Sanders, H.; Watkinson, S.C.; Willcock, S.; et al. Yeast forms dominate fungal diversity in the deep oceans. Proc. R. Soc. B Boil. Sci. 2007, 274, 3069–3077. [Google Scholar] [CrossRef] [Green Version]
  311. Lai, X.; Cao, L.; Tan, H.; Fang, S.; Huang, Y.; Zhou, S. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J. 2007, 1, 756–762. [Google Scholar] [CrossRef]
  312. López-García, P.; Vereshchaka, A.; Moreira, D. Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ. Microbiol. 2007, 9, 546–554. [Google Scholar] [CrossRef]
  313. Damare, S.; Raghukumar, C. Fungi and Macroaggregation in Deep-Sea Sediments. Microb. Ecol. 2008, 56, 168–177. [Google Scholar] [CrossRef] [PubMed]
  314. Connell, L.; Barrett, A.; Templeton, A.; Staudigel, H. Fungal Diversity Associated with an Active Deep Sea Volcano: Vailulu’u Seamount, Samoa. Geomicrobiol. J. 2009, 26, 597–605. [Google Scholar] [CrossRef]
  315. Dupont, J.; Magnin, S.; Rousseau, F.; Zbinden, M.; Frebourg, G.; Samadi, S.; de Forges, B.R.; Jones, E.G. Molecular and ultrastructural characterization of two ascomycetes found on sunken wood off Vanuatu Islands in the deep Pacific Ocean. Mycol. Res. 2009, 113, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
  316. Le Calvez, T.; Burgaud, G.; Mahé, S.; Barbier, G.; Vandenkoornhuyse, P. Fungal Diversity in Deep-Sea Hydrothermal Ecosystems. Appl. Environ. Microbiol. 2009, 75, 6415–6421. [Google Scholar] [CrossRef] [Green Version]
  317. Burgaud, G.; Le Calvez, T.; Arzur, D.; Vandenkoornhuyse, P.; Barbier, G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ. Microbiol. 2009, 11, 1588–1600. [Google Scholar] [CrossRef]
  318. Burgaud, G.; Arzur, D.; Durand, L.; Cambon-Bonavita, M.-A.; Barbier, G. Marine culturable yeasts in deep-sea hydrothermal vents: Species richness and association with fauna: Culturable yeasts from hydrothermal vents. FEMS Microbiol. Ecol. 2010, 73, 121–133. [Google Scholar] [CrossRef] [Green Version]
  319. Nagano, Y.; Nagahama, T.; Hatada, Y.; Nunoura, T.; Takami, H.; Miyazaki, J.; Takai, K.; Horikoshi, K. Fungal diversity in deep-sea sediments—The presence of novel fungal groups. Fungal Ecol. 2010, 3, 316–325. [Google Scholar] [CrossRef]
  320. Sauvadet, A.-L.; Gobet, A.; Guillou, L. Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. Environ. Microbiol. 2010, 12, 2946–2964. [Google Scholar] [CrossRef]
  321. Singh, P.; Raghukumar, C.; Verma, P.; Shouche, Y. Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers. 2010, 40, 89–102. [Google Scholar] [CrossRef]
  322. Bhadury, P.; Bik, H.; Lambshead, J.D.; Austen, M.C.; Smerdon, G.R.; Rogers, A.D. Molecular Diversity of Fungal Phylotypes Co-Amplified Alongside Nematodes from Coastal and Deep-Sea Marine Environments. PLoS ONE 2011, 6, e26445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  323. Edgcomb, V.P.; Beaudoin, D.; Gast, R.; Biddle, J.F.; Teske, A. Marine subsurface eukaryotes: The fungal majority: Marine subsurface eukaryotes. Environ. Microbiol. 2011, 13, 172–183. [Google Scholar] [CrossRef] [PubMed]
  324. Eloe, E.A.; Shulse, C.N.; Fadrosh, D.W.; Williamson, S.J.; Allen, E.E.; Bartlett, D.H. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment: Microbial diversity in the puertorico trench. Environ. Microbiol. Rep. 2011, 3, 449–458. [Google Scholar] [CrossRef] [PubMed]
  325. Nagahama, T.; Takahashi, E.; Nagano, Y.; Abdel-Wahab, M.A.; Miyazaki, M. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ. Microbiol. 2011, 13, 2359–2370. [Google Scholar] [CrossRef]
  326. Quaiser, A.; Zivanovic, Y.; Moreira, D.; López-García, P. Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. ISME J. 2010, 5, 285–304. [Google Scholar] [CrossRef] [Green Version]
  327. Singh, P.; Raghukumar, C.; Verma, P.; Shouche, Y. Fungal Community Analysis in the Deep-Sea Sediments of the Central Indian Basin by Culture-Independent Approach. Microb. Ecol. 2011, 61, 507–517. [Google Scholar] [CrossRef]
  328. Singh, P.; Raghukumar, C.; Meena, R.M.; Verma, P.; Shouche, Y. Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecol. 2012, 5, 543–553. [Google Scholar] [CrossRef]
  329. Thaler, A.D.; Van Dover, C.L.; Vilgalys, R. Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol. 2012, 5, 270–273. [Google Scholar] [CrossRef]
  330. Kimes, N.E.; Callaghan, A.V.; Aktas, D.F.; Smith, W.L.; Sunner, J.; Golding, B.T.; Drozdowska, M.; Hazen, T.C.; Suflita, J.M.; Morris, P.J. Metagenomic analysis and metabolite profiling of deep–sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front. Microbiol. 2013, 4, 50. [Google Scholar] [CrossRef] [Green Version]
  331. Orsi, W.; Biddle, J.; Edgcomb, V. Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces. PLoS ONE 2013, 8, e56335. [Google Scholar] [CrossRef]
  332. Zhang, T.; Zhang, Y.-Q.; Liu, H.-Y.; Wei, Y.-Z.; Li, H.-L.; Su, J.; Zhao, L.-X.; Yu, L.-Y. Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica. FEMS Microbiol. Lett. 2013, 341, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  333. Bernhard, J.M.; Kormas, K.; Pachiadaki, M.; Rocke, E.; Beaudoin, D.J.; Morrison, C.; Visscher, P.; Cobban, A.; Starczak, V.R.; Edgcomb, V. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments. Front. Microbiol. 2014, 5, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  334. Rédou, V.; Ciobanu, M.C.; Pachiadaki, M.G.; Edgcomb, V.; Alain, K.; Barbier, G.; Burgaud, G. In-depth analyses of deep subsurface sediments using 454-pyrosequencing reveals a reservoir of buried fungal communities at record-breaking depths. FEMS Microbiol. Ecol. 2014, 90, 908–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  335. Wei, W.; Isobe, K.; Shiratori, Y.; Nishizawa, T.; Ohte, N.; Otsuka, S.; Senoo, K. N2O emission from cropland field soil through fungal denitrification after surface applications of organic fertilizer. Soil Biol. Biochem. 2014, 69, 157–167. [Google Scholar] [CrossRef]
  336. Zhang, D.; Ge, H.; Zou, J.-H.; Tao, X.; Chen, R.; Dai, J. Periconianone A, a new 6/6/6 carbocyclic sesquiterpenoid from endophytic fungus Periconia sp. with neural anti-inflammatory activity. Org. Lett. 2014, 16, 1410–1413. [Google Scholar] [CrossRef]
  337. Rédou, V.; Navarri, M.; Meslet-Cladière, L.; Barbier, G.; Burgaud, G. Species richness and adaptation of marine fungi from deep-subsea floor sediments. Appl. Environ. Microbiol. 2015, 81, 3571–3583. [Google Scholar] [CrossRef] [Green Version]
  338. Edgcomb, V.P.; Pachiadaki, M.; Mara, P.; Kormas, K.; Leadbetter, E.R.; Bernhard, J. Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins. ISME J. 2016, 10, 2643–2657. [Google Scholar] [CrossRef] [Green Version]
  339. Tisthammer, K.H.; Cobian, G.; Amend, A.S. Global biogeography of marine fungi is shaped by the environment. Fungal Ecol. 2016, 19, 39–46. [Google Scholar] [CrossRef]
  340. Boraks, A.; Amend, A.S. Fungi in soil and understory have coupled distribution patterns. PeerJ 2021, 9, e11915. [Google Scholar] [CrossRef]
  341. Zhang, T.; Wang, N.-F.; Liu, H.-Y.; Zhang, Y.-Q.; Yu, L.-Y. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic). Front. Microbiol. 2016, 7, 227. [Google Scholar] [CrossRef]
  342. Ali, S.H.; Alias, S.A.; Siang, H.Y.; Smykla, J.; Pang, K.L.; Guo, S.Y.; Peter, C. Studies on diversity of soil microbfungi in the Hornsund area, Spitsbergen. Pol. Polar Res. 2013, 34, 39–54. [Google Scholar]
  343. Pachiadaki, M.; Rédou, V.; Beaudoin, D.J.; Burgaud, G.; Edgcomb, V.P. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy. Front. Microbiol. 2016, 7, 846. [Google Scholar] [CrossRef] [PubMed]
  344. Bochdansky, A.B.; Clouse, M.A.; Herndl, G.J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017, 11, 362–373. [Google Scholar] [CrossRef] [PubMed]
  345. Vera, J.; Gutiérrez, M.H.; Palfner, G.; Pantoja, S. Diversity of culturable filamentous Ascomycetes in the eastern South Pacific Ocean off Chile. World J. Microbiol. Biotechnol. 2017, 33, 157. [Google Scholar] [CrossRef]
  346. Nagano, Y.; Miura, T.; Nishi, S.; Lima, A.; Nakayama, C.R.; Pellizari, V.; Fujikura, K. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 146, 59–67. [Google Scholar] [CrossRef]
  347. Orsi, W.D.; Richards, T.A.; Francis, W.R. Predicted microbial secretomes and their target substrates in marine sediment. Nat. Microbiol. 2018, 3, 32–37. [Google Scholar] [CrossRef]
  348. Wei, X.; Guo, S.; Gong, L.-F.; He, G.; Pang, K.-L.; Luo, Z.-H. Cultivable Fungal Diversity in Deep-Sea Sediment of the East Pacific Ocean. Geomicrobiol. J. 2018, 35, 790–797. [Google Scholar] [CrossRef]
  349. Barone, G.; Rastelli, E.; Corinaldesi, C.; Tangherlini, M.; Danovaro, R.; Dell’Anno, A. Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea. Prog. Oceanogr. 2018, 168, 57–64. [Google Scholar] [CrossRef]
  350. Xu, W.; Gong, L.F.; Pang, K.L.; Luo, Z.H. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 131, 16–26. [Google Scholar] [CrossRef]
  351. Li, J.; Meng, B.; Chai, H.; Yang, X.; Song, W.; Li, S.; Lu, A.; Zhang, T.; Sun, W. Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) Grasses via Altering Antioxidant Enzyme Activities and Photosynthesis. Front. Plant Sci. 2019, 10, 499. [Google Scholar] [CrossRef] [Green Version]
  352. Vargas-Gastélum, L.; Chong-Robles, J.; Lago-Lestón, A.; Darcy, J.L.; Amend, A.S.; Riquelme, M. Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ. Microbiol. 2019, 21, 4046–4061. [Google Scholar] [CrossRef] [PubMed]
  353. Wei, F.; Zhao, L.; Xu, X.; Feng, H.; Shi, Y.; Deakin, G.; Feng, Z.; Zhu, H. Cultivar-Dependent Variation of the Cotton Rhizosphere and Endosphere Microbiome Under Field Conditions. Front. Plant Sci. 2019, 10, 1659. [Google Scholar] [CrossRef]
  354. Velez, P.; Gasca-Pineda, J.; Riquelme, M. Cultivable fungi from deep-sea oil reserves in the Gulf of Mexico: Genetic signatures in response to hydrocarbons. Mar. Environ. Res. 2020, 153, 104816. [Google Scholar] [CrossRef] [PubMed]
  355. Wieser, A.; Schneider, L.; Jung, J.; Schubert, S. MALDI-TOF MS in microbiological diagnostics—Identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol. 2012, 93, 965–974. [Google Scholar] [CrossRef] [PubMed]
  356. Rossman, A.Y.; Samuels, G.J. Towards a single scientific name for species of fungi. Inoculum 2005, 56, 3–6. [Google Scholar]
  357. Stadler, M.; Læssøe, T.; Fournier, J.; Decock, C.; Schmieschek, B.; Tichy, H.-V.; Persoh, D. A polyphasic taxonomy of Daldinia (Xylariaceae). Stud. Mycol. 2014, 77, 1–143. [Google Scholar] [CrossRef] [Green Version]
  358. Bhunjun, C.S.; Dong, Y.; Jayawardena, R.; Jeewon, R.; Phukhamsakda, C.; Bundhun, D.; Hyde, K.D.; Sheng, J. A polyphasic approach to delineate species in Bipolaris. Fungal Divers. 2020, 102, 225–256. [Google Scholar] [CrossRef]
  359. Crous, P.W.; Hawksworth, D.L.; Wingfield, M.J. Identifying and Naming Plant-Pathogenic Fungi: Past, Present, and Future. Annu. Rev. Phytopathol. 2015, 53, 247–267. [Google Scholar] [CrossRef]
  360. Bhunjun, C.S.; Phukhamsakda, C.; Jayawardena, R.S.; Jeewon, R.; Promputtha, I.; Hyde, K.D. Investigating species boundaries in Colletotrichum. Fungal Divers. 2021, 107, 107–127. [Google Scholar] [CrossRef]
  361. Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; Dewaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B Boil. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
  362. Lücking, R.; Aime, M.C.; Hawksworth, D.L.; Hyde, K.D.; Irinyi, L.; Jeewon, R.; Johnston, P.R.; Kirk, P.M.; Malosso, E.; May, T.W.; et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef] [PubMed]
  363. Lindahl, J.F.; Grace, D. The consequences of human actions on risks for infectious diseases: A review. Infect. Ecol. Epidemiol. 2015, 5, 30048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  364. Taylor, J.W.; Jacobson, D.J.; Kroken, S.; Kasuga, T.; Geiser, D.M.; Hibbett, D.S.; Fisher, M. Phylogenetic Species Recognition and Species Concepts in Fungi. Fungal Genet. Biol. 2000, 31, 21–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  365. Ariyawansa, H.A.; Hyde, K.D.; Jayasiri, S.C.; Buyck, B.; Chethana, K.T.; Dai, D.Q.; Dai, Y.C.; Daranagama, D.A.; Jayawardena, R.S.; Lücking, R.; et al. Fungal diversity notes 111–252—Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015, 75, 27–274. [Google Scholar] [CrossRef]
  366. Lawrence, D.P.; Gannibal, P.; Peever, T.L.; Pryor, B.M. The sections of Alternaria: Formalizing species-group concepts. Mycologia 2013, 105, 530–546. [Google Scholar] [CrossRef] [Green Version]
  367. Woudenberg, J.; Groenewald, J.; Binder, M.; Crous, P. Alternaria redefined. Stud. Mycol. 2013, 75, 171–212. [Google Scholar] [CrossRef] [Green Version]
  368. Woudenberg, J.H.C.; van der Merwe, N.A.; Jurjević, Ž.; Groenewald, J.Z.; Crous, P.W. Diversity and movement of indoor Alternaria alternata across the mainland USA. Fungal Genet. Biol. 2015, 81, 62–72. [Google Scholar] [CrossRef] [Green Version]
  369. Kim, M.-S.; Klopfenstein, N.B.; Hanna, J.W.; McDonald, G.I. Characterization of North American Armillaria species: Genetic relationships determined by ribosomal DNA sequences and AFLP markers. For. Pathol. 2006, 36, 145–164. [Google Scholar] [CrossRef]
  370. Coetzee, M.P.A.; Wingfeld, B.D.; Wingfeld, M.J. Armillaria root-rot pathogens: Species boundaries and global distribution. Pathogens 2018, 7, 83. [Google Scholar] [CrossRef] [Green Version]
  371. Dissanayake, A.J.; Phillips, A.J.L.; Li, X.H.; Hyde, K.D. Botryosphaeriaceae: Current status of genera and species. Mycosphere 2016, 7, 1001–1073. [Google Scholar] [CrossRef]
  372. Li, G.J.; Hyde, K.D.; Zhao, R.L.; Hongsanan, S.; Abdel-Aziz, F.A.; Abdel-Wahab, M.A.; Alvarado, P.; Alves-Silva, G.; Ammirati, J.F.; Ariyawansa, H.A.; et al. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 78, 1–237. [Google Scholar] [CrossRef]
  373. Chen, Q.; Jiang, J.R.; Zhang, G.Z.; Cai, L.; Crous, P.W. Resolving the Phoma enigma. Stud. Mycol. 2015, 82, 137–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  374. Chen, Q.; Hou, L.W.; Duan, W.J.; Crous, P.W.; Cai, L. Didymellaceae revisited. Stud. Mycol. 2017, 87, 105–159. [Google Scholar] [CrossRef] [PubMed]
  375. Jayasiri, S.C.; Hyde, K.D.; Jones, E.B.; Jeewon, R.; Ariyawansa, H.A.; Bhat, J.D.; Camporesi, E.; Kang, J.C. Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). Mycosphere 2017, 8, 1080–1101. [Google Scholar] [CrossRef]
  376. Berner, D.; Cavin, C.; Woudenberg, J.H.; Tunali, B.; Büyük, O.; Kansu, B. Assessment of Boeremiaexigua var. rhapontica, as a biological control agent of Russian knapweed (Rhaponticum repens). Biol. Control 2015, 81, 65–75. [Google Scholar] [CrossRef]
  377. Manamgoda, D.S.; Cai, L.; McKenzie, E.H.C.; Crous, P.W.; Madrid, H.; Chukeatirote, E.; Shivas, R.G.; Tan, Y.P.; Hyde, K.D. A phylogenetic and taxonomic re-evaluation of the Bipolaris-Cochliobolus-Curvularia Complex. Fungal Divers. 2012, 56, 131–144. [Google Scholar] [CrossRef]
  378. Phillips, A.J.L.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfield, M.J.; Groenewald, J.Z.; Crous, P.W. The Botryosphaeriaceae: Genera and species known from culture. Stud. Mycol. 2013, 76, 51–167. [Google Scholar] [CrossRef] [Green Version]
  379. Hyde, K.D.; Nilsson, R.H.; Alias, S.A.; Ariyawansa, H.A.; Blair, J.E.; Cai, L.; De Cock, A.W.A.M.; Dissanayake, A.J.; Glockling, S.L.; Goonasekara, I.D.; et al. One stop shop: Backbones trees for important phytopathogenic genera: I. Fungal Divers. 2014, 67, 21–125. [Google Scholar] [CrossRef] [Green Version]
  380. Crous, P.W.; Kang, J.C.; Schoch, C.L.; Mchua, G.R.A. Phylogenetic relationships of Cylindrocladium pseudogracile and Cylindrocladium rumohrae with morphologically similar taxa, based on morphology and DNA sequences of internal transcribed spacers and β-tubulin. Can. J. Bot. 1999, 77, 1813–1820. [Google Scholar] [CrossRef]
  381. Schoch, C.L.; Crous, P.W.; Wingfield, B.D.; Wingfield, M.J. Phylogeny of Calonectria based on comparisons of β-tubulin DNA sequences. Mycol. Res. 2001, 105, 1045–1052. [Google Scholar] [CrossRef]
  382. Lombard, L.; Crous, P.; Wingfield, B.; Wingfield, M. Species concepts in Calonectria (Cylindrocladium). Stud. Mycol. 2010, 66, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  383. Lombard, L.; Crous, P.W.; Wingfield, B.D.; Wingfield, M.J. Phylogeny and systematics of the genus Calonectria. Stud. Mycol. 2010, 66, 31–69. [Google Scholar] [CrossRef] [PubMed]
  384. Lombard, L.; Wingfield, M.; Alfenas, A.; Crous, P. The forgotten Calonectria collection: Pouring old wine into new bags. Stud. Mycol. 2016, 85, 159–198. [Google Scholar] [CrossRef] [PubMed]
  385. Groenewald, J.; Nakashima, C.; Nishikawa, J.; Shin, H.-D.; Park, J.-H.; Jama, A.; Groenewald, M.; Braun, U.; Crous, P. Species concepts in Cercospora: Spotting the weeds among the roses. Stud. Mycol. 2013, 75, 115–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  386. Albu, S.; Sharma, S.; Bluhm, B.H.; Price, P.P.; Schneider, R.W.; Doyle, V.P. Draft Genome Sequence of Cercospora cf. sigesbeckiae, a Causal Agent of Cercospora Leaf Blight on Soybean. Genome Announc. 2017, 5, e00708-17. [Google Scholar] [CrossRef] [Green Version]
  387. Guatimosim, E.; Schwartsburd, P.; Barreto, R.; Crous, P. Novel fungi from an ancient niche: Cercosporoid and related sexual morphs on ferns. Persoonia 2016, 37, 106–141. [Google Scholar] [CrossRef] [Green Version]
  388. Bakhshi, M.; Arzanlou, M.; Babai-Ahari, A.; Groenewald, J.Z.; Braun, U.; Crous, P.W. Application of the consolidated species concept to Cercospora spp. from Iran. Persoonia 2015, 34, 65–86. [Google Scholar] [CrossRef] [Green Version]
  389. Bakhshi, M.; Arzanlou, M.; Babai-Ahari, A.; Groenewald, J.Z.; Crous, P.W. Novel primers improve species delimitation in Cercospora. IMA Fungus 2018, 9, 299–332. [Google Scholar] [CrossRef]
  390. Jiang, M.; Kirschner, R. Unraveling two East Asian species of Clinoconidium (Cryptobasidiaceae). Mycoscience 2016, 57, 440–447. [Google Scholar] [CrossRef]
  391. Kakishima, M.; Ji, J.-X.; Nagao, H.; Wang, Q.; Denchev, C.M. Clinoconidium globosum, nom. nov. (Cryptobasidiaceae) producing galls on fruits of Cinnamomum daphnoides in Japan. Phytotaxa 2017, 299, 267–272. [Google Scholar] [CrossRef]
  392. Kakishima, M.; Nagao, H.; Ji, J.-X.; Sun, Y.; Denchev, C.M. Clinoconidium onumae, comb. nov. (Cryptobasidiaceae) producing galls on shoot buds of Cinnamomum tenuifolium in Japan. Phytotaxa 2017, 313, 175–184. [Google Scholar] [CrossRef]
  393. Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  394. Doyle, V.P.; Oudemans, P.; Rehner, S.A.; Litt, A. Habitat and Host Indicate Lineage Identity in Colletotrichum gloeosporioides s.l. from Wild and Agricultural Landscapes in North America. PLoS ONE 2013, 8, e62394. [Google Scholar] [CrossRef] [Green Version]
  395. Gunjan, S.; Navinder, K.; Weir, B.S.; Hyde, K.D.; Shenoy, B.D. Apmat gene can resolve Colletotrichum species: A case study with Mangifera indica. Fungal Divers. 2013, 61, 117–138. [Google Scholar]
  396. Silva, D.N.; Talhinas, P.; Várzea, V.; Cai, L.; Paulo, O.S.; Batista, D. Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: An example from coffee (Coffea spp.) hosts. Mycologia 2012, 104, 396–409. [Google Scholar] [CrossRef] [Green Version]
  397. Castlebury, L.A.; Rossman, A.Y.; Jaklitsch, W.J.; Vasilyeva, L.N. A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 2002, 94, 1017–1031. [Google Scholar] [CrossRef]
  398. Van Niekerk, J.M.; Groenewald, J.Z.E.; Verkley, G.J.; Fourie, P.H.; Wingfield, M.J.; Crous, P.W. Systematic reappraisal of Coniella and Pilidiella, with specific reference to species occurring on Eucalyptus and Vitis in South Africa. Mycol. Res. 2004, 108, 283–303. [Google Scholar] [CrossRef]
  399. Phookamsak, R.; Liu, J.-K.; McKenzie, E.H.C.; Manamgoda, D.S.; Ariyawansa, H.; Thambugala, K.M.; Dai, D.-Q.; Camporesi, E.; Chukeatirote, E.; Wijayawardene, N.N.; et al. Revision of Phaeosphaeriaceae. Fungal Divers. 2014, 68, 159–238. [Google Scholar] [CrossRef]
  400. Alvarez, L.; Groenewald, J.; Crous, P. Revising the Schizoparmaceae: Coniella and its synonyms Pilidiella and Schizoparme. Stud. Mycol. 2016, 85, 1–34. [Google Scholar] [CrossRef] [Green Version]
  401. Chethana, K.W.T.; Zhou, Y.; Zhang, W.; Liu, M.; Xing, Q.K.; Li, X.H.; Yan, J.Y.; Hyde, K.D. Coniellavitis sp. nov. Is the Common Pathogen of White Rot in Chinese Vineyards. Plant Dis. 2017, 101, 2123–2136. [Google Scholar] [CrossRef]
  402. Manamgoda, D.; Rossman, A.; Castlebury, L.; Crous, P.; Madrid, H.; Chukeatirote, E.; Hyde, K. The genus Bipolaris. Stud. Mycol. 2014, 79, 221–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  403. Hyde, K.D.; Norphanphoun, C.; Abreu, V.P.; Bazzicalupo, A.; Chethana, K.W.T.; Clericuzio, M.; Dayarathne, M.C.; Dissanayake, A.J.; Ekanayaka, A.H.; He, M.-Q.; et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species. Fungal Divers. 2017, 87, 1–235. [Google Scholar] [CrossRef]
  404. Marin-Felix, Y.; Groenewald, J.Z.; Cai, L.; Chen, Q.; Marincowitz, S.; Barnes, I.; Bensch, K.; Braun, U.; Camporesi, E.; Damm, U.; et al. Genera of phytopathogenic fungi: GOPHY 1. Stud. Mycol. 2017, 86, 99–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  405. Lombard, L.; Cheewangkoon, R.; Crous, P.W. New Cylindrocladiella spp. from Thailand soils. Mycosphere 2017, 8, 1088–1104. [Google Scholar] [CrossRef]
  406. Marin-Felix, Y.; Hernández-Restrepo, M.; Wingfield, M.; Akulov, A.; Carnegie, A.; Cheewangkoon, R.; Gramaje, D.; Groenewald, J.; Guarnaccia, V.; Halleen, F.; et al. Genera of phytopathogenic fungi: GOPHY 2. Stud. Mycol. 2019, 92, 47–133. [Google Scholar] [CrossRef] [PubMed]
  407. Réblová, M.; Untereiner, W.A.; Réblová, K. Novel evolutionary lineagesrevealed in the Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure. PLoS ONE 2013, 8, e63547. [Google Scholar] [CrossRef]
  408. Feng, P.; Lu, Q.; Najafzadeh, M.J.; van den Ende, A.G.; Sun, J.; Li, R.; Xi, L.; Vicente, V.A.; Lai, W.; Lu, C.; et al. Cyphellophora and its relatives in Phialophora: Biodiversity and possible role in human infection. Fungal Divers. 2014, 65, 17–45. [Google Scholar] [CrossRef] [Green Version]
  409. Alves, A.; Linaldeddu, B.T.; Deidda, A.; Scanu, B.; Phillips, A.J.L. The complex of Diplodia species associated with Fraxinus and some other woody hosts in Italy and Portugal. Fungal Divers. 2014, 67, 143–156. [Google Scholar] [CrossRef]
  410. Abdollahzadeh, J.; Javadi, A.; Zare, R.; Phillips, A. A phylogenetic study of Dothiorella and Spencermartinsia species associated with woody plants in Iran, New Zealand, Portugal and Spain. Persoonia 2014, 32, 1–12. [Google Scholar] [CrossRef] [Green Version]
  411. Jayawardena, R.; Ariyawansa, H.; Singtripop, C.; Li, Y.M.; Yan, J.; Li, X.; Nilthong, S.; Hyde, K.D. A re-assessment of Elsinoaceae (Myriangiales, Dothideomycetes). Phytotaxa 2014, 176, 120–138. [Google Scholar] [CrossRef]
  412. Fan, X.; Barreto, R.; Groenewald, J.; Bezerra, J.; Pereira, O.; Cheewangkoon, R.; Mostert, L.; Tian, C.; Crous, P. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoe (Myriangiales, Dothideomycetes). Stud. Mycol. 2017, 87, 1–41. [Google Scholar] [CrossRef]
  413. Da Silva, C.S.; Pereira, M.B.; Pereira, J. New accounts on Hypoxylaceae and Xylariaceae from Brazil. Rodriguésia 2020, 71, 03012018. [Google Scholar] [CrossRef]
  414. Kruse, J.; Piątek, M.; Lutz, M.; Thines, M. Broad host range species in specialised pathogen groups should be treated with suspicion—A case study on Entyloma infecting Ranunculus. Persoonia 2018, 41, 175–201. [Google Scholar] [CrossRef] [PubMed]
  415. Rooney-Latham, S.; Lutz, M.; Blomquist, C.L.; Romberg, M.K.; Scheck, H.J.; Piątek, M. Entyloma helianthi: Identification and characterization of the casual agent of sunflower white leaf smut. Mycologia 2017, 109, 520–528. [Google Scholar] [CrossRef] [PubMed]
  416. Ghobad-Nejhad, M.; Hallenberg, N. Erythricium atropatanum sp. nov. (Corticiales) from Iran, based on morphological and molecular data. Mycol. Prog. 2011, 10, 61–66. [Google Scholar] [CrossRef]
  417. Thynne, E.; McDonald, M.C.; Evans, M.; Wallwork, H.; Neate, S.; Solomon, P.S. Re-classification of the causal agent of white grain disorder on wheat as three separate species of Eutiarosporella. Australas. Plant Pathol. 2015, 44, 527–539. [Google Scholar] [CrossRef]
  418. Burgess, T.I.; Tan, Y.P.; Garnas, J.; Edwards, J.; Scarlett, K.A.; Shuttleworth, L.A.; Daniel, R.; Dann, E.K.; Parkinson, L.; Dinh, Q.; et al. Current status of the Botryosphaeriaceae in Australia. Australas. Plant Pathol. 2019, 48, 35–44. [Google Scholar] [CrossRef]
  419. Santana, M.D.C.; Amalfi, M.; Robledo, G.; da Silveira, R.M.B.; Decock, C. Fomitiporia neotropica, a new species from South America evidenced by multilocus phylogenetic analyses. Mycol. Prog. 2014, 13, 601–615. [Google Scholar] [CrossRef]
  420. Chen, H.; Cui, B.-K. Multi-locus phylogeny and morphology reveal five new species of Fomitiporia (Hymenochaetaceae) from China. Mycol. Prog. 2017, 16, 687–701. [Google Scholar] [CrossRef]
  421. Morera, G.; Robledo, G.; Ferreira-Lopes, V.; Urcelay, C. South American Fomitiporia (Hymenochaetaceae, Basidiomycota) ‘jump on’exotic living trees revealed by multi-gene phylogenetic analysis. Phytotaxa 2017, 321, 277–286. [Google Scholar] [CrossRef]
  422. Zhou, L.W. Fulvifomes hainanensis sp. nov. and F. indicus comb. nov. (Hymenochaetales, Basidiomycota) evidenced by a combination of morphology and phylogeny. Mycoscience 2014, 55, 70–77. [Google Scholar] [CrossRef]
  423. Zhou, L.-W. Fulvifomes imbricatus and F. thailandicus (Hymenochaetales, Basidiomycota): Two new species from Thailand based on morphological and molecular evidence. Mycol. Prog. 2015, 14, 89. [Google Scholar] [CrossRef]
  424. Ji, X.H.; Wu, F.; Dai, Y.C.; Vlasák, J. Two new species of Fulvifomes (Hymenochaetales, Basidiomycota) from America. MycoKeys 2017, 22, 1–13. [Google Scholar] [CrossRef] [Green Version]
  425. Salvador-Montoya, C.A.; Popoff, O.F.; Reck, M.; Drechsler-Santos, E.R. Taxonomic delimitation of Fulvifomes robiniae (Hymenochaetales, Basidiomycota) and related species in America: F. squamosus sp. nov. Plant Syst. Evol. 2018, 304, 445–459. [Google Scholar] [CrossRef]
  426. Laurence, M.H.; Summerell, B.A.; Burgess, L.W.; Liew, E.C.Y. Fusarium burgessii sp. nov. representing a novel lineage in the genus Fusarium. Fungal Divers. 2011, 49, 101–112. [Google Scholar] [CrossRef]
  427. O’Donnell, K.; Rooney, A.P.; Proctor, R.H.; Brown, D.W.; McCormick, S.P.; Ward, T.J.; Frandsen, R.J.N.; Lysøe, E.; Rehner, S.A.; Aoki, T.; et al. RPB1 and RPB2 phylogeny supports an early Cretaceous origin and a strongly supported clade comprising all agriculturally and medically important fusaria. Fungal Genet. Biol. 2013, 52, 20–31. [Google Scholar] [CrossRef]
  428. O’Donnell, K.; Sutton, D.A.; Fothergill, A.; McCarthy, D.; Rinaldi, M.G.; Brandt, M.E.; Zhang, N.; Geiser, D.M. Molecular Phylogenetic Diversity, Multilocus Haplotype Nomenclature, and In Vitro Antifungal Resistance within the Fusarium solani Species Complex. J. Clin. Microbiol. 2008, 46, 2477–2490. [Google Scholar] [CrossRef] [Green Version]
  429. Coetzee, M.P.A.; Marincowitz, S.; Muthelo, V.G.; Wingfield, M.J. Ganoderma species, including new taxa associated with root rot of the iconic Jacaranda mimosifolia in Pretoria, South Africa. IMA Fungus 2015, 6, 249–256. [Google Scholar] [CrossRef]
  430. Xing, J.-H.; Song, J.; Decock, C.; Cui, B. Morphological characters and phylogenetic analysis reveal a new species within the Ganoderma lucidum complex from South Africa. Phytotaxa 2016, 266, 115–124. [Google Scholar] [CrossRef]
  431. Xing, J.H.; Sun, Y.F.; Han, Y.L.; Cui, B.K.; Dai, Y.C. Morphological and molecular identifcation of two new Ganoderma species on Casuarina equisetifolia from China. MycoKeys 2018, 34, 93–108. [Google Scholar] [CrossRef]
  432. Tchoumi, J.M.T.; Coetzee, M.P.A.; Rajchenberg, M.; Roux, J. Taxonomy and species diversity of Ganoderma species in the Garden Route National Park of South Africa inferred from morphology and multilocus phylogenies. Mycologia 2019, 111, 730–747. [Google Scholar] [CrossRef] [PubMed]
  433. Luangharn, T.; Karunarathna, S.C.; Mortimer, P.E.; Hyde, K.D.; Xu, J. Additions to the knowledge of Ganoderma in Thailand: Ganoderma casuarinicola, a new record; and Ganoderma thailandicum sp. nov. MycoKeys 2019, 59, 47–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  434. Ye, L.; Karunarathna, S.C.; Mortimer, P.E.; Li, H.; Qiu, M.-H.; Peng, X.-R.; Luangharn, T.; Li, Y.-J.; Promputtha, I.; Hyde, K.D.; et al. Ganoderma weixiensis (Polyporaceae, Basidiomycota), a new member of the G. lucidum complex from Yunnan Province, China. Phytotaxa 2019, 423, 75–86. [Google Scholar] [CrossRef]
  435. Cabarroi-Hernández, M.; Villalobos-Arámbula, A.R.; Torres-Torres, M.G.; Decock, C.; Guzmán-Dávalos, L. The Ganoderma weberianum-resinaceum lineage: Multilocus phylogenetic analysis and morphology confrm G. mexicanum and G. parvulum in the Neotropics. MycoKeys 2019, 59, 95–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  436. Braun, U.; Bradshaw, M.; Zhao, T.-T.; Cho, S.-E.; Shin, H.-D. Taxonomy of the Golovinomyces cynoglossi complex (Erysiphales, Ascomycota) disentangled by phylogenetic analyses and reassessments of morphological traits. Mycobiology 2018, 46, 192–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  437. Braun, U.; Shin, H.; Takamatsu, S.; Meeboon, J.; Kiss, L.; Lebeda, A.; Kitner, M.; Götz, M. Phylogeny and taxonomy of Golovinomyces orontii revisited. Mycol. Prog. 2019, 18, 335–357. [Google Scholar] [CrossRef]
  438. Takamatsu, S.; Matsuda, S.; Grigaliunaite, B. Comprehensive phylogenetic analysis of the genus Golovinomyces (Ascomycota: Erysiphales) reveals close evolutionary relationships with its host plants. Mycologia 2013, 105, 1135–1152. [Google Scholar] [CrossRef]
  439. Qiu, P.-L.; Liu, S.-Y.; Li, Y.; Wang, L.-L.; Braun, U.; Bradshaw, M.; Rooney-Latham, S.; Takamatsu, S.; Bulgakov, T.; Tang, S.-R.; et al. Multi-locus phylogeny and taxonomy of an unresolved, heterogeneous species complex within the genus Golovinomyces (Ascomycota, Erysiphales), including G. ambrosiae, G. circumfusus and G. spadiceus. BMC Microbiol. 2020, 20, e51. [Google Scholar] [CrossRef] [Green Version]
  440. Qiu, P.L.; Qi, X.F.; Li, Y.; Braun, U.; Liu, S.Y. Epitypifcation and molecular confrmation of Erysiphe cucurbitacearum as a synonym of Golovinomyces tabaci. Mycoscience 2020, 61, 30–36. [Google Scholar] [CrossRef]
  441. Chen, J.-J.; Cui, B.; Zhou, L.-W.; Korhonen, K.T.; Dai, Y.-C. Phylogeny, divergence time estimation, and biogeography of the genus Heterobasidion (Basidiomycota, Russulales). Fungal Divers. 2015, 71, 185–200. [Google Scholar] [CrossRef]
  442. Cabral, A.; Groenewald, J.Z.; Rego, M.C.N.F.; Oliveira, H.; Crous, P.W. Cylindrocarpon root rot: Multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol. Prog. 2012, 11, 655–688. [Google Scholar] [CrossRef] [Green Version]
  443. Cabral, A.; Rego, C.; Crous, P.W.; Oliveira, H. Virulence and cross-infection potential of Ilyonectria spp. to grapevine. Phytopathol. Mediterr. 2012, 52, 340–354. [Google Scholar]
  444. Cabral, A.; Rego, C.; Nascimento, T.; Oliveira, H.; Groenewald, J.Z.; Crous, P.W. Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biol. 2012, 116, 62–80. [Google Scholar] [CrossRef] [PubMed]
  445. Lombard, L.; Bezuidenhout, C.M.; Crous, P.W. Ilyonectria black foot rot associated with Proteaceae. Australas. Plant Pathol. 2013, 42, 337–349. [Google Scholar] [CrossRef]
  446. Lombard, L.; Van Der Merwe, N.A.; Groenewald, J.Z.; Crous, P.W. Lineages in Nectriaceae: Re-evaluating the generic status of Ilyonectria and allied genera. Phytopathol. Mediterr. 2014, 53, 515–532. [Google Scholar]
  447. Diederich, P.; Lawrey, J.D.; Sikaroodi, M.; Gillevet, P.M. A new lichenicolous teleomorph is related to plant pathogens in Laetisaria and Limonomyces (Basidiomycota, Corticiales). Mycologia 2011, 103, 525–533. [Google Scholar] [CrossRef] [Green Version]
  448. Zhang, W.; Nan, Z.B.; Liu, G.D. First Report of Limonomyces roseipellis causing pink patch on bermudagrass in South China. Plant Dis. 2013, 97, 561. [Google Scholar] [CrossRef]
  449. Crous, P.W.; Slippers, B.; Wingfield, M.J.; Rheeder, J.; Marasas, W.F.O.; Philips, A.J.L.; Alves, A.; Burgess, T.; Barber, P.; Groenewald, J.Z. Phylogenetic lineages in the Botryosphaeriaceae. Stud. Mycol. 2006, 55, 235–254. [Google Scholar] [CrossRef] [Green Version]
  450. Sarr, M.P.; Ndiaye, M.; Groenewald, J.Z.; Crous, P.W. Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathol. Mediterr. 2014, 53, 250–268. [Google Scholar]
  451. LoBuglio, K.F.; Pfister, D.H. Placement of Medeolaria farlowii in the Leotiomycetes, and comments on sampling within the class. Mycol. Prog. 2010, 9, 361–368. [Google Scholar] [CrossRef]
  452. Pfister, D.H.; Agnello, C.; Lantieri, A.; LoBuglio, K.F. The Caloscyphaceae (Pezizomycetes, Ascomycota), with a new genus. Mycol. Prog. 2013, 12, 667–674. [Google Scholar] [CrossRef]
  453. Hongsanan, S.; Tian, Q.; Persoh, D.; Zeng, X.-Y.; Hyde, K.D.; Chomnunti, P.; Boonmee, S.; Bahkali, A.H.; Wen, T.-C.  Meliolales. Fungal Divers. 2015, 74, 91–141. [Google Scholar] [CrossRef]
  454. Justavino, D.R.; Kirschner, R.; Piepenbring, M. New species and new records of Meliolaceae from Panama. Fungal Divers. 2015, 70, 73–84. [Google Scholar] [CrossRef]
  455. Nguyen, T.T.; Duong, T.; Lee, H. Characterization of two new records of Mucoralean species isolated from gut of soldier fy larva in Korea. Mycobiology 2016, 44, 310–313. [Google Scholar] [CrossRef] [Green Version]
  456. Nguyen, T.T.; Jung, H.Y.; Lee, Y.S.; Voigt, K.; Lee, H.B. Phylogenetic status of two undescribed zygomycete species from Korea: Actinomucor elegans and Mucor minutus. Mycobiology 2017, 45, e34. [Google Scholar] [CrossRef] [Green Version]
  457. Walther, G.; Pawłowska, J.; Alastruey-Izquierdo, A.; Wrzosek, M.; Rodriguez-Tudela, J.; Dolatabadi, S.; Chakrabarti, A.; de Hoog, G. DNA barcoding in Mucorales: An inventory of biodiversity. Persoonia 2013, 30, 11–47. [Google Scholar] [CrossRef] [Green Version]
  458. Walther, G.; Wagner, L.; Kurzai, O. Updates on the Taxonomy of Mucorales with an Emphasis on Clinically Important Taxa. J. Fungi 2019, 5, 106. [Google Scholar] [CrossRef] [Green Version]
  459. Wagner, L.; Stielow, J.; De Hoog, G.; Bensch, K.; Schwartze, V.U.; Voigt, K.; Alastruey-Izquierdo, A.; Kurzai, O.; Walther, G. A new species concept for the clinically relevant Mucor circinelloides complex. Persoonia 2020, 44, 67–97. [Google Scholar] [CrossRef]
  460. Heluta, V.; Takamatsu, S.; Harada, M.; Voytyuk, S. Molecular phylogeny and taxonomy of Eurasian Neoerysiphe species infecting Asteraceae and Geranium. Persoonia 2010, 24, 81–92. [Google Scholar] [CrossRef]
  461. Gregorio-Cipriano, R.; González, D.; Félix-Gastélum, R.; Chacón, S. Neoerysiphesechii (Ascomycota: Erysiphales): A new species of powdery mildew found on Sechium edule and Sechium mexicanum (Cucurbitaceae) in Mexico. Botany 2020, 98, 185–195. [Google Scholar] [CrossRef]
  462. Braun, U.; Cook, R.T.A. Taxonomic Manual of the Erysiphales (Powdery Mildews); CBS Biodiversity Series No. 11; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2012. [Google Scholar]
  463. Chen, C.; Verkley, G.J.; Sun, G.; Groenewald, J.Z.; Crous, P. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biol. 2016, 120, 1291–1322. [Google Scholar] [CrossRef] [Green Version]
  464. Choi, S.; Paul, N.; Lee, K.-H.; Kim, H.-J.; Sang, H. Morphology, Molecular Phylogeny, and Pathogenicity of Neofusicoccum parvum, Associated with Leaf Spot Disease of a New Host, the Japanese Bay Tree (Machilus thunbergii). Forests 2021, 12, 440. [Google Scholar] [CrossRef]
  465. Prasannath, K.; Shivas, R.G.; Galea, V.J.; Akinsanmi, O.A. Neopestalotiopsis Species Associated with Flower Diseases of Macadamia integrifolia in Australia. J. Fungi 2021, 7, 771. [Google Scholar] [CrossRef]
  466. Maharachchikumbura, S.S.; Larignon, P.; Al-Sadi, A.M.; Zuo-Yi, L.I.U. Characterization of Neopestalotiopsis, Pestalotiopsis and Truncatella species associated with grapevine trunk diseases in France. Phytopathol. Mediterr. 2017, 55, 380–390. [Google Scholar]
  467. Jayawardena, R.; Liu, M.; Maharachchikumbura, S.S.N.; Zhang, W.; Xing, Q.; Hyde, K.D.; Nilthong, S.; Li, X.; Yan, J. Neopestalotiopsis vitis sp. nov. causing grapevine leaf spot in China. Phytotaxa 2016, 258, 63–74. [Google Scholar] [CrossRef]
  468. Abdel-Wahab, M.A.; Bahkali, A.H.; El-Gorban, A.M.; Hodhod, M.S. Natural products of Nothophoma multilocularis sp. nov. an endophyte of the medicinal plant Rhazya stricta. Mycosphere 2017, 8, 1185–1200. [Google Scholar] [CrossRef]
  469. Valenzuela-Lopez, N.; Cano-Lira, J.F.; Guarro, J.; Sutton, D.A.; Wiederhold, N.; Crous, P.W.; Stchigel, A.M. Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Stud. Mycol. 2018, 90, 1–69. [Google Scholar] [CrossRef]
  470. Chethana, K.W.T.; Jayawardene, R.S.; Zhang, W.; Zhou, Y.Y.; Liu, M.; Hyde, K.D.; Li, X.H.; Wang, J.; Zhang, K.C.; Yan, J.Y. Molecular characterization and pathogenicity of fungal taxa associated with cherry leaf spot disease. Mycosphere 2019, 10, 490–530. [Google Scholar] [CrossRef]
  471. Zhang, L.X.; Yin, T.; Pan, M.; Tian, C.M.; Fan, X.L. Occurrence and identifcation of Nothophoma spiraeae sp. nov. in China. Phytotaxa 2020, 430, 147–156. [Google Scholar]
  472. Maharachchikumbura, S.; Guo, L.-D.; Chukeatirote, E.; Bahkali, A.; Hyde, K.D. Pestalotiopsis—Morphology, phylogeny, biochemistry and diversity. Fungal Divers. 2011, 50, 167–187. [Google Scholar] [CrossRef]
  473. Keith, L.M.; Velasquez, M.E.; Zee, F.T. Identification and Characterization of Pestalotiopsis spp. Causing Scab Disease of Guava, Psidium guajava, in Hawaii. Plant Dis. 2006, 90, 16–23. [Google Scholar] [CrossRef] [Green Version]
  474. Gramaje, D.; León, M.; Pérez-Sierra, A.; Burgess, T.; Armengol, J. New Phaeoacremonium species isolated from sandalwood trees in Western Australia. IMA Fungus 2014, 5, 67–77. [Google Scholar] [CrossRef] [PubMed]
  475. da Silva, M.A.; Correia, K.C.; Barbosa, M.A.G.; Câmara, M.P.S.; Gramaje, D.; Michereff, S.J. Characterization of Phaeoacremonium isolates associated with Petri disease of table grape in Northeastern Brazil, with description of Phaeoacremonium nordesticola sp. nov. Eur. J. Plant Pathol. 2017, 149, 695–709. [Google Scholar] [CrossRef]
  476. Spies, C.; Moyo, P.; Halleen, F.; Mostert, L. Phaeoacremonium species diversity on woody hosts in the Western Cape Province of South Africa. Persoonia 2018, 40, 26–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  477. Drechsler-Santos, E.R.; Robledo, G.L.; Lima-Júnior, N.C.; Malosso, E.; Reck, M.A.; Gibertoni, T.B.; Cavalcanti, M.A.D.Q.; Rajchenberg, M. Phellinotus, a new neotropical genus in the Hymenochaetaceae (Basidiomycota, Hymenochaetales). Phytotaxa 2016, 261, 218–239. [Google Scholar] [CrossRef]
  478. Tomšovský, M.; Vampola, P.; Sedlák, P.; Byrtusová, Z.; Jankovský, L. Delimitation of central and northern European species of the Phellinus igniarius group (Basidiomycota, Hymenochaetales) based on analysis of ITS and translation elongation factor 1 alpha DNA sequences. Mycol. Prog. 2010, 9, 431–445. [Google Scholar] [CrossRef]
  479. Brazee, N.J. Phylogenetic Relationships among Species of Phellinus sensu stricto, Cause of White Trunk Rot of Hardwoods, from Northern North America. Forests 2015, 6, 4191–4211. [Google Scholar] [CrossRef] [Green Version]
  480. Zhou, L.-W.; Vlasák, J.; Qin, W.-M.; Dai, Y.-C. Global diversity and phylogeny of the Phellinus igniarius complex (Hymenochaetales, Basidiomycota) with the description of five new species. Mycologia 2016, 108, 192–204. [Google Scholar] [CrossRef]
  481. Zhu, L.; Ji, X.; Si, J.; Cui, B.-K. Morphological characters and phylogenetic analysis reveal a new species of Phellinus with hooked hymenial setae from Vietnam. Phytotaxa 2018, 356, 91–99. [Google Scholar] [CrossRef]
  482. Slippers, B.; Boissin, E.; Phillips, A.; Groenewald, J.; Lombard, L.; Wingfield, M.; Postma, A.; Burgess, T.; Crous, P. Phylogenetic lineages in the Botryosphaeriales: A systematic and evolutionary framework. Stud. Mycol. 2013, 76, 31–49. [Google Scholar] [CrossRef] [Green Version]
  483. Wu, S.-P.; Liu, Y.-X.; Yuan, J.; Wang, Y.; Hyde, K.D.; Liu, Z.-Y. Phyllosticta species from banana (Musa sp.) in Chongqing and Guizhou Provinces, China. Phytotaxa 2014, 188, 135–144. [Google Scholar] [CrossRef] [Green Version]
  484. Blair, J.E.; Coffey, M.D.; Park, S.-Y.; Geiser, D.M.; Kang, S. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet. Biol. 2008, 45, 266–277. [Google Scholar] [CrossRef]
  485. Martin, F.N.; Blair, J.E.; Coffey, M.D. A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora. Fungal Genet. Biol. 2014, 66, 19–32. [Google Scholar] [CrossRef] [PubMed]
  486. Zhang, W.; Manawasinghe, I.S.; Zhao, W.; Xu, J.; Brooks, S.; Zhao, X.; Xu, J.P.; Brooks, S.; Zhao, X.; Hyde, K.D.; et al. Multiple gene genealogy reveals high genetic diversity and evidence for multiple origins of Chinese Plasmopara viticola population. Sci. Rep. 2017, 7, 17304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  487. Tennakoon, D.S.; Phookamsak, R.; Wanasinghe, D.N.; Yang, J.B.; Lumyong, S.; Hyde, K.D. Morphological and phylogentic insights resolve Plenodomus sinensis (Leptosphariaceae) as a new species. Phytotaxa 2017, 324, 73–82. [Google Scholar] [CrossRef]
  488. Maharachchikumbura, S.; Guo, L.-D.; Cai, L.; Chukeatirote, E.; Wu, W.P.; Sun, X.; Crous, P.W.; Bhat, D.J.; McKenzie, E.H.C.; Bahkali, A.; et al. A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Divers. 2012, 56, 95–129. [Google Scholar] [CrossRef] [Green Version]
  489. Maharachchikumbura, S.S.; Guo, L.-D.; Liu, Z.-Y.; Hyde, K.D. Pseudopestalotiopsis ignota and Ps. camelliae spp. nov. associated with grey blight disease of tea in China. Mycol. Prog. 2016, 15, 22. [Google Scholar] [CrossRef]
  490. Pordel, A.; Khodaparast, S.A.; McKenzie, E.H.C.; Javan-Nikkhah, M. Two new species of Pseudopyricularia from Iran. Mycol. Prog. 2017, 16, 729–736. [Google Scholar] [CrossRef]
  491. Klaubauf, S.; Tharreau, D.; Fournier, E.; Groenewald, J.; Crous, P.; de Vries, R.; Lebrun, M.-H. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud. Mycol. 2014, 79, 85–120. [Google Scholar] [CrossRef]
  492. Crous, P.W.; Wingfeld, M.J.; Burgess, T.I.; Hardy, G.E.S.T.J.; Barber, P.A.; Alvarado, P.; Barnes, C.W.; Buchanan, P.K.; Heykoop, M.; Moreno, G. Fungal planet description sheets: 558–624. Persoonia 2017, 38, 240–384. [Google Scholar] [CrossRef]
  493. Quaedvlieg, W.; Verkley, G.; Shin, H.-D.; Barreto, R.; Alfenas, A.; Swart, W.; Groenewald, J.; Crous, P. Sizing up Septoria. Stud. Mycol. 2013, 75, 307–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  494. Abe, A.; Asano, K.; Sone, T. A Molecular Phylogeny-Based Taxonomy of the Genus Rhizopus. Biosci. Biotechnol. Biochem. 2010, 74, 1325–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  495. Gryganskyi, A.P.; Golan, J.; Dolatabadi, S.; Mondo, S.; Robb, S.; Idnurm, A.; Muszewska, A.; Steczkiewicz, K.; Masonjones, S.; Liao, H.-L.; et al. Phylogenetic and Phylogenomic Definition of Rhizopus Species. G3 Genes|Genom.|Genet. 2018, 8, 2007–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  496. Vebliza, Y.; Sjamsuridzal, W.; Oetari, A.; Santoso, I.; Roosheroe, I.G. Re-identifcation of five strains of Rhizopus arrhizus from tempeh based on ITS regions of rDNA sequence data. AIP Conf. Proc. 2018, 2023, e02016. [Google Scholar]
  497. Hsieh, H.-M.; Lin, C.R.; Fang, M.J.; Rogers, J.D.; Fournier, J.; Lechat, C.; Ju, Y.-M. Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol. Phylogenet. Evol. 2010, 54, 957–969. [Google Scholar] [CrossRef]
  498. Bahl, J.; Jeewon, R.; Hyde, K.D. Phylogeny of Rosellinia capetribulensis sp. nov. and its allies (Xylariaiceae). Mycologia 2005, 97, 1102–1110. [Google Scholar] [CrossRef]
  499. Daranagama, D.A.; Camporesi, E.; Tian, Q.; Liu, X.; Chamyuang, S.; Stadler, M.; Hyde, K.D. Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Divers. 2015, 73, 203–238. [Google Scholar] [CrossRef]
  500. Wendt, L.; Sir, E.B.; Kuhnert, E.; Heitkamper, S.; Lambert, C.; Hladki, A.I.; Romero, A.I.; Luangsa-ard, J.J.; Srikitikulchai, P.; Peršoh, D.; et al. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol. Prog. 2018, 17, 115–154. [Google Scholar] [CrossRef] [Green Version]
  501. Keirnan, E.C.; Tan, Y.P.; Laurence, M.H.; Mertin, A.A.; Liew, E.C.Y.; Summerell, B.A.; Shivas, R.G. Cryptic diversity found in Didymellaceae from Australian native legumes. MycoKeys 2021, 78, 1–20. [Google Scholar] [CrossRef]
  502. Jayasiri, S.C.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Jeewon, R.; Phillips, A.J.L.; Bhat, D.J.; Wanasinghe, D.N.; Liu, J.K.; Lu, Y.Z.; et al. Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 2019, 10, 1–186. [Google Scholar] [CrossRef]
  503. Hou, L.W.; Hernández-Restrepo, M.; Groenewald, J.; Cai, L.; Crous, P.W. Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes). MycoKeys 2020, 65, 49–99. [Google Scholar] [CrossRef]
  504. Moslemi, A.; Ades, P.K.; Groom, T.; Nicolas, M.E.; Taylor, P.W. Alternaria infectoria and Stemphylium herbarum, two new pathogens of pyrethrum (Tanacetum cinerariifolium) in Australia. Australas. Plant Pathol. 2017, 46, 91–101. [Google Scholar] [CrossRef]
  505. Woudenberg, J.H.C.; Hanse, B.; van Leeuwen, G.C.M.; Groenewald, J.Z.; Crous, P.W. Stemphylium revisited. Stud. Mycol. 2017, 87, 77–103. [Google Scholar] [CrossRef] [PubMed]
  506. Brahmanage, R.S.; Hyde, K.D.; Li, X.H.; Jayawardena, R.S.; McKenzie, E.H.C.; Yan, J.Y. Are pathogenic isolates of Stemphylium host specifc and cosmopolitan? Plant Pathol. Quarant. 2018, 8, 153–164. [Google Scholar] [CrossRef]
  507. Senwanna, C.; Wanasinghe, D.N.; Bulgakov, T.S.; Wang, Y.; Bhat, D.J.; Tang, A.M.C.; Mortimer, P.E.; Xu, J.; Hyde, K.D.; Phookamsak, R. Towards a natural classification of Dothidotthia and Thyrostroma in Dothidotthiaceae (Pleosporineae, Pleosporales). Mycosphere 2019, 10, 701–738. [Google Scholar] [CrossRef]
  508. Crous, P.W.; Schumache, R.K.; Akulov, A.; Thangavel, R.; Hernández Restrepo, M.; Carnegie, A.J.; Cheewangkoon, R.; Wingfeld, M.J.; Summerel, B.A.; Quaedvlieg, W.; et al. New and interesting fungi. 2. Fungal Syst. Evol. 2019, 3, 57–134. [Google Scholar] [CrossRef]
  509. Shivas, R.G.; Barrett, M.D.; Barrett, R.L.; McTaggart, A.R. Tilletia micrairae. Persoonia 2009, 22, 171–172. [Google Scholar]
  510. Shivas, R.G.; Beasley, D.R.; McTaggart, A.R. Online identification guides for Australian smut fungi (Ustilaginomycotina) and rust fungi (Pucciniales). IMA Fungus 2014, 5, 195–202. [Google Scholar] [CrossRef]
  511. McTaggart, A.R.; Shivas, R.G. Tilletia challinorae McTaggart & RG Shivas, sp. nov. Persoonia 2009, 23, 36. [Google Scholar]
  512. Li, Y.M.; Shivas, R.G.; Cai, L. Three new species of Tilletia on Eriachne from north-western Australia. Mycoscience 2014, 55, 361–366. [Google Scholar] [CrossRef]
  513. Vánky, K.; Lutz, M. Tubisorus, a new genus of smut fungi (Ustilaginomycetes) for Sporisorium pachycarpum. Mycol. Balc. 2011, 8, 129–135. [Google Scholar]
  514. Zhang, J.; Dou, Z.; Zhou, Y.; He, W.; Zhang, X.; Zhang, Y. Venturia sinensis sp. nov. a new ventuarialean ascomycete from Khingan Mountains. SaudiJ. Biol. Sci. 2016, 23, 592–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  515. Zhang, Y.; Crous, P.; Schoch, C.; Bahkali, A.; Guo, L.; Hyde, K.D. A molecular, morphological and ecological re-appraisal of Venturiales—A new order of Dothideomycetes. Fungal Divers. 2011, 51, 249–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Figure 1. Diversity of different types of fungi. (A) Phragmidium sp. [rose rust], (B) Calocera sp., (C) Trametes sp., (D) Tilletia sp. [smut], (E) Colletotrichum sp. [Leaf spot], (F) Erysiphe sp. [Powdery mildew cleistothecia], (G) Inonotus sp., (H) Termitomyces sp., (I) Kweilingia sp. [rust], (J) Podosphaera sp. on Sonchus sp. [Powdery mildew], (K) Tremella sp., (L) Xylaria sp., (M) Uromyces sp. [aecia and telia], (N) Pileolaria sp. [rust], (O) Gaestrum sp., (P) Didymium sp., (Q) Penicillium sp. on Emblica sp., (R) Schiffnerula sp. [black mildew], (S) Aspergillus sp., (T) Coleosporium sp. [rust], (U) Schizophyllum sp., (V) Aspergillus sp. [on cow pea], (W) Mitteriella sp. [black mildew] and (X) Periconia sp. Scale bars A–X = 20 mm.
Figure 1. Diversity of different types of fungi. (A) Phragmidium sp. [rose rust], (B) Calocera sp., (C) Trametes sp., (D) Tilletia sp. [smut], (E) Colletotrichum sp. [Leaf spot], (F) Erysiphe sp. [Powdery mildew cleistothecia], (G) Inonotus sp., (H) Termitomyces sp., (I) Kweilingia sp. [rust], (J) Podosphaera sp. on Sonchus sp. [Powdery mildew], (K) Tremella sp., (L) Xylaria sp., (M) Uromyces sp. [aecia and telia], (N) Pileolaria sp. [rust], (O) Gaestrum sp., (P) Didymium sp., (Q) Penicillium sp. on Emblica sp., (R) Schiffnerula sp. [black mildew], (S) Aspergillus sp., (T) Coleosporium sp. [rust], (U) Schizophyllum sp., (V) Aspergillus sp. [on cow pea], (W) Mitteriella sp. [black mildew] and (X) Periconia sp. Scale bars A–X = 20 mm.
Jof 08 00226 g001
Figure 2. Diversity of different types of fungi. (A,B) Curvularia sp., (C) Pileolaria sp. [rust], (D) Phyllactinia sp. [powdery mildew], (E) Dictyosporium sp., (F,G) Sytalidium sp., (H) Alternaria alternata, (I) Hypoxylon sp., (J,K) Aspergillus niger, (L) Coleosporium sp. [rust], (M) Podosphaera sp. [powdery mildew], (N,O) Penicillium sp. on Emblica sp., (P) Colletotrichum sp., (Q) Pithomyces sp., (R,S) Aspergillus falvus, (T) Torula sp., (U) Beltrania sp., (V) Ceratosporium sp. Scale bars A,F,J,N,R = 1 mm; B–E,G–I,K–M,O–Q,S–V = 10 µm.
Figure 2. Diversity of different types of fungi. (A,B) Curvularia sp., (C) Pileolaria sp. [rust], (D) Phyllactinia sp. [powdery mildew], (E) Dictyosporium sp., (F,G) Sytalidium sp., (H) Alternaria alternata, (I) Hypoxylon sp., (J,K) Aspergillus niger, (L) Coleosporium sp. [rust], (M) Podosphaera sp. [powdery mildew], (N,O) Penicillium sp. on Emblica sp., (P) Colletotrichum sp., (Q) Pithomyces sp., (R,S) Aspergillus falvus, (T) Torula sp., (U) Beltrania sp., (V) Ceratosporium sp. Scale bars A,F,J,N,R = 1 mm; B–E,G–I,K–M,O–Q,S–V = 10 µm.
Jof 08 00226 g002
Figure 3. Estimations on the global number of fungal species.
Figure 3. Estimations on the global number of fungal species.
Jof 08 00226 g003
Figure 4. An overview of DNA-based molecular techniques used in fungal sample analyses.
Figure 4. An overview of DNA-based molecular techniques used in fungal sample analyses.
Jof 08 00226 g004
Figure 5. Different molecular techniques used in DNA-based analyses of different fungi.
Figure 5. Different molecular techniques used in DNA-based analyses of different fungi.
Jof 08 00226 g005
Figure 6. Modern polyphasic methodology of fungal identification.
Figure 6. Modern polyphasic methodology of fungal identification.
Jof 08 00226 g006
Table 3. An overview on DNA-based methods of fungal samples analyses.
Table 3. An overview on DNA-based methods of fungal samples analyses.
Global Fungi Study IDSubstrateSamplesMethodSequencing PlatformITS2 SequencesReference
Hartmann_2012_B1A36Culture independent454-pyrosequencing2155088[150]
Ihrmark_2012_3AE5Soil, wood, wheat roots and hay36Culture independent454-pyrosequencing414896[151]
Davey_2012_6F6AShoots of Hylocomium splendens, Pleurozium schreberi, and Polytrichum commune301Culture independent454-pyrosequencing296964[152]
Peay_2013_74BBSoil36Culture independent454-pyrosequencing86677[153]
Davey_2013_7683Shoots of Dicranum scoparium, Hylocomium splendens, Pleurozium schreberi and Polytrichum commune454-pyrosequencingCulture independent454-pyrosequencing313084[154]
Talbot_2014_A187Soil555Culture independent454-pyrosequencing16977[155]
Tedersoo_2014_B9DDSoil360Culture independent454-pyrosequencing1979803[156]
Kadowaki_2014_B85BSoil46Culture independent454-pyrosequencing66067[157]
Geml_2014_2936Soil10Culture independent454-pyrosequencing285031[158]
Davey_2014_2252Shoots of Hylocomium splendens251Culture independent454-pyrosequencing639746[159]
McHugh_2015_CAE1Soil20Culture independent454-pyrosequencing594424[160]
DeBeeck_2014_14DCSoil20Culture independent454-pyrosequencing32778[161]
Yamamoto_2014_C3F7Seedlings of Quercus sp.431Culture independent454-pyrosequencing59021[162]
Walker_2014_22C1Soil24Culture independent454-pyrosequencing34267[163]
Veach_2015_7FDESoil91Culture independentIllumina MiSeq579967[164]
Zhang_2015_A52FSeven lichens speciesViz. Cetrariella delisei, Cladonia borealis, C. arbuscula, C. pocillum, Flavocetraria nivalis, Ochrolechia frigida and Peltigera canina22Culture independent454-pyrosequencing11087[165]
Elliott_2015_7CC2Soil16Culture independent454-pyrosequencing3896[166]
Geml_2015_1A45Soil10Culture independentIon Torrent1098472[167]
Hoppe_2015_BE27Wood48Culture independent454-pyrosequencing121459[168]
Jarvis_2015_B613Roots of Pinus sylvestris32Culture independent454-pyrosequencing112333[169]
Chaput_2015_41F7Soil4Culture independentTag-encoded FLX amplicon pyrosequencing1197[170]
van_der_Wal_2015_1114Sawdust from sapwood and heartwood of Quercus robur, Rubus fruticosus, Sorbus aucuparia, Betula pendula,
Pteridium aquilinum and Amelanchier lamarckii
42Culture independent454-pyrosequencing543801[171]
Clemmensen_2015_B0AESoil466Culture independent454-pyrosequencing GL FLX Titanium system592836[172]
Gao_2015_1CEFSoil24Culture independent454-pyrosequencing GL FLX Titanium system93683[173]
Liu_2015_6174Soil26Culture independentRoche FLX 454- pyrosequencing53978[174]
Oja_2015_88D4Cypripedium calceolus (subfamily Cypripedioideae), Neottia ovata
(Epidendroideae) and Orchis militaris (Orchidoideae) and Soil
158Culture independent454-pyrosequencing63045[175]
Goldmann_2015_EA26Soil48Culture independent454-pyrosequencer140966[176]
Tedersoo_2015_ED81Soil11Culture independentIllumina MiSeq261751[177]
Rime_2015_89DESoil36Culture independent454-pyrosequencing GL FLX Titanium system227118[178]
Sterkenburg_2015_5E14Soil56Culture independent454-pyrosequencing350560[179]
Stursova_2016_D385Soil96Culture independentIllumina MiSeq452546[180]
Semenova_2016_576BSoil10Culture independentIon Torrent sequencing1007509[181]
Santalahti_2016_74FCSoil117Culture independent454-pyrosequencing739877[182]
Rime_2016_E0E4Soils and sediments2Culture independent454-pyrosequencing35937[183]
RoyBolduc_2016_E50CRoot and soil63Culture independent454-pyrosequencing248325[184]
RoyBolduc_2016_F11BSoil77Culture independent454-pyrosequencing280272[185]
Tedersoo_2016_TDEFSoil136Culture independent454-pyrosequencing788372[186]
UOBC_2016_5CA6Soil655Culture independentIllumina HiSeq7138323[187]
Urbina_2016_CE8ESoil21Culture independentIon Torrent sequencing564332[188]
Valverde_2016_5E5CSoil from the rhizosphere of Welwitschia mirabilis8Culture independent454-pyrosequencing2677[189]
Nacke_2016_8F49Soil from the rhizosphere Fagus sylvatica and Picea abies160Culture independent454-pyrosequencing386432[190]
Newsham_2016_191BSoil29Culture independent454-pyrosequencing509483[191]
Nguyen_2016_D8E8Shoots of Picea abies, Abies alba, Fagus sylvatica, Acer pseudoplatanus, Fraxinus excelsior, Quercus robur, Pinus sylvestris, Betula pendula, Carpinus betulus and Quercus robur221Culture independent454-pyrosequencing63853[192]
Goldmann_2016_0757Root and soil samples from beech-dominated plots29Culture independent454-pyrosequencing85867[193]
Bahram_2016_7246Soil123Culture independent454-pyrosequencing213249[194]
Gehring_2016_E395Roots and root-associated (rhizosphere) soil of sagebrush, cheatgrass, and rice grass plants60--1161117[195]
Gourmelon_2016_9281Soil32Culture independentIllumina MiSeq91814[196]
Bissett_AAAA_2016Soil2061Culture independentIllumina MiSeq50810033[197]
Cox_2016_EDC5Soil135Culture independent454-pyrosequencing886200[198]
Oh_2016_DEBASoil12Culture independent454-pyrosequencing98376[199]
Frey_2016_5D5CSoil12Culture independentIllumina MiSeq v3500999[200]
Gannes_2016_5E98Soil23Culture independentIllumina MiSeq system218946[201]
Li_2016_1EBCSoil21Culture independentIllumina MiSeq system129184[202]
Kielak_2016_1110Wood of Pinus sylvestris75Culture independent454-pyrosequencing1281356[203]
Ji_2016_C06ESoil13Culture independent454-pyrosequencing277[204]
Baldrian_2016_DE02Sawdust118Culture independentllumina MiSeq1205580[205]
Barnes_2016_0042Roots of Cinchona calisaya21Culture independentllumina MiSeq239387[206]
Porter_2016_CD8DSoil2Culture independent454-pyrosequencing20123[207]
Zhou_2016_A8F1Soil126Culture independentIllumina MiSeq3542416[208]
Zhang_2016_1DA0Soil13Culture independent454-pyrosequencing2362[209]
Wang_2016_6223Roots, stems, and sprouts of rice plant1Culture independentIllumina MiSeq1850[210]
Zifcakova_2016_4C03Soil24Culture independentILLUMINA
HISEQ2000
123869[211]
VanDerWal_2016_4C9CSawdust from sapwood and heartwood130Culture independent454-pyrosequencing1215932[212]
Varenius_2017_BCFBSoil517Culture independentPacBio RSII platform by SciLifeLab186474[213]
van_der_Wal_2017_2D0DSawdust samples of Larix stumps, and Quercus stumps88Culture independentIllumina MiSeq877425[214]
Wang_2017_7E18Soil6Culture independent454-pyrosequencing53737[215]
van_der_Wal_2017_3070Soil135Culture independentIllumina MiSeq1572834[216]
Vasutova_2017_3070Soil28Culture independentGS Junior
sequencer
9370[217]
Vaz_2017_C16EWoody debris2Culture independentPersonal Genome Machine11817[218]
Yang_2017_2AFCSoil180Culture independentllumina MiSeq platform PE25012688168[219]
Wicaksono_2017_3B9ERoot samples of Alnus acuminata24Culture independentIon Torrent3596531[220]
Yang_2017_EB1DSoil26Culture independentIllumina MiSeq
platform PE250
1450233[221]
Zhang_2017_02C2Plant litter and soil54Culture independentIllumina MiSeq2904476[222]
Zhang_2017_F933Peat soil9Culture independentIllumina HiSeq2000320199[223]
Purahong_2017_8EFDWood sample116Culture independentGenome Sequencer 454-FLX System299831[224]
Poosakkannu_2017_B342Bulk soil, rhizosphere soil, and D. flexuosa Leaf43Culture independentIonTorrent259743[225]
Bergottini_2017_02C2Roots of Ilex paraguariensis11Culture independent454-pyrosequencing189048[226]
Dean_2017_F5A5Roots of Glycine max (soybean) and Thlaspi arvense12Culture independent454-FLX titanium12596[227]
Fernandez_Martinez_2017_14C3Soil11Culture independent454-pyrosequencing138524[228]
Ge_2017_4DC8Roots of Quercus nigra, Q. virginiana, Q. laevis, Carya cf. glabra, Carya cf. tomentosa as well as several Carya and Quercus spp.9Culture independent454-pyrosequencing44[229]
Gomes_2017_2AFCRoots of Thismia sp.61Culture independentIon Torrent4067438[230]
Almario_2017_2082Root and rhizosphere of Arabis alpina26Culture independentIllumina Miseq805679[231]
Anthony_2017_647FSoil142Culture independentIllumina Miseq12453259[232]
Grau_2017_E29ASoil27Culture independentIon Torrent960177[233]
Hiiesalu_2017_E29ASoil1Culture independent454-pyrosequencing4616[234]
Nguyen_2017_6F2CLeaf samples of Betula pendula20Culture independent454-pyrosequencing1318[235]
Kolarikova_2017_EB1DRoots of Salix caprea and Betula pendula24Culture independent454-pyrosequencing47543[236]
Kyaschenko_2017_89D4Soil30Culture independentPacBio sequencing64010[237]
Oja_2017_AD29Roots and rhizosphere soil of333Culture independent454-pyrosequencing446296[238]
Miura_2017_2BE5Leaves and berries of grapes36Culture independentIllumina MiSeq2250530[239]
Oono_2017_B342Needles of Pinus taeda143Culture independentIllumina MiSeq9755183[240]
Kamutando_2017_6F2CSoil3Culture independentIllumina MiSeq4[241]
Shen_2017_C7F4Soil1Culture independentIllumina MiSeq1[242]
Smith_2017_2AFCRoot of Dicymbe corymbosa8Culture independent454-pyrosequencing94[243]
Tian_2017_F933Soil3Culture independent454-GS FLX+pyrosequencing machine25001[244]
Tu_2017_BCFBSoil60Culture independentIllumina MiSeq696557[245]
Sharma_Poudyal_2017_F933Soil53Culture independent454-FLX titanium7680[246]
Cross_2017_2AFCLeaflet, petiole upper and petiole base tissues of ash leaves of Fraxinus excelsior (common ash)27Culture independent454-pyrosequencing171094[247]
Kazartsev_2018_1115Bark of Picea abies20Culture independent454-pyrosequencing22918[248]
Bickford_2018_2EE0Roots of Phragmites spp.3Culture independentPacBio-RS II66439[249]
Cline_2018_0BCCWood of Betula papyrifera15Culture independent454-FLX titanium660[250]
Cregger_2018_addedRoots, stems, and leaves of Populus deltoides and the Populus trichocarpa × deltoides hybrid290Culture independentIllumina MiSeq14767409[251]
Marasco_2018_DBE1Rhizosheath-root system of Stipagrostis sabulicola, S. seelyae and Cladoraphis spinosa49Culture independentIllumina MiSeq4694085[252]
Glynou_2018_445ARoots of nonmycorrhizal Microthlaspi spp.5Culture independentIllumina Miseq7[253]
Montagna_2018_E316Soil24Culture independentIllumina Miseq2475767[254]
Schlegel_2018_A231Leaves of Fraxinus spp. and Acer pseudoplatanus353Culture independentIllumina MiSeq24198214[255]
SchneiderMaunoury_2018_51ABDifferent plant species78Culture independentIon Torrent352332[256]
Schon_2018_01F4Soil18Culture independentIllumina MiSeq235709[257]
Rasmussen_2018_C8E6Root samples228Culture independentIllumina MiSeq428044[258]
Rogers_2018_147FHemlock stems6Culture independentIllumina MiSeq675067[259]
Purahong_2018_14C0Deadwood logs297Culture independent454-pyrosequencing2034928[260]
Qian_2018_2B1ELeaves of Mussaenda shikokiana20Culture independentIllumina MiSeq449179[261]
Park_2018_569CCalanthe species: C. aristulifera, C. bicolor, C. discolor, C. insularis and C. striata12Culture independent454-GS FLX +System65867[262]
Mirmajlessi_2018_765DSoil40Culture independentIllumina MiSeq1077125[263]
Purahong_2018_9F2EWood samples96Culture independent454-pyrosequencing656682[264]
Si_2018_53B6Soil27Culture independentIllumina MiSeq692169[265]
Saitta_2018_51C8Soil16Culture independentIllumina MiSeq4923667[266]
Santalahti_2018_3794Soil38Culture independent454-pyrosequencing218387[267]
Sukdeo_2018_1DF4Soil126Culture independentIllumina MiSeq32336646[268]
Zhu_2018_1E38Soil12Culture independentIllumina MiSeq1031479[269]
Zhang_2018_F81FSoil106Culture independentIllumina HiSeq1673070[270]
Zhang_2018_491ABare sand, algal crusts, lichen crusts, and moss crusts17Culture independentIllumina Miseq442056[271]
Sun_2018_1B01Soil36Culture independentIllumina Miseq1188520[272]
Weissbecker_2019_6A75Soil394Culture independentGS-FLX + 454 pyrosequencer1109208[273]
Purahong_AD_2019Wood chips of rotted heartwood deadwood from C. carlesii3Culture independentPacBio RS II system22886[274]
Egidi_AD_2019Soil161Culture independentIllumina MiSeq14131987[275]
Froeslev_2019_CA74Soil276Culture independentIllumina MiSeq6114124[276]
Ogwu_2019_38FESoil13Culture independentIllumina Miseq724483[277]
Ovaskainen_2019_airSoil particles, spores, pollen, bacteria, and small insects75Culture independentIllumina Miseq935812[278]
Qian_2019_9691Leaves and soil30Culture independentIllumina HiSeq2133292[279]
Ramirez_2019_D0B2Soil810Culture independentIllumina Miseq6555903[280]
Pellitier_2019_82BCBark of black oak (Quercus velutina), white oak (Q. alba), red pine (Pinus resinosa), eastern white pine (P. strobus) and red maple (Acer rubrum)15Culture independentIllumina MiSeq10649956[281]
Semenova-Nelsen_2019_addLitter and the uppermost soil121Culture independentIllumina MiSeq3205748[282]
Sheng_2019_66ACSoil16Culture independentIllumina MiSeq447840[283]
Shigyo_2019_5B19Soil144Culture independentIllumina MiSeq4353704[284]
Schroter_2019_1B64Fine roots and soil3Culture independentRoche GS-FLX+ pyrosequencer144[285]
Singh_2019_EA7FFine roots and soil96Culture independentIllumina MiSeq3138303[286]
Song_2019_ad2Soil46Culture independentIllumina MiSeq920391[287]
U’Ren_2019_addFresh, photosynthetic tissues of a diverse range
of plants and lichens
486Culture-based sampling and culture-independentIllumina MiSeq5671834[288]
Unuk_2019_567AFine roots and soil30Culture independentIlumina MiSeq470786[289]
Araya_2019_addSoil36Culture independentIllumina MiSeq8083471[290]
Alvarez-Garrido_2019_addRoot tips from A. pinsapo trees following the trunk to the superficial secondary roots76Culture independentIllumina MiSeq1795423[291]
Wei_2019_3796Soil1Culture independentIllumina HiSeq18[292]
Pan_2020_addZSoil from the rhizosphere of potato1Culture independentIllumina MiSeq2[293]
Detheridge_2020_ZSoil70Culture independent 1832454[294]
Li_2020_ASSoil19Culture independentIllumina MiSeq116660[295]
Table 4. An overview on culture dependentand culture independent analyses of fungal samples with respect to location, source, sequencing, observation method and target gene.
Table 4. An overview on culture dependentand culture independent analyses of fungal samples with respect to location, source, sequencing, observation method and target gene.
LocationSourceSequencingMethodTarget GeneReference
Woods Hole Harbor MassachusettsWoodCulture dependentDirect observation[296]
Atlantic OceanWaterCulture dependentIncubation of sample and direct observation[297]
Rumanian coast of the Black SeaCalcareous substancesCulture dependentIncubation of sample and direct observation[298]
Iceland-Faroe ridgeWaterCulture dependentIncubation of sample and direct observation[299]
BahamasWoodCulture dependentIncubation of sample and direct observation[300]
Bay of Bengal and Arabian SeaSediment Culture dependentCulture media[301]
Northwest Pacific Ocean (Sagami Bay and Suruga Bay; Palau-Yap Trench and Mariana Trench)SedimentsSangerCulture dependentCulture mediaITS and 5.8S[302]
Guaymas Basin hydrothermal ventSedimentSangerCulture independentClone librarySSU[303]
Mid-Atlantic Ridge hydrothermal areaSedimentSangerCulture independentClone librarySSU[304]
Chagos Trench, Indian OceanSedimentCulture dependent/Direct detectionCulture media[305]
Peru MarginSedimentSangerCulture dependentCulture mediaSSU[306]
Central Indian BasinSedimentCulture dependentCulture media[307]
Kuroshima Knoll in OkinawaSedimentSangerCulture dependent Clone librarySSU[308]
Central Indian BasinSedimentSangerCulture dependentCulture media[309]
Different locationsWater and sedimentSangerCulture dependent Clone librarySSU[310]
South China SeaSedimentSangerCulture dependentClone libraryITS[311]
Lost CityWaterSangerCulture dependentClone librarySSU[312]
Central Indian BasinSediment Direct detection[313]
Vailulu’u is an active submarine volcano at the eastern end of the Samoan volcanic chainWaterSangerCulture dependentCulture mediaITS[314]
Vanuatu archipelagoDeepsea water, wood and debrisSangerCulture dependentCulture mediaSSU and LSU[315]
East Pacific Rise, Mid-Atlantic Ridge and Lucky StrikeDeepsea hydrothermal ecosystemSangerCulture dependent/CultureindependentCulture mediaClone librarySSU[316]
Southwest PacificDeepsea hydrothermal ecosystemsSangerCulture dependentCulture mediaSSU[317]
Different locationsDeep-sea hydrothermal ecosystemsSangerCulture dependentCulture mediaLSU[318]
Japanese islands, including a sample from the deepest ocean depth, the Mariana TrenchSedimentSangerCulture independentClone librarySSU, ITS and LSU[319]
Southern East Pacific RiseWater and bivalvesSangerCulture independentClone librarySSU[320]
Central Indian BasinSedimentSangerCulture dependentCulture media Full ITS and SSU[321]
Southern Indian OceanSedimentSangerCulture independentClone librarySSU[322]
Peru Margin and the Peru TrenchSedimentSangerCulture independentClone librarySSU[323]
Puerto Rico TrenchWaterSangerCulture independentClone librarySSU[324]
Sagami-BayDeep-sea methane cold-seep sedimentsSangerCulture independentClone librarySSU[325]
Marmara SeaSedimentSanger and 454-pyrosequencingCulture independentClone librarySSU[326]
Central Indian Basin - Several stationsSedimentSangerCulture independentClone libraryFull ITS and SSU[327]
Central Indian Basin - Several stationsSedimentSangerCulture dependent/Culture independentCulture mediaClone librarySSU (Fungal isolates)/ITS (DNA sediment)[328]
Central Indian Basin - Several stationsSedimentSangerCulture independent cloningClone libraryFull ITS and SSU[328]
Alaminos Canyon 601 methane seep in the Gulf of MexicoMethane seeps sedimentSangerCulture independentClone libraryITS and LSU[329]
The area surrounding the DWH oil spill in the Gulf of MexicoDeep-sea samples from the area surrounding the Deepwater Horizon oil spill454-pyrosequencingCulture independentShotgunassA and bssA[330]
Hydrate Ridge, Peru Margin, Eastern Equatorial PacificSedimentSanger and 454-pyrosequencingCulture independentTRFLP/MetatranscriptomicsSSU[331]
Peru MarginSedimentIlluminaCulture independent Metatranscriptomics[331]
South China SeaSedimentSangerCulture dependentCulture mediaFull ITS[332]
Mediterranean SeaHypsersaline anoxic basin454-pyrosequencingCulture independentSSU[333]
Canterbury basin, on the eastern margin of the South Island of New ZealandSediment Ocean Drilling Program454-pyrosequencingCulture independentMetatranscriptomicsITS and SSU[334]
The Pacific Ocean and MarianaTrenchSedimentSangerCulture independentClone libraryITS[335]
East Indian OceanSedimentSangerCulture dependent/Culture independentCulture mediaClone libraryITS[336]
Canterbury basin, on the eastern margin of the South Island of New ZealandSedimentSangerCulture dependentCulture mediaSSU, ITS and LSU[337]
Urania, Discovery and L’Atalante basinsHypsersaline anoxic basinIlluminaCulture independentMetatranscriptomics[338]
Several locations around the world/The ICoMM data setPelagic and benthic samples454-pyrosequencingCulture independentSSU[339]
The Pacific Ocean and MarianaTrenchSedimentSangerCulture independentClone libraryITS, SSU and LSU[340]
OkinawaSedimentIlluminaCulture independentITS[341]
Southwest Indian Ridge (SWIR)Sediment and
Deepsea hydrothermal ecosystems
Sanger and IlluminaCulture dependent/Culture independentWith and without Culture mediaITS[342]
Continental margin of PeruSedimentIlluminaCulture independentSSU[343]
North Atlantic and Arctic BasinMarine snow Culture independentCARD-FISH[344]
Northern ChileWaterSangerCulture dependentFull ITS[345]
The Sao Paulo PlateauAsphalt seepsIon TorrentCulture independentITS[346]
Peru MarginSedimentIlluminaCulture independentMetatranscriptomics [347]
East PacificSedimentSangerCulturedependentCulture media Full ITS[348]
The Ionian Sea (Central Mediterranean Sea)SedimentIlluminaCulture independentFISHITS[349]
South-central western Pacific OceanWaterIlluminaCulture independentSSU[350]
Challenger deepWaterIlluminaCulture independentITS[351]
Mexican Exclusive Economic Zone-Gulf of MexicoSedimentIlluminaCulture independentITS[352]
Yap TrenchSedimentSanger and IlluminaCulture dependent/Culture independentITS[353]
Mexican Exclusive Economic Zone-Gulf of MexicoSedimentSangerCulture dependentCulture mediaFull ITS and tub[354]
Table 5. Databases and tools for sequence-based classification and identification.
Table 5. Databases and tools for sequence-based classification and identification.
General Identification Tools and Data Repositories
BOLDhttp://www.boldsystems.org/ (accessed on 6 November 2021)
Westerdijk Fungal BiodiversityInstitutehttps://wi.knaw.nl/page/Collection (accessed on 6 November 2021)
CIPREShttps://www.phylo.org/ (accessed on 6 November 2021)
Dryadhttp://datadryad.org/ (accessed on 6 November 2021)
FUSARIUM-IDhttp://isolate.fusariumdb.org/ (accessed on 6 November 2021)
One Stop Shop Fungihttp://onestopshopfungi.org/ (accessed on 6 November 2021)
GreenGeneshttp://greengenes.lbl.gov/cgi-bin/nph-index.cgi (accessed on 6 November 2021)
MaarjAMhttp://maarjam.botany.ut.ee/ (accessed on 6 November 2021)
Mothurhttp://www.mothur.org/ (accessed on 6 November 2021)
Naïve Bayesian Classifierhttp://aem.asm.org/content/73/16/5261.short?rss=1&ssource=mfc (accessed on 6 November 2021)
Open Tree of Lifehttp://www.opentreeoflife.org/
QIIME http://qiime.org/ (accessed on 6 November 2021)
PHYMYCO databasehttp://phymycodb.genouest.org/ (accessed on 6 November 2021)
RefSeq Targeted Locihttp://www.ncbi.nlm.nih.gov/refseq/targetedloci/ (accessed on 6 November 2021)
Ribosomal Database Project (RDP)http://rdp.cme.msu.edu/ (accessed on 6 November 2021)
Silvahttp://www.arb-silva.de/ (accessed on 6 November 2021)
TreeBASEhttp://treebase.org/ (accessed on 6 November 2021)
TrichoBLASThttp://www.isth.info/tools/blast/ (accessed on 6 November 2021)
UNITEhttp://unite.ut.ee/ (accessed on 6 November 2021)
United Kingdom National Culture Collectionhttp://www.ukncc.co.uk/ (accessed on 6 November 2021)
Data standards
BIOMhttp://biom-format.org/ (accessed on 6 November 2021)
MIMARKShttp://www.nature.com/nbt/journal/v29/n5/full/nbt/1823.html (accessed on 6 November 2021)
DarwinCore http://rs.tdwg.org/dwc/ (accessed on 6 November 2021)
Genomics databases and tools
AFTOLhttp://aftol.umn.edu/ (accessed on 6 November 2021)
1000 Fungal Genomes Project (1KFG)http://1000.fungalgenomes.org/home/ (accessed on 6 November 2021)
FungiDBhttp://fungidb.org/fungidb/ (accessed on 6 November 2021)
GEBAhttp://jgi.doe.gov/our-science/science-programs/microbial-genomics/phylogenetic-diversity/ (accessed on 6 November 2021)
MycoCosmhttp://genome.jgi.doe.gov/programs/fungi/index.jsf (accessed on 6 November 2021)
Functional database
FUNGuildhttp://github.com/UMNFuN/FUNGuild (accessed on 6 November 2021)
Nomenclature and nomenclatural databases and organizations
Catalogue of Life (COL)http://www.catalogueoflife.org/ (accessed on 6 November 2021)
EPPO-Q-bankhttp://qbank.eppo.int/ (accessed on 6 November 2021)
Faces of Fungihttp://www.facesoffungi.org/ (accessed on 6 November 2021)
Index Fungorumhttp://www.indexfungorum.org/ (accessed on 6 November 2021)
International code of nomenclature for algae, fungi, and plants (ICNAFP)http://www.iapt-taxon.org/nomen/main.php (accessed on 6 November 2021)
International Commission on the Taxonomy of Fungi (ICTF)http://www.fungaltaxonomy.org/ (accessed on 6 November 2021)
List of prokaryotic names with standing in nomenclature (LPSN)http://www.bacterio.net/ (accessed on 6 November 2021)
MycoBankhttp://www.mycobank.org/ (accessed on 6 November 2021)
Outline of fungihttp://www.outlineoffungi.org/ (accessed on 6 November 2021)
Biodiversity collections databases
Global Biodiversity Information Facility (GBIF)http://www.gbif.org/ (accessed on 6 November 2021)
iDigBiohttp://www.idigbio.org/ (accessed on 6 November 2021)
MycoPortalhttp://mycoportal.org/portal/index.php (accessed on 6 November 2021)
World Federation of Culture Collections (WFCC)http://www.wfcc.info/ (accessed on 6 November 2021)
Table 6. Sequence Independent methods and High-throughput sequencing platforms.
Table 6. Sequence Independent methods and High-throughput sequencing platforms.
Sequencing Independent MethodsHigh-Throughput Sequencing Platforms
ARDRA (Amplified Ribosomal DNA Restriction Analysis)454 Pyrosequencing (second-generation platform)
ARISA (Amplified Intergeneric Spacer Analysis)Illumina MiSeq sequencing (second-generation)
DGGE (Denaturing Gradient Gel Electrophoresis)Ion Torrent PGM and GeneStudio
FISH (Fluorescence in Situ Hybridization)PacBio RSII and Sequel
(This third-generation HTS platform)
LAMP (Loop-Mediated Isothermal Amplification)Oxford Nanopore MinION, GridION and PrometION (third-generation)
MT-PCR (Multiplexed tandem PCR)
RCA (Rolling Circle Amplification)
RDBH (Reverse Dot Blot Hybridization)
RFLP (Restriction Fragment Length Polymorphism)
SSCP (Single-Strand Conformation Polymorphism)
TGGE (Thermal Gradient Gel Electrophoresis)
TRFLP (Terminal Restriction Fragment Length Polymorphism)
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Gautam, A.K.; Verma, R.K.; Avasthi, S.; Sushma; Bohra, Y.; Devadatha, B.; Niranjan, M.; Suwannarach, N. Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J. Fungi 2022, 8, 226. https://doi.org/10.3390/jof8030226

AMA Style

Gautam AK, Verma RK, Avasthi S, Sushma, Bohra Y, Devadatha B, Niranjan M, Suwannarach N. Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. Journal of Fungi. 2022; 8(3):226. https://doi.org/10.3390/jof8030226

Chicago/Turabian Style

Gautam, Ajay Kumar, Rajnish Kumar Verma, Shubhi Avasthi, Sushma, Yogita Bohra, Bandarupalli Devadatha, Mekala Niranjan, and Nakarin Suwannarach. 2022. "Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates" Journal of Fungi 8, no. 3: 226. https://doi.org/10.3390/jof8030226

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop