Next Article in Journal
CRISPR-Cas9 Approach Constructed Engineered Saccharomyces cerevisiae with the Deletion of GPD2, FPS1, and ADH2 to Enhance the Production of Ethanol
Next Article in Special Issue
Morpho-Phylogenetic Evidence Reveals Novel Pleosporalean Taxa from Sichuan Province, China
Previous Article in Journal
Metabolic Diversity of Xylariaceous Fungi Associated with Leaf Litter Decomposition
Previous Article in Special Issue
Bambusicolous Fungi in Pleosporales: Introducing Four Novel Taxa and a New Habitat Record for Anastomitrabeculia didymospora
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Morpho-Molecular Characterization of Microfungi Associated with Phyllostachys (Poaceae) in Sichuan, China

1
College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
2
Forestry Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China
*
Authors to whom correspondence should be addressed.
J. Fungi 2022, 8(7), 702; https://doi.org/10.3390/jof8070702
Submission received: 31 May 2022 / Revised: 27 June 2022 / Accepted: 28 June 2022 / Published: 1 July 2022
(This article belongs to the Special Issue Ascomycota: Diversity, Taxonomy and Phylogeny)

Abstract

:
In the present study, we surveyed the ascomycetes from bamboo of Phyllostachys across Sichuan Province, China. A biphasic approach based on morphological characteristics and multigene phylogeny confirmed seven species, including one new genus, two new species, and five new host record species. A novel genus Paralloneottiosporina is introduced to accommodate Pa. sichuanensis that was collected from leaves of Phyllostachys violascens. Moreover, the newly introduced species Bifusisporella sichuanensis was isolated from leaves of P. edulis, and five species were newly recorded on bamboos, four species belonging to Apiospora, viz. Ap. yunnana, Ap. neosubglobosa, Ap. jiangxiensis, and Ap. hydei, and the last species, Seriascoma yunnanense, isolated from dead culms of P. heterocycla. Morphologically similar and phylogenetically related taxa were compared. Comprehensive descriptions, color photo plates of micromorphology are provided.

1. Introduction

Bamboo is currently classified in the subfamily Bambusoideae of the extensive grass family Poaceae, and distributed worldwide. It comprises circa 1000 to 1500 species in up to 90 genera [1] and more than 70 species in Phyllostachys (Bambusoideae, Poaceae) [2,3]. Most bamboos are distributed in Southeast Asia, with China as the distribution center [4]. There are about 21 species of Phyllostachys in Sichuan, including Phyllostachys edulis (Carriere) J. Houzea, P. heteroclada Oliver, and P. violascens ‘Prevernalis’ S.Y. Chen et C.Y. Yao. Bamboos of Phyllostachys play an important role in native economy and ecology. They are used in furniture, and construction (e.g., fishing rods, flutes, flooring materials, chairs.) [5,6]. Bamboo shoots are used as food for humans and animals such as pandas [7,8]. In addition, it is an important ornamental plant for the landscape in China because of its evergreen and graceful appearance [9].
A review of the literature on bamboo-associated fungi reveals that nearly 1500 species have been described or recorded worldwide [10], including economically important pathogenic fungi, and a large number of saprobic and endophytic fungi [1,11,12,13]. Most bambusicolous fungi have been reported from Asia, especially Japan and Thailand, a few known from India and South America [1,12,14,15,16,17,18]. However, few studies have investigated the diversity and phylogeny on bamboo in China. The taxonomic studies on bambusicolous fungi are of great significance [19,20,21]. According to the literature review, about 85 species associated with Phyllostachys have been recorded. Teng [22] first reported the fungus Oedocephalum glomerulosum (Bull.) Sacc. on Phyllostachys in 1932. Tai listed 36 species of Phyllostachys from bamboo based on the reports on Chinese fungal resource until 1973 [23]. Chen investigated the phytogeography of forest fungi in China, North America, and Siberia, from which 33 species were found associated with Phyllostachys [24]. However, most of those identifications were conducted lacking molecular data and detailed micromorphology, and as most bamboos are unidentified, the relationship of bambusicolous fungi with bamboo species is not clear.
Due to the high fungal diversity on Phyllostachys, an ongoing investigation was conducted in several main producing or planting areas of bamboo Phyllostachys in Sichuan Province, China, including Ya’an City, Qionglai City, Chengdu City, and Yibin City. In this study, we provide detailed taxonomic features combining morphology and phylogeny on the fungi associated with Phyllostachys from Sichuan Province, China, which is a fundamental task for the bioresource collection on bambusicolous fungi.

2. Materials and Methods

2.1. Specimen Collection and Morphological Study

From 2020 to 2021, the specimens were collected from leaves, branches, and culms. The samples were kept in plastic bags and taken back to the laboratory after being photographed with a Sony DSC-HX3 digital camera. The fungi were isolated into pure culture based on single spore isolation [25]. Glass slide specimens were prepared by free-hand slicing with double-sided blades for morphologic observation. Morphological characteristics of ascomata and sporodochia were observed using a dissecting microscope, the NVT-GG (Shanghai Advanced Photoelectric Technology Co. Ltd., Shanghai, China), and photographed with a VS-800C micro-digital camera (Shenzhen Weishen Times Technology Co. Ltd., Shenzhen, China). An Olympus BX43 compound microscope with an Olympus DP22 digital camera was used to observe and photograph the microstructure of asci, ascospores, conidiophores, and conidia. Measurements were performed using Tarosoft® Image Frame Work v.0.9.7 (Tarosoft (R), Nontha Buri, Thailand). Specimens were deposited at the Herbarium of Sichuan Agricultural University, Chengdu, China (SICAU), and pure cultures were deposited at the Culture Collection in Sichuan Agricultural University (SICAUCC).

2.2. DNA Extraction, PCR Amplification, and Nucleotide Sequencing

Genomic DNA was extracted from fresh mycelia which was cultured on PDA at 25 °C for 15–30 days, using a TreliefTM Plant Genomic DNA Kit. Primers ITS5/ITS4 [26], NS1/NS4 [26], LR0R/LR5 [27], T1/Bt2b [28,29], RPB1-Ac/RPB1-Cr [30,31], and fRPB2-5F/fRPB2-7cR [32] were used for the amplification of internal transcribed spacers (ITS), the partial small subunit nuclear rDNA (SSU), the partial large subunit nuclear rDNA (LSU), the β-tubulin gene (tub2), the large subunit of RNA polymerase I (rpb1), and RNA polymerase II second largest subunit (rpb2) genes, respectively. Primers EF1-983F/EF1-2218R [33] and EF1-728F/EF2 [34,35] were employed for translation elongation factor 1-alpha (tef1-α) genes.
Amplification reactions were performed in 25 µL of total reaction that contained 22 µL Master Mix (Beijing TsingKe Biotech Co., Ltd., Beijing, China), 1 µL each of forward and reverse (10 µM) primers and 1 µL of DNA template. The amplification reactions were performed as described by Dai et al. [16] and Wang et al. [36]. PCR products were purified and sequenced at TsingKe Biological Technology Co., Ltd. (Chengdu, China). The resulting sequences were submitted to GenBank.

2.3. Sequence Alignment and Phylogenetic Analyses

Based on blast searches in GenBank, using ITS, LSU, SSU, tef1-α, tub2, rpb1, or rpb2 sequence data, separate phylogenetic analyses were carried out to determine the placements of each fungal group (Table 1). Sequences for phylogenetic analyses were selected mainly from recently published literature and phylogenetic related sequences based on BLAST searches in GenBank (Table A1). Datasets were aligned using MAFFT v.7.407 [37], and ambiguous regions were excluded with BioEdit version 7.0.5.3 [38]. Maximum likelihood (ML) and Bayesian inference (BI) were constructed as described in Xu et al. [39]. The phylogram was visualized with FigureTree v. 1.4.3 and edited using Adobe Illustrator CS6 (Adobe Systems Inc., San Jose, CA, USA).

3. Results

3.1. Phylogenetic Analyses

A combined dataset (ITS, LSU, tef1-α, tub2) comprising 138 taxa within Apiosporaceae, which is rooted with Pestalotiopsis chamaeropis (CBS 237.38) and Pe. colombiensis (CBS 118553) (Pestalotiopsidaceae, Amphisphaeriales), was used for the phylogenetic analyses. The alignment contained 5875 characters (ITS = 999, LSU = 1382, tef1-α = 1651, tub2 = 1844), including gaps. The best scoring RAxML tree with a final likelihood value of −36198.939448 is presented. The matrix had 2337 distinct alignment patterns, with 64.85% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.237208, C = 0.257370, G = 0.253511, T = 0.251911, with substitution rates AC = 1.104968, AG = 2.746651, AT = 1.143208, CG = 0.910079, CT = 4.335389, GT = 1.000000. The gamma distribution shape parameter α = 0.269105, and the tree length = 3.509694. In the phylogenetic trees generated from ML and BI analyses, the strain SICAUCC 22-0032 clustered with the known species Apiospora hydei (KUMCC 16-0204, CBS 114990) in a clade with 97% ML and 0.99 BYPP support value, strain SICAUCC 22-0070 clustered with Ap. jiangxiensis (CGMCC 3.18381, LC4578) with high support values (100% ML and 1.00 BYPP), strain SICAUCC 22-0071 clustered with Ap. neosubglobosa (JHB006, JHB007) in a clade with 100% ML and 1.00 BYPP support value, and strain SICAUCC 22-0072 clustered with the Ap. yunnana (MFLUCC 15-0002) in a clade with 100% ML and 1.00 BYPP support values (Figure 1).
Phylogenetic analyses of a concatenated aligned dataset (ITS, LSU, rpb1, tef1-α), including 70 taxa within Magnaporthaceae and Pyriculariaceae, were conducted and rooted with Ophioceras dolichostomum (CBS 114926) and O. leptosporum (CBS 894.70) (Ophioceraceae, Magnaporthales). The alignment contained 4094 characters (ITS = 899, LSU = 1105, rpb1 = 1047, tef1-α = 1043), including gaps. The best scoring RAxML tree with a final likelihood value of −31022.648763 is presented. The matrix had 1923 distinct alignment patterns, with 36.77% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.243596, C = 0.275654, G = 0.281915, T = 0.198836, with substitution rates AC = 1.103727, AG = 2.292134, AT = 1.431191, CG = 0.918700, CT = 5.773674, GT = 1.000000. The gamma distribution shape parameter α = 0.319184, and the tree length = 3.313974. In the phylogenetic tree (Figure 2), the novel species Bifusisporella sichuanensis constitutes a highly supported independent lineage (ML = 100%, BYPP = 1.00) with B. sorghi (URM 7864, URM 7442).
The concatenated aligned dataset of ITS, LSU, SSU, tef1-α sequences, including 124 ingroup taxa within Phaeosphaeriaceae and two outgroup taxa in Leptosphaeriaceae, were used for the phylogenetic analyses of Paralloneottiosporina. The alignment contained 5851 characters (ITS = 1469, LSU = 1433, SSU = 1548, tef1-α = 1401), including gaps. The best scoring RAxML tree with a final likelihood value of −46908.078740 is presented. The matrix had 2382 distinct alignment patterns, with 55.68% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.246158, C = 0.236637, G = 0.264322, T = 0.252883, with substitution rates AC = 1.087661, AG = 2.657942, AT = 2.045792, CG = 0.863381, CT = 6.106747, GT = 1.000000. The gamma distribution shape parameter α = 0.263651, and the tree length = 7.503091. In the phylogenetic tree generated from ML and BI analyses, the novel species Paralloneottiosporina sichuanensis (SICAUCC 22-0074, SICAUCC 22-0075) constitutes a moderately supported independent lineage (63% ML/0.99 BYPP statistical support) with the species Alloneottiosporina thailandica (MFLUCC 15-0576) (Figure 3).
A combined dataset (ITS, LSU, SSU, tef1-α, rpb2) comprising 25 taxa within Bambusicolaceae, Biatriosporaceae, Roussoellaceae, Torulaceae, and Paradictyoarthriniaceae was used for phylogenetic analyses of Seriascoma, and the Westerdykella ornata (CBS 379.55) (Sporormiaceae) was used as outgroup taxon. The alignment contained 6569 characters (LSU = 1383, SSU = 1741, tef1-α = 1346, rpb2 = 2099), including gaps. The best scoring RAxML tree with a final likelihood value of −22606.776997 is presented. The matrix had 1406 distinct alignment patterns, with 48.40% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.250203, C = 0.247742, G = 0.269455, T = 0.232600, with substitution rates AC = 1.348170, AG = 4.119625, AT = 1.278817, CG = 1.296090, CT = 9.080955, GT = 1.000000. The gamma distribution shape parameter α = 0.146142, and the tree length = 1.192279. According to the phylogenetic tree (Figure 4), the strain (SICAUCC 22-0059) clustered with Seriascoma yunnanense (MFLU 19-0690) in a clade with 100% ML and 1.00 BYPP statistical support.

3.2. Taxonomy

Apiosporaceae K.D. Hyde, J. Fröhl., Joanne E. Taylor & M.E. Barr, Sydowia. 50 (1): 23 (1998).
Apiospora hydei (Crous) Pintos & P. Alvarado, Fungal Systematics and Evolution. 7: 206 (2021) (Figure 5).
Arthrinium hydei Crous, IMA Fungus 4(1): 142 (2013).
Saprobic on dead culms of Phyllostachys nigra (Lodd. ex Lindl.) Munro. Sexual morph: Ascostromata 421–1343 × 174–387 × 176–245 μm ( x ¯ = 705 × 267 × 198 μm, n = 30), solitary to gregarious, immersed, fusiform to ellipsoid, dark brown to black, multi-loculate, with long axis. Peridium 17–46 μm wide, composed of 8–15 layers of brown to hyaline cells of textura angularis to prismatica. Hamathecium 2–6.5 μm wide, composed of dense, long, septate, and unbranched paraphyses. Asci 81–123 × 16–23 μm, ( x ¯ = 116 × 180 μm, n = 50), 8–spored, unitunicate, broadly cylindrical, slightly curved, with a short pedicel, apically rounded. Ascospores 24–30 × 7–11 μm, ( x ¯ = 26 × 10 μm, n = 50), 2-seriate, elliptical, 1–septate, with a large, curved upper cell and small lower cell, with narrowly rounded ends, hyaline, guttules, smooth-walled, surrounded by gelatinous sheath. Asexual morph: see Crous et al. [40].
Material examined: China, Sichuan Province, Chengdu City, Wenjiang District (19°30′42.22″ N, 103°51′19″ E, Alt. 528 m), on dead culms of Phyllostachys nigra, 14 March 2021, Yi-cong Lv, LYC202103003 (SICAU 22-0032), living culture SICAUCC 22-0032.
Culture characters: Ascospores germinate within 24 h. Colonies grow fast on PDA, reaching 6 cm after one week at 25 °C, under 12 h light/12 h dark, and are cottony, circular, and white from above and light yellow below, with irregular edge.
Notes: Apiospora hydei was introduced based on the asexual morph characters and phylogeny analyses by Crous et al. [40]. Morphological comparisons were impossible due to the lack of sexual morph between our isolates and the ex-type strain (CBS 114990), but it is similar to A. hydei in sexual descriptions provided by Dai et al. [41]. Nucleotide comparisons of ITS, LSU, tef1-α and tub2 (SICAUCC 22-0033) showed high homology with the sequences of A. hydei (CBS 114990), similarities are 100% (528/528, 0 gaps), 99.77% (896/898, 0 gaps), 99.71% (355/356, 0 gaps), and 98.82% (754/763, 0 gaps), respectively.
Apiospora jiangxiensis (M. Wang & L. Cai) Pintos & P. Alvarado, Fungal Systematics and Evolution 7: 206 (2021) (Figure 6).
Arthrinium jiangxiense M. Wang & L. Cai, in Wang, Tan, Liu & Cai, MycoKeys 34(1): 14 (2018).
Saprobic on dead culms of Phyllostachys heteroclada Oliver. Sexual morph: Ascostromata 575–1334 × 274–444 × 134–157 μm ( x ¯ = 876 × 355 × 143 μm, n = 30), solitary to gregarious, multi-loculate, immersed, fusiform to ellipsoid, black, with long axis broken at the top. Peridium 9.0–44 μm wide ( x ¯ = 21 μm, n = 25), composed of several layers of brown to hyaline cells of textura angularis to prismatica. Hamathecium 4.0–11 μm wide, composed of dense, long, septate, unbranched, paraphyses. Asci 83–114 × 18–28 μm ( x ¯ = 104 × 23 μm, n = 50), 8–spored, unitunicate, broadly cylindrical to long clavate, with a short pedicel, slightly curved, apically rounded. Ascospores 32–37 × 9.6–11 μm ( x ¯ = 34 × 10 μm, n = 50), 2–seriate, 1–septate, elliptical, with a large, curved, upper cell and small lower cell, with narrowly rounded ends, hyaline, smooth-walled, with many guttules, surrounded by gelatinous sheath attached. Asexual morph: see Wang et al. [36].
Material examined: China, Sichuan Province, Luzhou City, Xuyong District (27°53′28″ N, 105°16′36″ E, Alt. 1350 m), on dead culm of Phyllostachys heteroclada, 26 July 2021, Qian Zeng, ZQ202107133 (SICAU 22-0070), living culture SICAUCC 22-0070.
Culture characters: Ascospores germinate on PDA within 24 h. Colonies grow fast on PDA, reaching 6 cm after 1 week at 25 °C, under 12 h light/12 h dark, and are cottony, white, circular, with irregular edge.
Notes: Specimen in our study shared similar morphology with the original description of Apiospora jiangxiensis by Wang et al. [36]. Nucleotide comparisons of ITS, LSU, and tub2 (SICAUCC 22-0070) showed high homology with the sequences of Ap. jiangxiensis (CGMCC 3.18381), similarities are 100% (541/541, 0 gaps), 99.09% (436/440, 0 gaps), and 98.22% (717/730, 0 gaps), respectively. However, the latter lack tef1-α sequences for further comparisons.
Apiospora neosubglobosa (D.Q. Dai & H.B. Jiang) Pintos & P. Alvarado, Fungal Systematics and Evolution 7: 206 (2021) (Figure 7).
Arthrinium neosubglobosum D.Q. Dai & H.B. Jiang, Mycosphere 7(9): 1337 (2017).
Saprobic on dead culms of Phyllostachys bissetii McClure. Sexual morph: Ascostromata 330–1092 × 198–354 × 134–224 μm ( x ¯ = 632 × 250 × 174 μm, n = 30), gregarious, immersed, multi-loculate, fusiform to ellipsoid, dark brown to black, with long axis broken at the top. Peridium 17.0–46 μm wide ( x ¯ = 19 μm, n = 25), composed of several layers of brown to hyaline, cells of textura angularis to prismatica. Hamathecium 3.5–6.0 μm wide, composed of dense, long, septate, unbranched, paraphyses. Asci 94–137 × 23–40 μm ( x ¯ = 125 × 31 μm, n = 50), 8-spored, unitunicate, broadly cylindrical to long clavate, with a short pedicel, slightly curved, apically rounded. Ascospores 28–36 × 13–15 μm ( x ¯ = 32 × 14 μm, n = 50), 2–seriate, 1–septate, elliptical, with a large, curved, upper cell and small lower cell, with narrowly rounded ends, hyaline, smooth-walled, with many guttules, surrounded by gelatinous sheath attached. Asexual morph: see Dai et al. [16].
Material examined: CHINA, Sichuan Province, Luzhou City, Xuyong District (27°52′5″ N, 105°16′23″ E, Alt. 1470 m), on dead culm of Phyllostachys bissetii, 26 July 2021, Qian Zeng, ZQ202107128 (SICAU 22-0071), living culture SICAUCC 22-0071.
Cultural characters: Ascospores germinate on PDA within 24 h. Colonies grow fast on PDA, reaching 4 cm after 1 week at 25 °C, under 12 h light/12 h dark, and are cottony, circular, initially white, then brown, with regular edge.
Notes: Apiospora neosubglobosa was described by Dai et al. based on the morphological characteristics and molecular phylogeny [16]. Strain SICAUCC 22-0071 clustered with ex–type strain (JHB007) with high bootstrap support (100% ML and 1.00 BYPP). Nucleotide comparisons of ITS and LSU (SICAUCC 22-0071) showed high homology with the sequences of Ap. neosubglobosa (JHB007), similarities are 99.84% (649/650, 0 gaps), 100% (1173/1173, 0 gaps), respectively.
Apiospora yunnana (D.Q. Dai & K.D. Hyde) Pintos & P. Alvarado, Fungal Systematics and Evolution 7: 207 (2021) (Figure 8).
Arthrinium yunnanum D.Q. Dai & K.D. Hyde, Fungal Diversity 82: 69 (2016).
Saprobic on culms of Phyllostachys aurea Carr. ex A. et C. Riv. Sexual morph: Ascostromata 624–1307 × 253–510 × 165–211 μm ( x ¯ = 892 × 359 × 188 μm, n = 30), gregarious, multi-loculate, immersed, fusiform to ellipsoid, black, with long axis broken at the top. Peridium 8.5–43 μm wide ( x ¯ = 17 μm, n = 25), composed of several layers of brown to hyaline cells of textura angularis to prismatica. Hamathecium 3.5–8.0 μm wide, composed of dense, long, septate, unbranched paraphyses. Asci 89–144 × 18–40 μm ( x ¯ = 120 × 32 μm, n = 50), 8–spored, unitunicate, broadly cylindrical to long clavate, no pedicel, slightly curved, apically rounded. Ascospores 30–42 × 10–13 μm ( x ¯ = 36 × 12 μm, n = 50), 2–seriate, 1–septate, elliptical, with a large, curved, upper cell and a small lower cell, with narrowly rounded ends, hyaline, smooth-walled, with many guttules, surrounded by gelatinous sheath attached. Asexual morph: see Dai et al. [16].
Material examined: China, Sichuan Province, Yibin City, Changning District (28°28′8″ N, 105°0′16″ E, Alt. 890 m), on dead culm of Phyllostachys aurea, 23 July 2021, Qian Zeng, ZQ202107027 (SICAU 22-0072), living culture, SICAUCC 22-0072.
Culture characters: Ascospores germinate on PDA within 24 h and germ tubes produced from sides. Colonies grow fast on PDA, reaching 6 cm after 1 week at 25 °C, under 12 h light/12 h dark, and are cottony, circular, and white with irregular edge.
Notes: The sexual and asexual morph of Apiospora yunnana was reported by Dai et al. [16]. Morphologically, our observations were identical to the sexual descriptions provided by Daiet et al. [16]. Nucleotide comparisons of ITS and LSU (SICAUCC 22-0072) showed high homology with the sequences of Ap. yunnana (MFLUCC 15-0002), similarities are 99.85% (667/668, 0 gaps), 100% (847/847, 0 gaps), respectively. However, the latter lack tef1-α and tub2 sequences for further comparisons.
Magnaporthales Thongkantha, Vijaykrishna & K.D. Hyde. Fungal Diversity. 34: 157–173 (2009).
Magnaporthaceae P.F. Cannon, Systema Ascomycetum 13: 26 (1994).
Bifusisporella R.M.F. Silva, R.J.V. Oliveira, J.D.P. Bezerra, J.L. Bezerra, C.M. Souza-Motta & G.A. Silva, Mycological Progress 18(6): 852 (2019).
Type species: Bifusisporella sorghi R.M.F. Silva, R.J.V. Oliveira, J.D.P. Bezerra, J.L. Bezerra, C.M. Souza-Motta & G.A. Silva.
Description: Endophytic and parasitic fungi on Poaceae. Sexual morph: Ascomata separate or gregarious, subglobose, black, coriaceous, semi-immersed, unilocular or multilocular. Peridium with hyaline to brown cells of textura angularis. Hamathecium hyaline, with distinct septa, wider at the base, tapering towards the apex. Asci 8–spored, cylindrical, with a J-, apical ring, developing from the base and periphery of the ascomata, with a short pedicel. Ascospores biseriate, hyaline, fusiform, with distinct septa, with narrowly rounded ends, without appendages. Asexual morph: Found in Bifusisporella sorghi cultures by Silva et al. [42].
Notes: Bifusisporella was introduced as a new genus to accommodate B. sorghi based on morphology and phylogeny. At present, Bifusisporella comprises only the ex-type species B. sorghi, and no records on its sexual morph. The new species B. sichuanensis is well-supported within Bifusisporella, which suggests that there is a need to amend the morphological circumscriptions of the genus.
Bifusisporella sichuanensis Q. Zeng, Y.C. Lv & C.L. Yang, sp. nov. (Figure 9).
Index Fungorum: IF559625
Etymology: Refers to the region from where the fungus was collected.
Holotype: SICAU 22-0073
Parasitic on living leaves of Phyllostachys edulis (Carriere) J. Houzeau. Sexual morph: Ascostromata 536–1672 × 332–849 × 125–245 μm ( x ¯ = 1103 × 591 × 193 μm, n = 30), separate or gregarious, subglobose, black, coriaceous, semi-immersed, unilocular or multilocular, glabrous. Peridium 14–34 μm wide ( x ¯ = 20 μm, n = 30), composed of 3–9 layers, with hyaline to brown cells of textura angularis. Hamathecium, hyaline, cellular, with distinct septa. Asci 79–126 × 9.5–13 μm ( x ¯ = 99 × 11 μm, n = 30), 8–spored, bitunicate, cylindrical, with an apical chamber and a short pedicel. Ascospores 22–35 × 5.0–6.5 μm ( x ¯ = 29 × 5.5 μm, n = 50), overlapping, biseriate, hyaline, fusiform, 3–septate, rarely constricted at septate, with narrowly rounded ends, smooth-walled, guttules, without gelatinous sheath. Asexual morph: Undetermined.
Material examined: China, Sichuan Province, Yibin City, Xingwen District (28°15′22″ N, 105°6′29″ E, Alt. 850 m), on living to nearly dead leaves of Phyllostachys edulis, 25 July 2021, Qian Zeng, ZQ202107111 (SICAU 22-0073 holotype), ex-type living culture, SICAUCC 22-0073.
Culture characters: Ascospores germinate in sterilized water within 12 h at 25 °C. Colonies grow slow on PDA, reaching approximately 2 cm in 30 days at 25 °C, under 12 h light/12 h dark, and are irregular, black, frilly with white margin, and black on the back of colonies.
Notes: Bifusisporella sichuanensis is phylogenetically close (100% ML and 1.00 BYPP) to B. sorghi (URM 7442) introduced by Silva et al. [42], which is described with asexual morph. However, striking base-pair differences are noted, viz. 11.43% (55/481, 0 gaps), 3.36% (27/803, 0 gaps), 5.11% (24/469, 0 gaps), 9.04% (64/708, 0 gaps) in the ITS, LSU, tef1-α and rpb1, respectively. Hence, our collection is proposed as a new species.
Pleosporales Luttr. ex M.E. Barr, Prodromus to class Loculoascomycetes: 67 (1987).
Phaeosphaeriaceae M.E. Barr, Mycologia 71: 948 (1979).
Paralloneottiosporina Q. Zeng, Y.C. Lv & C.L. Yang, gen. nov.
Index Fungorum: IF559626.
Type species: Paralloneottiosporina sichuanensis Q. Zeng, Y.C. Lv & C.L. Yang.
Etymology: Name reflects the morphological similarity to the genus Alloneottiosporina.
Parasitic on living to nearly dead leaves of Phyllostachys violascens ‘Prevernalis’ S.Y. Chen et C.Y. Yao. Sexual morph: Ascomata visible as raised to superficial on host, gregarious, globose to subglobose or dome shape, dark brown to black, unilocular, glabrous. Ostiole single, circular, centrally located. Peridium multi-layered, brown to dark brown cells of textura angularis. Hamathecium hyaline, numerous, septate, often constricted at septa. Asci 8-spored, bitunicate, rounded at apex, cylindrical, curved, with a short pedicel. Ascospores hyaline, fusiform, 1–2 septate, constricted at the septum, guttules, smooth-walled, with narrowly rounded ends. Asexual morph: Conidiomata brown to dark brown, globose to long ellipsoid, coriaceous, semi-immersed, unilocular, gregarious, glabrous. Conidiomatal wall comprising multi-layered, dark brown to black cells of textura angularis. Conidia ellipsoid to ovoid, 1–septate, slightly constricted at the septum, smooth-walled, hyaline, with a rounded apex and a truncated base, guttules.
Notes: Paralloneottiosporina resembles Alloneottiosporina in asexual status having semi-immersed, unilocular, gregarious, glabrous conidiomata, but Paralloneottiosporina differs in absent of microconidia, conidia without mucoid appendages, bigger conidia, fewer layers of conidiomatal wall. The macroconidia of Alloneottiosporina species are usually accompanied with mucoid appendages at both ends, and microconidia are produced near the ostiolar channel. Moreover, colonies are whitish to bright orange-pink on PDA in Paralloneottiosporina, but olivaceous-black in Alloneottiosporina [43]. Based on morphological characteristics and molecular phylogeny, the new genus is introduced in Phaeosphaeriaceae.
Paralloneottiosporina sichuanensis Q. Zeng, Y.C. Lv & C.L. Yang, sp. nov. (Figure 10 and Figure 11).
Index Fungorum: IF559627.
Etymology: In reference to Sichuan Province where the specimens were collected.
Holotype: SICAU 22-0074.
Associated with leaf blight on living to nearly dead leaves of Phyllostachys violascens (Poaceae). Sexual morph: Ascomata 106–343 × 39–196 × 55–112 μm ( x ¯ = 168 × 111 × 89 μm, n = 30), separate, gregarious to confluent, globose to subglobose, dark brown to black, superficial, unilocular, glabrous. Ostiole single, circular, centrally located. Peridium 17–38 μm wide ( x ¯ = 29 μm, n = 30), composed of 7–12 layers, with brown cells of textura angularis. Hamathecium hyaline, dense, cellular, with distinct septa. Asci 49–97 × 8.5–19 μm ( x ¯ = 71 × 13 μm, n = 30), 8-spored, bitunicate, cylindrical, curved, with a short pedicel. Ascospores 15–21 × 5.0–7.5 μm ( x ¯ = 18 × 6.0 μm, n = 50), overlapping biseriate, straight, hyaline, fusiform, 1–2 septate, constricted at the septum, smooth-walled, with narrowly rounded ends. Asexual morph: Conidiomata 90–191 × 61–132 × 81–123 μm ( x ¯ = 132 × 102 × 105 μm, n = 30), globose to long ellipsoid, coriaceous, semi-immersed, black, unilocular, gregarious, glabrous. Conidiomatal wall 7.5–21 μm wide ( x ¯ = 13 μm), comprising 3–6 layers, brown cells of textura angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cell 3.0–6.5 × 2.5–5.0 μm ( x ¯ = 5.0 × 3.5 μm, n = 20), hyaline, ampulliform to subcylindrical, smooth. Conidia 11–20 × 4.0–6.5 μm ( x ¯ = 17 ×5.0 μm, n = 50), ellipsoid to ovoid, 1–septate, slightly constricted at the septum, smooth-walled, hyaline, with a rounded apex and a truncated base.
Material examined: China, Sichuan Province, Ya’an City, Yucheng District (29°56′49.54″ N, 102°56′46.03″ E, Alt. 807 m), on living to nearly dead leaves of Phyllostachys violascens, 13 May 2020, Qian Zeng, ZQ202005002 (SICAU 22-0074, holotype), ex-type living culture, SICAUCC 22-0074; CHINA, Sichuan Province, Qionglai City, Linjiang Town (30°19′4.42″ N, 103°17′23.06″ E, Alt. 518 m), on living leaves of Ph. violascens, 8 November 2020, Qian Zeng, ZQ202011012 (SICAU 22-0075, paratype), living culture, SICAUCC 22-0075.
Culture characteristics: Ascospores germinate in sterilized water within 24 h at 25 °C. Colonies grow slow on PDA, reaching approximately 2.5 cm in 30 days at 25 °C, circular, white aerial mycelium, whitish to bright orange-pink on the surface, and brown on the back.
Pleosporales Luttr. ex M.E. Barr, Prodromus to class Loculoascomycetes: 67 (1987).
Bambusicolaceae D.Q. Dai & K.D. Hyde, Fungal Diversity. 63 (1): 49 (2013).
Seriascoma yunnanense Rathnayaka & K.D. Hyde, Asian Journal of Mycology 2(1): 250 (2019) (Figure 12).
Saprobic on dead culm of Phyllostachys edulis (Carriere) J. Houzeau. Sexual morph: Ascostromata 110–200 × 120–150 × 120–140 μm ( x ¯ = 160 × 140 × 130 μm, n = 20), solitary to gregarious, immersed, globose to subglobose, coriaceous, dark brown to black. Peridium 12–26 μm wide ( x ¯ = 4.0 μm, n = 20), composed of 4–9 layers of brown to hyaline cells of textura angularis. Hamathecium 1.5–2.0 μm wide, composed of dense, branched, long, septate. Asci 52–80 × 12–16 μm, ( x ¯ = 60 × 14 μm, n = 50), 8-spored, bitunicate, broadly cylindrical, with a short pedicel, straight or slightly curved, with an apical chamber. Ascospores 20–30 × 6.0–7.5μm ( x ¯ = 23 × 7.0 μm, n = 50), 2–seriate, 1–septate, slightly constricted at the septum, fusiform, narrowly acute at both ends, straight to curved, hyaline, smooth-walled, surrounded by a gelatinous sheath. Asexual morph: Undetermined.
Material examined: China, Sichuan Province, Chengdu City, Jin’niu District (30°45′57″ N, 104°7′34″ E, Alt. 539 m), on dead culm of Phyllostachys edulis, 8 April 2021, Yicong Lv, LYC202104043 (SICAU 22-0059), living culture SICAUCC 22-0059.
Culture characteristics: Ascospores germinate in sterile water within 12 h at 25 °C. Colonies grow slowly on PDA, and reach 6 cm after 30 days at 25 °C, circular, brown to dark brown.
Notes: On the morphology, our observations were identical to the descriptions of Seriascoma yunnanense provided by Rathnayaka et al. [44]. Nucleotide comparisons of SSU, LSU, tef1-α and rpb2 (SICAUCC 22-0059) showed high homology with the sequences of S. yunnanense (MFLU 19-0690), similarities are 98.37% (847/861, 0 gaps), 100% (841/841, 0 gaps), 96.59% (396/410, 0 gaps), 99.65% (855/858, 0 gaps), respectively. We report our collection as S. yunnanense.

4. Discussion

In this study, we confirmed seven species of saprophyte or parasitism from leaves and culms of Phyllostachys, corresponding to four genera. Microfungi are abundant on culms and leaves of bamboo as pointed out by Dai et al. [45]. Ascomycetes are the most abundant species on bamboo, with about 1150 taxa having been recorded [45]. Furthermore, the number of saprophytic fungi is more than that of pathogenic fungi [16,36].
The genus Apiospora Sacc. was recognized and described by Saccardo considering Ap. montagnei designated as the type species [46]. Apiospora has been widely accepted as a synonym for Arthrinium after Ellis [47]. Crous and Groenewald combined Apiospora species to be sexual morphs of Arthrinium species and synonymized under Arthrinium [40]. However, Pintos and Alvarado found that the morphological and ecological differences between Apiospora and Arthrinium are sufficient to support the taxonomic separation of the two genera. As a result, fifty-five species of Arthrinium were combined to Apiospora [48]. In this study, given the phylogenetic analysis with species of Apiospora and Arthrinium, in which 10 species of Arthrinium (Ar. agari, Ar. arctoscopi, Ar. fermenti, Ar. koreanum, Ar. mori, Ar. phaeospermum, Ar. pusillispermum, Ar. sargassi, Ar. taeanense, Ar. marinum) are clustered in a well-supported clade within Apiospora, future studies are needed to better understand the combination of previous Arthrinium species with Apiospora. Apiospora species have a worldwide distribution and can be found on various hosts. Most species occurred on the plants in Poaceae, although some were known from Amaranthaceae, Juncaceae, Euphorbiaceae, Cyperaceae, Restionaceae, Fagaeaeand, even seaweeds [48,49]. To date, more than 25 species have been found on bamboo, most species were saprobic on dead bamboo culms, and a few species have been reported as pathogens. For example, Ap. arundinis causes brown culm streak of Phyllostachys praecox, and Ap. kogelbergensis causes blight disease of Bambusa intermedia [16,41,50,51]. Apiospora. hydei, Ap. neosubglobosa, and Ap. jiangxiensis were saprophytic on unidentified bamboo culms and leaves [41,52]. Apiospora yunnansis has been reported on bamboo culms of Phyllostachys nigra and P. heteroclada, which can cause bamboo blight disease of P. heteroclada [53,54]. In this study, four known species, Apiospora hydei, Ap. neosubglobosa, Ap. jiangxiensis, and Ap. yunnansis, were newly recorded on Phyllostachys nigra, P. heteroclada, P. bissetii, and P. aurea respectively.
At present, Bifusisporella only comprises the ex-type species B. sorghi. In this study, we provide taxonomic details for another new species, B. sichuanensis, that was collected from living leaves of Phyllostachys edulis. B. sorghi was isolated as an endophyte from healthy sorghum leaves in Brazil by Silva et al. [42]. However, B. sichuanensis is pathogenic, causing tar spot on bamboo leaves. In addition, the sexual stage in this genus is supplemented.
Phaeosphaeriaceae is one of the most important and species-rich families in Pleosporales with diverse lifestyles [55,56], and may be found on herbaceous stems or monocotyledonous culms, branches, leaves, flowers, and woody substrates [57,58]. Currently, more than 70 genera are accommodated in Phaeosphaeriaceae [59]. Most genera in this family were introduced as monotypic genera, such as Acericola, Banksiophoma, Bhagirathimyces, Bhatiellae, Brunneomurispora, Camarosporioides, Elongaticollum, Equiseticola, Hydeopsis, Jeremyomyces, Mauginiella, Melnikia, Neoophiobolus, Neosphaerellopsis, Neostagonosporella, Ophiobolopsis, and Parastagonosporella, among others. Due to these genera being represented by a single species, resulting in few samples that could be used for taxon, the phylogenetic relationships with the related genera are sometimes not well-resolved. Based on morphological characteristics and multigene phylogeny, a novel genus, Paralloneottiosporina, is introduced to accommodate Pa. sichuanensis sp. nov. According to the field investigation, Pa. sichuanensis can cause leaf blight that eventually leads to leaf necrosis and plant decline in severe cases. Besides Ph. violascens, leaf blight caused by Pa. sichuanensis has also been observed on P. heterocycla and P. tianmuensis. This indicates that Pa. sichuanensis may be a common parasitic fungus on bamboos.
As only three species are accommodated within Seriascoma, more research is also needed for better understanding this genus [60]. Seriascoma is presently known as saprobic on decaying wood and dead bamboo in the terrestrial or freshwater habitats distributed in China and Thailand [16,44,61,62]. Seriascoma. yunnanense is found on dead branches of bamboo in Yunnan. In this study, S. yunnanense was saprophytic on Phyllostachys edulis.
The previous studies have revealed a high fungal diversity associated with bamboo Phyllostachys. In recent years, 10 species belonging to seven genera have been described from bamboo of Phyllostachys, including two new genera, Neostagonosporella and Parakarstenia, established by Yang et al. on P. heteroclada in Sichuan Province [54,58,63,64,65,66,67,68,69]. However, the knowledge about bambusicolous fungi is incomplete and mainly remains at cataloguing stage [14]. The previous studies of identification were mostly based on morphological characteristics, and lacked molecular data. Moreover, their hosts were poorly documented or unknown [70], and specimens were absent for further re-examination. Therefore, these species need to be recollected, epitypified, and sequenced [10], and new species need to be discovered and described.

Author Contributions

Q.Z. and C.-L.Y.: conceptualization. Q.Z.: data curation. Q.Z. and Y.-C.L.: formal analysis, methodology, and writing—original draft. Q.Z., Y.-C.L., Y.D. and F.-H.W.: investigation. C.-L.Y. and Y.-G.L.: project administration. C.-L.Y. and X.-L.X.: supervision. C.-L.Y., X.-L.X., S.-Y.L. and L.-J.L.: writing—review and editing. All authors contributed to the article and approved the submitted version. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The datasets presented in this study can be found in the NCBI GenBank (https://www.ncbi.nlm.nih.gov/), Index Fungorum (http://www.indexfungorum.org/Names/Names.asp) (all accessed on 8 May 2022).

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A. Molecular Data Used in This Study and GenBank Accession Numbers

Table A1. Isolates and GenBank accession numbers of sequences used in this study.
Table A1. Isolates and GenBank accession numbers of sequences used in this study.
SpeciesStrainsGenBank Accession Numbers
ITSLSUtub2tef1-arpb1SSUrpb2References
Apiospora acutiapicaKUMCC 20-0209MT946342MT946338[71]
Apiospora acutiapicaKUMCC 20-0210 TMT946343MT946339 [71]
Apiospora aquaticumMFLU 18-1628 TMK828608MK835806[55]
Apiospora arundinisCBS 114316KF144884KF144928KF144974KF145016[40]
Apiospora arundinisCBS 450.92AB220259AB220306[71]
Apiospora arundinisAP11118AMK014868MK014835MK017974MK017945[72]
Apiospora aureumCBS 244.83 TAB220251KF144935KF144981KF145023NCBI
Apiospora balearicaCBS 145129 TMK014869MK014836MK017975MK017946[72]
Apiospora bambusicolaMFLUCC 20-0144 TMW173030MW173087MW183262[73]
Apiospora biserialisCGMCC 3.20135 TMW481708MW522955MW522938[52]
Apiospora camelliae-sinensisLC5007 TKY494704KY494780KY705173KY705103[36]
Apiospora camelliae-sinensisLC8181KY494761KY494837KY705229KY705157[36]
Apiospora chiangraienseMFLU:21-0046MZ542520MZ542524MZ546409[49]
Apiospora chromolaenaeMFLUCC 17-1505 TMT214342MT214436[74]
Apiospora cyclobalanopsidisCGMCC 3.20136 TMW481713MW522962MW522945[52]
Apiospora descalsiiCBS 145130 TMK014870MK014837MK017976MK017947[72]
Apiospora dichotomanthiCGMCC 3.18332 TKY494697KY494832KY705167KY705096[36]
Apiospora dichotomanthiLC8175KY494755KY494831KY705223KY705151[36]
Apiospora esporlensisCBS 145136 TMK014878MK014845MK017983MK017954[72]
Apiospora euphorbiaeIMI 285638bAB220241AB220288[71]
Apiospora gaoyouensisCFCC 52301MH197124MH236789MH236793[53]
Apiospora gaoyouensisCFCC 52302MH197125MH236790MH236794[53]
Apiospora garethjonesiiJHB004KY356086KY356091[41]
Apiospora garethjonesiiHKAS 96289 TNR_154736NG_057131[41]
Apiospora gelatinosaHKAS:111962MW5229MW522941[52]
Apiospora guizhouensisLC5318KY494708KY494784KY705177KY705107[36]
Apiospora guizhouensisCGMCC 3.18334 T = LC5322KY494709KY494785KY705178KY705108[36]
Apiospora hispanicaIMI 326877AB220242AB220336AB220289[71]
Apiospora hydeiCBS 114990 TKF144890KF144936KF144982KF145024[40]
Apiospora hydeiKUMCC 16-0204KY356087KY356092[41]
Apiospora hydeiSICAUCC 22-0032ON183998ON185553ON221313ON221312This study
Apiospora hyphopodiiMFLUCC 15-003 TKR069110KR069111[75]
Apiospora hyphopodiiKUMCC 16-0201KY356088KY356093[41]
Apiospora hysterinaAP15318MK014873MK014840MK017979MK017950[72]
Apiospora hysterinaICPM6889MK014874MK014841MK017980MK017951[72]
Apiospora hysterinaAP29717MK014875MK014842MK017981MK017952[72]
Apiospora hysterinaAP2410173MK014876MK014843[72]
Apiospora hysterinaAP12118MK014877MK014844MK017982MK017953[72]
Apiospora ibericaCBS 145137 TMK014879MK014846MK017984MK017955[72]
Apiospora intestiniCBS 135835 TKR011352MH877577KR011350KR011351[76]
Apiospora italicaCBS 145138 TMK014880MK014847MK017985MK017956[72]
Apiospora italicaAP221017 TMK014881MK014848MK017986MK017957[72]
Apiospora jatrophaeCBS 134262 TNR_154675[77]
Apiospora jatrophaeMMI 00051 = CBS:134262JQ246355[77]
Apiospora jiangxiensisCGMCC 3.18381 TKY494693KY705163KY705092[36]
Apiospora jiangxiensisLC4578KY494694KY494770KY705164KY705093[36]
Apiospora jiangxiensisSICAUCC 22-0070ON227094ON227098ON244432ON244431This study
Apiospora kogelbergensisCBS 113332KF144891KF144937KF144983KF145025[40]
Apiospora kogelbergensisCBS 113333 TKF144892KF144938KF144984KF145026[40]
Apiospora kogelbergensisCBS 113335KF144893KF144939KF144985KF145027[40]
Apiospora kogelbergensisCBS 117206KF144895KF144941KF144987KF145029[40]
Apiospora locuta-pollinisLC11683MF939595MF939622MF939616[78]
Apiospora longistromaMFLUCC 11-0479KU940142KU863130[16]
Apiospora longistromaMFLUCC 11-0481KU940141KU863129[16]
Apiospora longistromaMFLU 15-1184 TNR_154716[16]
Apiospora malaysianaCBS 102053 TKF144896KF144942KF144988KF145030[40]
Apiospora mariiCBS 497.90 TAB220252KF144947KF144993KF145035[40]
Apiospora mediterraneaIMI 326875AB220243AB220290[71]
Apiospora minutispora17E-042LC517882LC518888LC518889[79]
Apiospora montagneiLSU0093MT000394MT000490[80]
Apiospora mytilomorphaDAOM 214595KY494685[36]
Apiospora neobambusaeCGMCC 3.18335 TKY494718KY494794KY705186KY806204[36]
Apiospora neobambusaeKUMCC 20-0207MT946346MT946340[71]
Apiospora neobambusaeLC7107KY494719KY494795KY705187KY705117[36]
Apiospora neochinensisCFCC 53037MK819292MK818548MK818546[81]
Apiospora neochinensisCFCC 53036 TMK819291MK818547MK818545[81]
Apiospora neogarethjonesiiHKAS 96354 TMK070897MK070898[82]
Apiospora neosubglobosaJHB006KY356089KY356094[41]
Apiospora neosubglobosaJHB007 TKY356090KY356095[41]
Apiospora neosubglobosaSICAUCC 22-0071ON227095ON227099ON244430ON244429This study
Apiospora obovataCGMCC 3.18331 TKY494696KY494834KY705166KY705095[41]
Apiospora obovataLC8177KY494757KY494833KY705225KY705153[41]
Apiospora ovataCBS 115042 TKF144903KF144950KF144995KF145037[40]
Arthrinium paraphaeospermumNCYU 19-0341MW114315MW293936MW288020NCBI
Apiospora paraphaeospermaMFLUCC 13-0644 TKX822128KX822124[71]
Apiospora phragmitisCPC 18900 TKF144909KF145001KF145043[40]
Apiospora phragmitisAP3218MK014891MK014858MK017996MK017967[72]
Apiospora phragmitisAP2410172AMK014890MK014857MK017995MK017966[72]
Apiospora phyllostachydisMFLUCC 18-1101MK291949[65]
Apiospora piptatheriCBS 145149 TMK014893MK014860MK017969[72]
Apiospora pseudoparenchymaticaCGMCC 3.18336 TKY494743KY494819KY705211KY705139[36]
Apiospora pseudoparenchymaticaLC8173KY494753KY494829KY705221KY705149[36]
Apiospora pseudorasikravindraeKUMCC 20-0208 TMT946344[71]
Apiospora pseudorasikravindraeKUMCC 20-0211MT946345[71]
Apiospora pseudosinensisCBS 135459 TKF144910KF144957KF145044[40]
Apiospora pseudospegazziniiCBS 102052 TKF144911KF144958KF145002KF145045[40]
Apiospora pterospermaCBS 123185KF144912KF144959KF145003 [40]
Apiospora pterospermaCBS 134000 TKF144913KF144960KF145004KF145046[40]
Apiospora qinlingensisCFCC 52303 TMH197120MH236791MH236795[53]
Apiospora qinlingensisCFCC 52304MH197121MH236792MH236796[53]
Apiospora rasikravindraeNFCCI 2144 TKF144914[83]
Apiospora rasikravindraeMFLUCC 11-0616KU940144KU863132[16]
Apiospora rasikravindraeLC5449KY494713KY494789KY705182KY705112[36]
Apiospora rasikravindraeLC7115KY494721KY494797KY705189KY705118[36]
Apiospora rasikravindraeKUC21351MH498540 MH498498MN868932[84]
Apiospora rasikravindraeKUC21327MH498541 MH498499MH544670[84]
Apiospora sacchariCBS 212.30KF144916KF144962KF145005KF145047[40]
Apiospora sacchariCBS 301.49KF144917KF144963KF145006KF145048[40]
Apiospora saccharicolaCBS 191.73KF144920KF144966KF145009KF145051[40]
Apiospora saccharicolaCBS 463.83KF144921KF144968KF145010KF145052[40]
Apiospora sasaeCBS 146808 TMW883402MW883797MW890120MW890104[85]
Apiospora septatumCGMCC 3.20134 TMW481711MW522960MW522943[52]
Apiospora serenensisIMI 326869 TAB220250AB220297[71]
Apiospora serenensisATCC 76309AB220240AB220287[71]
Apiospora setariaeCFCC 54041MT492004MT497466MW118456[86]
Apiospora setostromaKUMCC 19-0217MN528012MN528011MN527357[87]
Apiospora sinensisUNKNOW-1 = HKUCC 3143AY083831NCBI
Apiospora sinensisUNKNOW-2DQ810215NCBI
Apiospora sorghiURM<BRA>:9300MK371706NCBI
Apiospora stipaeCBS 146804MW883403MW883798MW890121MW890105[85]
Apiospora subglobosaMFLUCC 11-0397 TKR069112KR069113[75]
Apiospora subroseaLC7291KY494751KY494827KY705219KY705147[36]
Apiospora subroseaCGMCC3.18337 TKY494752KY494828KY705220KY705148[36]
Apiospora thailandicaMFLUCC 15-0199KU940146KU863134[16]
Apiospora thailandicaMFLUCC 15-0202 TKU940145KU863133[16]
Apiospora thailandicaLC5630KY494714KY494790KY806200KY705113[36]
Apiospora tintinnabula7019-96 (ICMP)DQ810216[71]
Apiospora vietnamensisIMI 99670KX986096KX986111KY019466[88]
Apiospora xenocordellaCBS 478.86 TKF144925KY494763[40]
Apiospora xenocordellaCBS 595.66KF144926KF144971KF145013KF145055[40]
Apiospora yunnanaMFLUCC 15-0002 TKU940147KU863135[16]
Apiospora yunnanaSICAUCC 22-0072ON227096ON227100ON244426ON244425This study
Arthrinium agariKUC21364MH498516MH498474MN868917[84]
Arthrinium arctoscopiKUC21347MH498525MH498483MN868922[84]
Arthrinium fermentiKUC21289MF615226MF615231MH544667[84]
Arthrinium koreanumKUC21350MH498521MH498479MN868929[84]
Arthrinium marinumKUC21328MH498538 MH498496MH544669 [84]
Arthrinium marinumKUC21356MH498534MH498492MN868926[84]
Arthrinium marinumKUC21355MH498535 MH498493MN868925 [84]
Arthrinium marinumKUC21354MH498536 MH498494MN868924 [84]
Arthrinium moriMFLU 18-2514MW114313MW114393[89]
Arthrinium moriNCYU 19-0364MW114314MW114394[89]
Arthrinium phaeospermumCBS 114315KF144905KF144952KF144997KF145039[40]
Arthrinium phaeospermumCBS 114317KF144906KF144953KF144998KF145040[40]
Arthrinium phaeospermumCBS 114318KF144907KF144954KF144999KF145041[40]
Arthrinium pusillispermumKUC21357MH498532MH498490MN868931[84]
Arthrinium sargassiKUC21232KT207750KT207648MH544676[84]
Arthrinium taeanenseKUC21322MH498515MH498473MH544662[84]
Pestalotiopsis chamaeropisCBS 237.38MH855954MH867450KM199392KM199474[76]
Pestalotiopsis colombiensisCBS 118553 TKM199307KM116222KM199421KM199488[90]
Bambusicularia brunneaCBS 133599 TKM484830KM484948KM485043[91]
Bambusicularia brunneaCBS 133600AB274436KM484949KM485044[91,92]
Barretomyces calatheaeCBS 129274 = CPC 18464KM484831KM484950KM485045[76]
Bifusisporella sichuanensisSICAUCC 22-0073TON227097ON227101ON244427ON244428This study
Bifusisporella sorghiURM 7442 TMK060155MK060153MK060157MK060159[42]
Bifusisporella sorghiURM 7864MK060156MK060154MK060158MK060160[42]
Buergenerula spartinaeATCC 22848JX134666DQ341492JX134692JX134720[93]
Bussabanomyces longisporusCBS 125232 TKM484832KM484951KM009202KM485046[94]
Falciphora oryzaeCBS 125863 TEU636699KJ026705JN857963KJ026706[95]
Falciphoriella solaniterrestrisCBS 117.83 TKM484842KM484959KM485058[91]
Gaeumannomycella caricicolaCBS:145041MK442584MK442526[96]
Gaeumannomycella caricisCBS 388.81 TKM484843KM484960KX306674[91]
Gaeumannomyces australiensisCPC 26058 TKX306480KX306550KX306683KX306619[97]
Gaeumannomyces avenaeCBS 187.65JX134668JX134680JX134722[93]
Gaeumannomyces avenaeCBS 870.73 = DAR 20999KM484833DQ341495KM485048[91]
Gaeumannomyces californicusCPC 26044 TKX306490KX306560KX306691KX306625[97]
Gaeumannomyces ellisiorumCBS 387.81 TKM484835KM484952KX306692KM485051[91]
Gaeumannomyces floridanusCPC 26037 TKX306491KX306561KX306693KX306626[97]
Gaeumannomyces fusiformisCPC 26068 TKX306492KX306562KX306694KX306627[97]
Gaeumannomyces glycinicolaCPC 26266KX306494KX306564KX306696KX306629[97]
Gaeumannomyces glycinicolaCPC 26057KX306493KX306563KX306695KX306628[97]
Gaeumannomyces graminicolaCBS 352.93 TKM484834DQ341496KX306697KM485050[91]
Gaeumannomyces graminisCPC 26045KX306505KX306575KX306708KX306640[97]
Gaeumannomyces graminis var. graminisM33JF710374JF414896JF710411JF710442[98]
Gaeumannomyces graminis var. graminisM54JF414848JF414898JF710419JF710444[98]
Gaeumannomyces hyphopodioidesCBS 350.77 TKX306506KX306576[97]
Gaeumannomyces hyphopodioidesCBS 541.86KX306507KX306577KX306709[97]
Gaeumannomyces oryzicolaCPC 26063 TKX306516KX306586KX306717KX306646[97]
Gaeumannomyces oryzinusCPC 26030 TKX306517KX306587KX306718KX306647[97]
Gaeumannomyces radicicolaCBS 296.53 TKM009170KM009158KM009206KM009194[94]
Gaeumannomyces setariicolaCPC 26059KX306524KX306594KX306725KX306654[97]
Gaeumannomyces triticiCBS 273.36KX306525KX306595KX306729KX306655[97]
Gaeumannomyces walkeriCPC 26028 TKX306543KX306613KX306746KX306670[97]
Gaeumannomyces wongoonooBRIP:60376KP162137KP162146[99]
Kohlmeyeriopsis medullarisCBS 117849 T = JK5528SKM484852KM484968KM485068[91]
Macgarvieomyces borealisCBS 461.65 TMH858669DQ341511KM009198KM485070[94]
Macgarvieomyces juncicolaCBS 610.82KM484855KM484970KM009201KM485071[91]
Magnaporthiopsis agrostidisBRIP 59300 TKT364753KT364754KT364756KT364755[100]
Magnaporthiopsis cynodontisRS7-2 = CBS 141700 TKJ855508KM401648KP282714KP268930[101]
Magnaporthiopsis cynodontisRS5-5KJ855506KM401646KP282712KP268928[101]
Magnaporthiopsis cynodontisRS3-1KJ855505KM401645KP282711KP268927[101]
Magnaporthiopsis incrustansM35JF414843JF414892JF710412JF710437[98]
Magnaporthiopsis maydisM84KM009160KM009148KM009196KM009184[94]
Magnaporthiopsis maydisM85KM009161KM009149KM009197KM009185[94]
Magnaporthiopsis meyeri-festucaeFF2MF178146MF178151MF178167MF178162[102]
Magnaporthiopsis meyeri-festucaeSCR11MF178150MF178155MF178171MF178166[102]
Magnaporthiopsis panicorumCM2S8 TKF689643KF689633KF689623KF689613[103]
Magnaporthiopsis panicorumCM10s2KF689644KF689634KF689624KF689614[103]
Magnaporthiopsis poaeTAP35KJ855511KM401651KP282717KP268933[104]
Magnaporthiopsis poaeM1JF414827JF414876JF710400JF710425[98]
Magnaporthiopsis poaeM12JF414828JF414877JF710401JF710426[98]
Magnaporthiopsis rhizophilaM22JF414833JF414882JF710407JF710431[98]
Nakataea oryzaeM21JF414838JF414887JF710406JF710441[98]
Nakataea oryzaeM69JX134672JX134685JX134698JX134726[93]
Nakataea oryzaeM71JX134673JX134686JX134699JX134727[93]
Neogaeumannomyces bambusicolaMFLUCC11-0390 TKP744449KP744492[105]
Neopyricularia commelinicolaCBS 128307 = KACC 44083FJ850125KM484984KM009199KM485086[91,106]
Neopyricularia commelinicolaCBS 128308 TFJ850122KM484985KM485087[91,106]
Ophioceras dolichostomumCBS 114926 = HKUCC 3936 = KM 8JX134677JX134689JX134703JX134731[93]
Ophioceras leptosporumCBS 894.70 T = ATCC 24161 = HME 2955JX134678JX134690JX134704JX134732[83]
Proxipyricularia zingiberisCBS 132355 = MAFF 240221AB274433KM484987KM485090[91]
Pseudophialophora eragrostisCM12m9KF689648KF689638KF689628KF689618[103]
Pseudopyricularia cyperiCBS 133595 T = MAFF 240229KM484872KM484990AB818013[91]
Pseudopyricularia kyllingaeCBS 133597 T = MAFF 240227KM484876KM484992KT950880KM485096[91]
Pyricularia ctenantheicolaGR0001 = Ct-4 = ATCC 200218KM484878KM484994KM485098[91]
Pyricularia griseaBR0029KM484880KM484995KM485100[91]
Pyricularia griseaCR0024KM484882KM484997KM485102[91]
Pyricularia oryzaeCBS 365.52 = MUCL 9451KM484890KM485000KM485110[76]
Slopeiomyces cylindrosporusBAN-145JF508361[107]
Slopeiomyces cylindrosporusCG340AY428776[108]
Utrechtiana cibiessiaCBS 128780 = CPC 18916JF951153JF951176KM485047[76]
Xenopyricularia zizaniicolaCBS 132356KM484946KM485042KM009203KM485160[91]
Acericola italicaMFLUCC 13-0609 TMF167428MF167429MF167430[109]
Alloneottiosporina thailandicaMFLUCC 15-0576 TMT177913MT177940MT454002MT177968[43]
Allophaeosphaeria muriformiaMFLUCC 13-0349 TKP765680KP765681KP765682[105]
Amarenographium ammophilaeMFLUCC 16-0296KU848196KU848197MG520894KU848198[109]
Amarenomyces dactylidisMFLU 17-0498 TKY775577KY775575[110]
Ampelomyces quisqualisCBS 129.79 TEU754128EU754029[111]
Banksiophoma australiensisCBS 142163 TKY979739KY979794KY979889[112]
Bhagirathimyces himalayensisAMH 10127 T = NFCCI 4580MK836021MK836020MN121697[113]
Bhatiellae rosaeMFLUCC 17-0664 TMG828873MG828989MG829101[114]
Brunneomurispora loniceraeKUMCC 18-0157 TMK356373MK356346MK359065MK356360[59]
Camarosporioides phragmitisMFLUCC 13-0365 TKX572340KX572345KX572354KX572350[115]
Chaetosphaeronema achilleaeMFLUCC 16-0476 TKX765265KX765266 [115]
Chaetosphaeronema hispidulumMFLU:16-1965MT177915MT177942MT177970[43]
Chaetosphaeronema hispidulumMFLU:16-2275MT177914MT177941MT454003MT177969[43]
Chaetosphaeronema hispidulumCBS 216.75KF251148KF251652KF253108 [116]
Dactylidina dactylidisMFLUCC 13-0618KP744432KP744473KP753946[105]
Dactylidina dactylidisMFLUCC 14-0966 TMG828886MG829002MG829199MG829113[114]
Dematiopleospora donetzicaMFLU 15-2199 TMG829005MG829116[114]
Dematiopleospora mariaeMFLUCC 13-0612 TKJ749654KJ749653KJ749655KJ749652[117]
Diederichomyces ficuzzaeCBS 128019KP170647KP170673[118]
Diederichomyces xanthomendozaeCBS 129666KP170651KP170677[118]
Dlhawksworthia clematidicolaMFLUCC 17-2151 TMT310619MT214574MT394633MT226687[119]
Edenia gomezpompaeJLCC 34533KC193601[120]
Elongaticollum hedychiiMFLUCC 18-1638 TMT321796MT321810MT328753MT321803[115]
Elongaticollum hedychiiNCYUCC 19-0286MT321797MT321811MT328754MT321804[115]
Embarria clematidisMFLUCC 14-0652KT306949KT306953KT306956[121]
Embarria clematidisMFLUCC 14-0976MG828871MG828987MG829194MG829099[114]
Equiseticola fusisporaMFLUCC 14-0522 TKU987668KU987669MG520895KU987670[122]
Galliicola pseudophaeosphaeriaMFLUCC 14-0524MG520896[109]
Hawksworthiana clematidicolaMFLUCC 14-0910 TMG828901MG829011MG829202MG829120[114]
Hawksworthiana loniceraeMFLUCC 14-0955 TMG828902MG829012MG829203MG829121[114]
Hydeomyces desertipleosporoidesSQUCC 15260MK290842MK290840MK290849MK290844[123]
Hydeomyces desertipleosporoidesSQUCC 15259 TMK290841MK290839MK290848MK290843[123]
Hydeomyces pinicolaGZ-06MK522506MK522496MK523386MK522502[124]
Hydeopsis verrucisporaSD-2016-5MK522508MK522498MK523388MK522504[124]
Italica achilleaeMFLUCC 14-0959 TMG828903MG829013MG829204MG829122[114]
Jeremyomyces labinaeCBS 144617 TMK442589MK442695[96]
Juncaceicola italicaMFLUCC 13-0750KX500110KX500107MG520897KX500108[109]
Juncaceicola luzulaeMFLUCC 13-0780KX449529KX449530MG520898KX449531[125]
Kwanghwana miscanthiFU31017MK503817MK503823MT009126MK503829[126]
Leptosphaeria doliolumCBS 505.75 TJF740205GU301827GU349069GU296159[127,128]
Leptospora galiiKUMCC 15-0521 TKX599547KX599548MG520899KX599549[109]
Leptospora rubellaCPC 11006DQ195780DQ195792DQ195803[129]
Leptospora thailandicaMFLUCC 16-0385 TKX655559KX655549KX655564KX655554[130]
Loratospora luzulaeMFLUCC 14-0826 TKT328497KT328495KT328496[121]
Mauginiella scaettaeCBS 239.58MH857770MH869303[76]
Melnikia anthoxanthiiMFLUCC 14-1010KU848204KU848205[131]
Murichromolaenicola chiangraiensisMFLUCC 17-1488 TMN994582MN994559MN998163MN994605[74]
Muriphaeosphaeria galatellaeMFLUCC 15-0769KT438330KT438332[132]
Muriphaeosphaeria galatellaeMFLUCC 14-0614 TKT438333KT438329MG520900KT438331[132]
Neoophiobolus chromolaenaeMFLUCC 17-1467 TMN994583MN994562MN998164MN994606[74]
Neosetophoma garethjonesiiMFLUCC 14-0528KY514402KY501126[133]
Neosetophoma rosigenaMFLUCC 17-0768 TMG828928MG829037MG829143[114]
Neosphaerellopsis thailandicaCPC 21659 TKP170652KP170721KP170678[118]
Neostagonospora arrhenatherMFLUCC 15-0464KX926417KX910091MG520901KX950402[134]
Neostagonospora caricisCBS 135092 TKF251163KF251667[76]
Neostagonospora phragmitisMFLUCC 16-0493KX926416KX910090MG520902KX950401[134]
Neostagonosporella sichuanensisMFLUCC 18-1223MH394690MH394687MK313854MK296469[58]
Neostagonosporella sichuanensisMFLUCC 18-1228 TMH368073MH368079MK313851MH368088[58]
Neosulcatispora strelitziaeCPC 25657KX228253KX228305[112]
Nodulosphaeria guttulatumMFLUCC 15-0069KY514394KY501115[133]
Nodulosphaeria multiseptataMFLUCC 15-0078KY496748KY496728[133]
Nodulosphaeria scabiosaeMFLUCC 14-1111 TKU708850KU708846KU708854KU708842[135]
Ophiobolopsis italicaMFLUCC 17-1791 TMG520939MG520959MG520903MG520977[109]
Ophiobolus artemisiaeMFLUCC 14-1156 TKT315508KT315509MG520905MG520979[109]
Ophiobolus disseminansMFLUCC 17-1787MG520941MG520961MG520906MG520980[109]
Ophiobolus ponticusMFLUCC 17-2273MG520943MG520963MG520908MG520982[109]
Ophiosimulans tanacetiMFLUCC 14-0525KU738890KU738891MG520910KU738892[109]
Ophiosphaerella herpotrichaKY423KP690989KP691011[136]
Ophiosphaerella korraeATCC 56289KC848509KC848515[136]
Ophiosphaerella narmariATCC 64688KC848510KC848516[136]
Paraleptosphaeria dryadisCBS 643.86JF740213GU301828GU349009KC584632[127,128]
Paraleptospora chromolaenaeMFLUCC 17-1481 TMN994587MN994563MN998167MN994609[74]
Paralloneottiosporina sichuanensisSICAUCC 22-0074 TON226746ON227102ON244423ON227129This study
Paralloneottiosporina sichuanensisSICAUCC 22-0075ON226747ON227103ON244424ON227130This study
Paraloratospora camporesiiMFLU 18-0915 TMN756639MN756637MN756635[113]
Paraophiobolus arundinisMFLUCC 17-1789 TMG520945MG520965MG520912MG520984[109]
Paraophiobolus plantaginisMFLUCC 17-0245 TKY797641KY815010KY815012[109]
Paraphoma chrysanthemicolaCBS 522.66KF251166KF251670KF253124[116]
Paraphoma radicinaCBS 111.79KF251172KF251676KF253130[116]
Parastagonospora italicaMFLUCC 13-0377 TKU058714KU058724MG520915MG520985[109,137]
Parastagonospora minimaMFLUCC 13-0376KU058713KU058723MG520916MG520986[109,137]
Parastagonosporella fallopiaeCCTU 1151.1MH460544MH460546MH460550[138]
Parastagonosporella fallopiaeCBS 135981 TMH460543MH460545MH460549[138]
Phaeopoacea festucaeMFLUCC 17-0056KY824766KY824767KY824769[134]
Phaeoseptoriella zeaeCBS 144614 TMK442611MK442547MK442702[96]
Phaeosphaeria chiangrainaMFLUCC 13-0231 TKM434270KM434280KM434298KM434289[57]
Phaeosphaeria oryzaeCBS 110110 TKF251186KF251689GQ387530[139]
Phaeosphaeria pleurosporaCBS 460.84AF439498[140]
Phaeosphaeriopsis glaucopunctataMFLUCC 13-0265KJ522473KJ522477MG520918KJ522481[109,141]
Phaeosphaeriopsis triseptataMFLUCC 13-0271KJ522475KJ522479MG520919KJ522484[109,141]
Phaeosphaeriopsis yuccaeMFLUCC 16-0558KY554482KY554481MG520920KY554480[109]
Piniphoma wesendahlinaCBS 145032 TMK442615MK442551MK442706[96]
Poaceicola arundinisMFLUCC 15-0702 TKU058716KU058726MG520921MG520988[109]
Poaceicola italicaMFLUCC 13-0267KX926421KX910094MG520924KX950409[109,134]
Populocrescentia ammophilaeMFLUCC 17-0665 TMG828949MG829059MG829231MG829164[114]
Populocrescentia forlicesenensisMFLUCC 14-0651 TKT306948KT306952MG520925KT306955[121]
Populocrescentia rosaeTASM 6125 TMG829060MG829232MG829165[114]
Pseudoophiobolus mathieuiMFLUCC 17-1784MG520949MG520969MG520928MG520991[109]
Pseudoophiobolus rosaeMFLUCC 17-1786 TMG520952MG520972MG520930MG520993[109]
Pseudoophiobolus urticicolaKUMCC 17-0168 TMG520955MG520975MG520933MG520996[109]
Pseudoophiosphaerella huishuiensisHS-13MK522509MK522499MK523389MK522505[124]
Pseudophaeosphaeria rubiMFLUCC 14-0259 TKX765298KX765299MG520934KX765300[130]
Sclerostagonospora ericaeCPC 25927 TKX228268KX228319KX228375[112]
Scolicosporium minkeviciusiiMFLUCC 12-0089KF366382KF366383[142]
Septoriella phragmitisCPC 24118 TKR873251KR873279[143]
Setomelanomma holmiiCBS 110217KT389542GU301871GU349028GU296196[127,144]
Setophoma terrestrisCBS 335.29KF251246KF251749KF253196[116]
Stagonospora neglectaCBS 343.86AJ496630[145]
Sulcispora supratumidaMFLUCC 14-0995 TKP271443KP271444MH665366KP271445[146]
Tintelnotia destructansCBS 127737 TKY090652KY090664KY090698[147]
Tintelnotia opuntiaeCBS 376.91 TKY090651GU238123GU238226[147,148]
Vagicola arundinisMFLUCC 15-0027 TKY706139KY706129MG520936KY706134[109]
Vittaliana mangroveiNFCCI 4251 TMG767311MG767312MG767314MG767313[149]
Vrystaatia aloeicolaCBS 135107KF251278KF251781[116]
Wingfieldomyces cyperiCBS 141450 TKX228286KX228337MK540163[150]
Wojnowicia italicaMFLUCC 13-0447 TKX342923KX430001KX430003KX430002[130]
Wojnowicia rosicolaMFLUCC 15-0128 TMG828979MG829091MG829191[114]
Wojnowiciella eucalyptiCBS 139904 TKR476741KR476774[76]
Xenophoma puncteliaeCBS 128022JQ238619KP170686[118,151]
Xenoseptoria neosaccardoiCBS 120.43KF251280KF251783KF253227[116]
Xenoseptoria neosaccardoiCBS 128665KF251281KF251784KF253228[116]
Yunnanensis phragmitisMFLUCC 17-1361 TMF684869MF684865MF684864[152]
Yunnanensis phragmitisMFLUCC 17-0315MF684862MF684863MF683624MF684867[152]
Biatriospora marinaCY 1228GQ925848GU479848GQ925835GU479823[153]
Biatriospora peruviensisCCF 4485LN626683LN626671LN626677LN626665[154]
Neooccultibambusa chiangraiensisMFLUCC 12-0559 TKU764699KU712458[155]
Neoroussoella bambusaeMFLUCC 11-0124KJ474839KJ474848KJ474856[156]
Occultibambusa aquaticaMFLUCC 11-0006KX698110KX698112[130]
Occultibambusa bambusaeMFLUCC 11-0394KU863113KU940194KU872117KU940171[16]
Occultibambusa bambusaeMFLUCC 13-0855 TKU863112KU940193KU872116KU940170[16]
Occultibambusa chiangraiensisMFLUCC 16-0380 TKX655546KX655551KX655566[130]
Occultibambusa fusisporaMFLUCC 11-0127 TKU863114KU940195KU940172[16]
Occultibambusa jonesiiGZCC 16-0117 TKY628322KY814756KY628324KY814758[157]
Occultibambusa kunmingensisHKAS 102151 TMN913733MT954407MT864342MT878453[61]
Occultibambusa maolanensisGZCC 16-0116KY628323KY814757KY628325KY814759[157]
Occultibambusa pustulaMFLUCC 11-0502KU863115KU872118[16]
Paradictyoarthrinium diffractumMFLUCC 13-0466KP744498KP753960KX437764[105,158]
Paradictyoarthrinium tectonicolaMFLUCC 13-0465 TKP744500KP753961KX437763[105,158]
Roussoella hysterioidesHH 26988AB524622AB539115AB524481AB539102[127]
Roussoella nitidulaMFLUCC 11-0182KJ474843KJ474852KJ474859[156]
Roussoella nitidulaMFLUCC 11-0634KJ474842KJ474851KJ474858[156]
Roussoella pustulansKT 1709AB524623AB539116AB524482AB539103[1,127]
Seriascoma bambusaeKUMCC 21-0021MZ329035MZ325468MZ329031MZ325470[159]
Seriascoma didymosporaMFLUCC 11-0179 TKU863116KU940196KU940173[16]
Seriascoma didymosporaMFLUCC 11-0194KU863117KU940197KU940174[16]
Seriascoma yunnanenseMFLU 19-0690 TNG_068303MN381858MN174694MN210324[44]
Seriascoma yunnanenseSICAUCC 22-0059ON226771ON567182ON227356ON567183This study
Torula herbarumCBS 111855KF443386KF443403KF443391KF443396[160]
Westerdykella ornataCBS 379.55GU301880GU349021GU296208GU371803[127]
Notes: superscript T represents ex-type or ex-epitype isolates. “–” means that the sequence is missing, unavailable or unused. New sequences are listed in bold. Abbreviation: AP: Culture Collection of A. Pintos; ATCC: American Type Culture Collection, U.S.A.; BRIP: Queensland Plant Pathology Herbarium, Brisbane, Australia; CBS: Culture Collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CFCC: China Forestry Culture Collection Center, Beijing, China; CGMCC: China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CPC: Culture Collection of P.W. Crous; DAOM: Plant Research Institute, Department of Agriculture (Mycology), Ottawa, Canada; GZCC: Guizhou Academy of Agricultural Sciences Culture Collection, Guizhou, China; IMI: Culture Collection of CABI Europe UK Centre, Egham, UK; JHB: Culture Collection of H.B. Jiang; KUMCC: Kunming Institute of Botany Culture Collection, Yunnan, China; LC: Working collection of Lei Cai, housed at the Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; MFLU: Herbarium of Mae Fah Luang University, Chiang Rai, Thailand; MFLUCC: Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; NCYUCC: National Chiayi University Culture Collection, Chiayi, Taiwan; SICAUCC: Sichuan Agricultural University Culture Collection, Sichuan, China; URM: Culture Collection of the Universidade Federal de Pernambuco, Brazil.

References

  1. Tanaka, K.; Hirayama, K.; Yonezawa, H.; Hatakeyama, S.; Harada, Y.; Sano, T.; Shirouzu, T.; Hosoya, T. Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs. Stud. Mycol. 2009, 64, 175–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Shi, J.Y.; Zhou, D.Q.; Ma, L.S.; Yao, J.; Zhang, D.M. Diversity of bamboo species in China. World Bamboo Ratt. 2020, 18, 55–65. [Google Scholar] [CrossRef]
  3. Du, S.S. Classification and arrangement of Phyllostachys (Poaceae: Bambusoideae), China. J. Fujian Forestry Sci. Technol. 2020, 47, 120–123. [Google Scholar] [CrossRef]
  4. Li, Y.G.; Xue, L.; Fan, L.L.; Ye, L.T.; Cheng, L.Y.; He, T.Y.; Zheng, Y.S. Research progress in germplasm resources and applications of Phyllostachy. J. Sic. For. Sci. Technol. 2019, 40, 117–122. [Google Scholar] [CrossRef]
  5. Bystriakova, N.; Kapos, V.; Lysenko, I.; Stapleton, C.M.A. Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. Biodivers. Conserv. 2003, 12, 1833–1841. [Google Scholar] [CrossRef]
  6. Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass. Bioener. 2000, 19, 229–244. [Google Scholar] [CrossRef] [Green Version]
  7. Idris, M.A.; Mohamad, A. Bamboo shoot utilization in peninsular Malaysia: A case study in Pahang. J. Bamboo Rattan. 2002, 1, 141–155. [Google Scholar] [CrossRef]
  8. Shi, J.Y.; Chen, Q.B.; Huang, J.Y.; Zhou, D.Q.; Ma, L.S.; Yao, J. Biodiversity of the staple food bamboos of giant panda and its important value. World Bamboo Rattan. 2020, 18, 10–19. [Google Scholar] [CrossRef]
  9. Wang, X.J.; Wang, T.; Chi, M.; Li, L.B. Research progress of ornamental bamboos in China. J. Bamboo Res. 2019, 38, 3–9. [Google Scholar] [CrossRef]
  10. Hyde, K.D.; Zhou, D.Q.; Mckenzie, E.H.C.; Ho, W.H.; Dalisay, T. Vertical distribution of saprobic fungi on bamboo culms. Fungal Divers. 2002, 11, 109–118. [Google Scholar]
  11. Tanaka, E.; Shimizu, K.; Imanishi, Y.; Yasuda, F.; Tanaka, C. Isolation of basidiomycetous anamorphic yeast-like fungus Meira argovae found on Japanese bamboo. Mycoscience 2008, 49, 329–333. [Google Scholar] [CrossRef]
  12. Dai, D.Q.; Bhat, D.J.; Liu, J.K.; Chukeatirote, E.; Zhao, R.L.; Hyde, K.D. Bambusicola, a new genus from bamboo with asexual and sexual morphs. Cryptogamie Mycol. 2012, 33, 363–379. [Google Scholar] [CrossRef]
  13. Doungporn, M.; Hiroko, K.; Tatsuji, S. Molecular diversity of bamboo–associated fungi isolated from Japan. FEMS Microbiol. Lett. 2007, 266, 10–19. [Google Scholar] [CrossRef] [Green Version]
  14. Hyde, K.D.; Zhou, D.; Dalisay, T. Bambusicolous fungi: A review. Fungal Divers. 2002, 9, 1–14. [Google Scholar]
  15. Tanaka, K.; Harada, Y. Bambusicolous fungi in Japan (1): Four Phaeosphaeria species. Mycoscience 2004, 45, 377–382. [Google Scholar] [CrossRef]
  16. Dai, D.Q.; Phookamsak, R.; Wijayawardene, N.N.; Li, W.J.; Bhat, D.J.; Xu, J.C.; Taylor, J.E.; Hyde, K.D.; Chukeatirote, E. Bambusicolous fungi. Fungal Divers. 2017, 82, 1–105. [Google Scholar] [CrossRef]
  17. Hatakeyama, S.; Tanaka, K.; Harada, Y. Bambusicolous fungi in Japan (7): A new coelomycetous genus, Versicolorisporium. Mycoscience 2008, 49, 211–214. [Google Scholar] [CrossRef]
  18. Hatakeyama, S.; Tanaka, K.; Harada, Y. Bambusicolous fungi in Japan (5): Three species of Tetraploa. Mycoscience 2005, 46, 196–200. [Google Scholar] [CrossRef]
  19. Zhang, Z.Y.; Zhang, X. Potentials of bamboo in traditioanl Chinese medicine and development of heath products. World Sci. Technol. 2000, 3, 54–56. [Google Scholar] [CrossRef]
  20. Zhou, B.Z.; Fu, M.Y.; Xie, J.Z.; Yang, X.S.; Li, Z.C. Ecological functions of bamboo forest: Research and application. J. Forestry Res. 2005, 16, 143–147. [Google Scholar] [CrossRef]
  21. Singhal, P.; Bal, L.M.; Satya, S.; Sudhakar, P.; Naik, S.N. Bamboo shoots: A novel source of nutrition and medicine. Crit. Rev. Food Sci. Nutr. 2013, 53, 517–534. [Google Scholar] [CrossRef] [PubMed]
  22. Teng, S.C. Fungi of China; Mycotaxon, Ltd.: New York, NY, USA, 1996; pp. 1–728. [Google Scholar]
  23. Tai, F.L. Sylloge Fungorum Sinicorum; Science Press, Academica Sinica: Beijing, China, 1979; pp. 1–1527. [Google Scholar]
  24. Chen, M.M. Forest Fungi Phytogeography: Forest Fungi Phytogeography of China, North America, and Siberia and International Quarantine of Tree Pathogens; Pacific Mushroom Research and Education Center: Sacramento, CA, USA, 2002; pp. 1–469. [Google Scholar]
  25. Chomnunti, P.; Hongsanan, S.; Hudson, B.A.; Tian, Q.; Peršoh, D.; Dhami, M.K.; Alias, A.S.; Xu, J.C.; Liu, X.Z.; Stadler, M.; et al. The sooty moulds. Fungal Divers. 2014, 66, 1–36. [Google Scholar] [CrossRef]
  26. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplifcation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfaud, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
  27. Vilgalys, R.; Hester, M. Rapid genetic identifification and mapping of enzymatically amplifified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef] [PubMed]
  29. Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microb. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  30. Matheny, P.B.; Liu, Y.J.; Ammirati, J.F.; Hall, B.D. Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am. J. Bot. 2002, 89, 688–698. [Google Scholar] [CrossRef]
  31. Castlebury, L.; Rossman, A.; Sung, G.; Hyten, A.; Spatafora, J. Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycol. Res. 2004, 108, 864–872. [Google Scholar] [CrossRef] [Green Version]
  32. Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef]
  33. Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef]
  34. O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef] [Green Version]
  35. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
  36. Wang, M.; Tan, X.M.; Liu, F.; Cai, L. Eight new Arthrinium species from China. MycoKeys 2018, 34, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
  39. Xu, X.L.; Yang, C.L.; Jeewon, R.; Wanasinghe, D.N.; Xiao, Q.G. Morpho-molecular diversity of Linocarpaceae (Chaetosphaeriales): Claviformispora gen. nov. from decaying branches of Phyllostachys heteroclada. MycoKeys 2020, 69, 113–129. [Google Scholar] [CrossRef]
  40. Crous, P.W.; Groenewald, J.Z. A phylogenetic re-evaluation of Arthrinium. IMA Fungus 2013, 4, 133–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  41. Dai, D.Q.; Jiang, H.B.; Tang, L.Z.; Bhat, D.J. Two new species of Arthrinium (Apiosporaceae, Xylariales) associated with bamboo from Yunnan, China. Mycosphere 2016, 7, 1332–1345. [Google Scholar] [CrossRef]
  42. Silva, R.M.; Oliveira, R.J.; Bezerra, J.D.; Bezerra, J.L.; Souza–Motta, C.M.; Silva, G.A. Bifusisporella sorghi gen. et sp. nov. (Magnaporthaceae) to accommodate an endophytic fungus from Brazil. Mycol. Prog. 2019, 18, 847–854. [Google Scholar] [CrossRef]
  43. Li, W.J.; McKenzie, E.H.C.; Liu, J.K.; Bhat, D.J.; Dai, D.Q.; Camporesi, E.; Tian, Q.; Maharachchikumbura, S.S.N.; Luo, Z.L.; Shang, Q.J.; et al. Taxonomy and phylogeny of hyaline-spored coelomycetes. Fungal Divers. 2020, 100, 279–801. [Google Scholar] [CrossRef]
  44. Rathnayaka, A.R.; Dayarathne, M.C.; Maharachchikumbura, S.S.N.; Liu, J.K.; Tennakoon, D.S.; Hyde, K.D. Introducing Seriascoma yunnanense sp. nov. (Occultibambusaceae, Pleosporales) based on evidence from morphology and phylogeny. Asian J. Mycol. 2019, 2, 245–253. [Google Scholar] [CrossRef]
  45. Dai, D.Q.; Tang, L.Z.; Wang, H.B. A Review of Bambusicolous Ascomycetes. Bamboo Curr. Future Prospect. 2018, 165–183. [Google Scholar] [CrossRef] [Green Version]
  46. Saccardo, P. Conspectus generum pyrenomycetum italicorum additis speciebus fungorum Venetorum novis vel criticis, systemate carpologico dispositorum. Atti Soc. Veneziana-Trent. Istriana Sci. Nat. 1875, 4, 77–100. [Google Scholar]
  47. Ellis, M.B. Dematiaceous hyphomycetes VI. Commonw. Mycol. Inst. 1965, 103, 1–46. [Google Scholar]
  48. Pintos, Á.; Alvarado, P. Phylogenetic delimitation of Apiospora and Arthrinium. Fungal Syst. Evol. 2021, 7, 197–221. [Google Scholar] [CrossRef]
  49. Tian, X.G.; Karunarathna, S.C.; Mapook, A.; Promputtha, I.; Xu, J.C.; Bao, D.F.; Tibpromma, S. One new species and two new host records of Apiospora from bamboo and maize in Northern Thailand with thirteen new combinations. Life 2021, 11, 1071. [Google Scholar] [CrossRef]
  50. Chen, K.; Wu, X.Q.; Huang, M.X.; Han, Y.Y. First report of brown culm ctreak of Phyllostachys praecox caused by Arthrinium arundinis in Nanjing, China. Plant Dis. 2014, 98, 1274. [Google Scholar] [CrossRef]
  51. Yin, C.W.; Luo, F.Y.; Zhang, H.; Fang, X.M.; Zhu, T.H.; Li, S.J. First report of Arthrinium kogelbergense causing blight disease of Bambusa intermedia in Sichuan Province, China. Plant Dis. 2021, 105, 214. [Google Scholar] [CrossRef]
  52. Feng, Y.; Liu, J.K.; Lin, C.G.; Chen, Y.Y.; Xiang, M.M.; Liu, Z.Y. Additions to the genus Arthrinium (Apiosporaceae) from bamboos in China. Front. Microbiol. 2021, 12, 661281. [Google Scholar] [CrossRef]
  53. Jiang, N.; Li, J.; Tian, C.M. Arthrinium species associated with bamboo and reed plants in China. Fungal Syst. Evol. 2018, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
  54. Yang, C.L.; Xu, X.L.; Liu, Y.G.; Xu, X.L. First report of bamboo blight disease caused by Arthrinium yunnanum on Phyllostachys heteroclada in Sichuan, China. Plant Dis. 2018, 103, 1026. [Google Scholar] [CrossRef]
  55. Luo, Z.L.; Hyde, K.D.; Liu, J.K.; Maharachchikumbura, S.S.N.; Jeewon, R.; Bao, D.F.; Bhat, D.J.; Lin, C.G.; Li, W.L.; Yang, J.; et al. Freshwater Sordariomycetes. Fungal Divers. 2019, 99, 451–660. [Google Scholar] [CrossRef] [Green Version]
  56. Tennakoon, D.S.; Jeewon, R.; Gentekaki, E.; Kuo, C.H.; Hyde, K.D. Multi-gene phylogeny and morphotaxonomy of Phaeosphaeria ampeli sp. nov. from Ficus ampelas and a new record of P. musae from Roystonea regia. Phytotaxa 2019, 406, 111–128. [Google Scholar] [CrossRef]
  57. Phookamsak, R.; Liu, J.K.; McKenzie, E.H.C.; Manamgoda, D.S.; Ariyawansa, H.; Thambugala, K.M.; Dai, D.Q.; Camporesi, E.; Chukeatirote, E.; Wijayawardene, N.N.; et al. Revision of Phaeosphaeriaceae. Fungal Divers. 2014, 68, 159–238. [Google Scholar] [CrossRef]
  58. Yang, C.L.; Xu, X.L.; Wanasinghe, D.N.; Jeewon, R.; Phookamsak, R.; Liu, Y.G.; Liu, L.J.; Hyde, K.D. Neostagonosporellasichuanensis gen. et sp. nov. (Phaeosphaeriaceae, Pleosporales) on Phyllostachys heteroclada (Poaceae) from Sichuan Province, China. MycoKeys 2019, 46, 119–150. [Google Scholar] [CrossRef] [PubMed]
  59. Phookamsak, R.; Hyde, K.D.; Jeewon, R.; Bhat, D.J.; Jones, E.B.J.; Maharachchikumbura, S.S.N.; Raspé, O.; Karunarathna, S.C.; Wanasinghe, D.N.; Hongsanan, S.; et al. Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungal. Fungal Divers. 2019, 95, 1–273. [Google Scholar] [CrossRef] [Green Version]
  60. Hyde, K.D.; Jeewon, R.; Chen, Y.J.; Bhunjun, C.S.; Calabon, M.S.; Jiang, H.B.; Lin, C.G.; Norphanphoun, C.; Sysouphanthong, P.; Pem, D.; et al. The numbers of fungi: Is the descriptive curve flattening? Fungal Divers. 2020, 103, 219–271. [Google Scholar] [CrossRef]
  61. Dong, W.; Wang, B.; Hyde, K.D.; McKenzie, E.H.C.; Raja, H.A.; Tanaka, K.; Abdel-Wahab, M.A.; Abdel-Aziz, F.A.; Doilom, M.; Phookamsak, R.; et al. Freshwater Dothideomycetes. Fungal Divers. 2020, 105, 319–575. [Google Scholar] [CrossRef]
  62. Boonmee, S.; Wanasinghe, D.N.; Calabon, M.S.; Huanraluek, N.; Chandrasiri, S.K.U.; Jones, G.E.B.; Rossi, W.; Leonardi, M.; Singh, S.K.; Rana, S.; et al. Fungal diversity notes 1387–1511: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2021, 111, 1–135. [Google Scholar] [CrossRef]
  63. Yang, C.L.; Xu, X.L.; Liu, Y.G. Two new species of Bambusicola (Bambusicolaceae, Pleosporales) on Phyllostachys heteroclada from Sichuan, China. Nova Hedwigia. 2019, 108, 527–545. [Google Scholar] [CrossRef]
  64. Yang, C.L.; Xu, X.L.; Liu, Y.G.; Hyde, K.D.; Mckenzie, E.H.C. A new species of Phyllachora (Phyllachoraceae, Phyllachorales) on Phyllostachys heteroclada from Sichuan, China. Phytotaxa 2019, 392, 186–196. [Google Scholar] [CrossRef]
  65. Yang, C.L.; Xu, X.L.; Dong, W.; Wanasinghe, D.N.; Liu, Y.G.; Hyde, K.D. Introducing Arthrinium phyllostachium sp. nov. (Apiosporaceae, Xylariales) on Phyllostachys heteroclada from Sichuan Province, China. Phytotaxa 2019, 406, 91–110. [Google Scholar] [CrossRef]
  66. Yang, C.L.; Xu, X.L.; Liu, Y.G. Podonectria sichuanensis, a potentially mycopathogenic fungus from Sichuan Province in China. Phytotaxa 2019, 402, 219–231. [Google Scholar] [CrossRef]
  67. Yang, C.L.; Xu, X.L.; Jeewon, R.; Boonmee, S.; Liu, Y.G.; Hyde, K.D. Acremonium arthrinii sp. Nov., a mycopathogenic fungus on Arthrinium yunnanum. Phytotaxa 2019, 420, 283–299. [Google Scholar] [CrossRef]
  68. Yang, C.L.; Baral, H.O.; Xu, X.L.; Liu, Y.G. Parakarstenia phyllostachydis, a new genus and species of non-lichenized Odontotremataceae (Ostropales, Ascomycota). Mycol. Prog. 2019, 18, 833–845. [Google Scholar] [CrossRef]
  69. Yan, H.; Jiang, N.; Liang, L.Y.; Yang, Q.; Tian, C.M. Arthriniumtrachycarpum sp. nov. from Trachycarpus fortunei in China. Phytotaxa 2019, 400, 203–210. [Google Scholar] [CrossRef]
  70. Alves-Silva, G.; Drechsler-Santos, E.R.; da Silveira, R.M.B. Bambusicolous Fomitiporia revisited: Multilocus phylogeny reveals a clade of host-exclusive species. Mycologia 2020, 112, 633–648. [Google Scholar] [CrossRef]
  71. Senanayake, I.C.; Bhat, J.D.; Cheewangkoon, R.; Xie, N. Bambusicolous Arthrinium species in Guangdong Province, China. Front. Microbiol. 2020, 11, 2981. [Google Scholar] [CrossRef]
  72. Pintos, A.; Alvarado, P.; Planas, J.; Jarling, R. Six new species of Arthrinium from Europe and notes about A.caricicola and other species found in Carex spp. hosts. MycoKeys 2019, 49, 15–48. [Google Scholar] [CrossRef] [Green Version]
  73. Tang, X.; Goonasekara, I.D.; Jayawardena, R.S.; Jiang, H.B.; Li, J.F.; Hyde, K.D.; Kang, J.C. Arthrinium bambusicola (Fungi, Sordariomycetes), a new species from Schizostachyum brachycladum in northern Thailand. Biodivers Data J. 2020, 8, e58755. [Google Scholar] [CrossRef]
  74. Mapook, A.; Hyde, K.D.; McKenzie, E.H.C.; Jones, E.B.G.; Bhat, D.J.; Jeewon, R.; Stadler, M.; Samarakoon, M.C.; Malaithong, M.; Tanunchai, B.; et al. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Divers. 2020, 101, 1–175. [Google Scholar] [CrossRef]
  75. Senanayake, I.C.; Maharachchikumbura, S.S.N.; Hyde., K.D.; Bhat, J.D.; Jones, E.B.G.; McKenzie, E.H.C.; Dai, D.Q.; Daranagama, D.A.; Dayarathne, M.C.; Goonasekara, I.D.; et al. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers. 2015, 73, 73–144. [Google Scholar] [CrossRef]
  76. Vu, D.; Groenewald, M.; de Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2018, 91, 23–36. [Google Scholar] [CrossRef] [PubMed]
  77. Sharma, R.; Kulkarni, G.; Sonawane, M.S.; Shouche, Y.S. A new endophytic species of Arthrinium (Apiosporaceae) from Jatropha podagrica. Mycoscience 2014, 55, 118–123. [Google Scholar] [CrossRef]
  78. Zhao, Y.Z.; Zhang, Z.F.; Cai, L.; Peng, W.J.; Liu, F. Four new filamentous fungal species from newly-collected and hive-stored bee pollen. Mycosphere 2018, 9, 1089–1116. [Google Scholar] [CrossRef]
  79. Das, K.; Lee, S.Y.; Choi, H.W.; Eom, A.H.; Choe, Y.J.; Jung, H.Y. Taxonomy of Arthrinium minutisporum sp. nov., Pezicula neosporulosa, and Acrocalymma pterocarpi: New records from soil in Korea. Mycobiology 2020, 48, 450–463. [Google Scholar] [CrossRef] [PubMed]
  80. Allen, W.J.; de Vries, A.E.; Bologna, N.J.; Bickford, W.A.; Kowalski, K.P.; Meyerson, L.A.; Cronin, J.T. Intraspecific and biogeographical variation in foliar fungal communities and pathogen damage of native and invasive Phragmites australis. Glob. Ecol. Biogeogr. 2020, 29, 1199–1211. [Google Scholar] [CrossRef]
  81. Jiang, N.; Liang, Y.M.; Tian, C.M. A novel bambusicolous fungus from China, Arthrinium chinense (Xylariales). Sydowia 2020, 72, 77–83. [Google Scholar] [CrossRef]
  82. Hyde, K.D.; Norphanphoun, C.; Maharachchikumbura, S.; Bhat, D.J.; Jones, E.B.G.; Bundhun, D.; Chen, Y.J.; Bao, D.F.; Boonmee, S.; Calabon, M.; et al. Refined families of Sordariomycetes. Mycosphere 2020, 11, 305–1059. [Google Scholar] [CrossRef]
  83. Schoch, C.L.; Robbertse, B.; Robert, V.; Vu, D.; Cardinali, G.; Irinyi, L.; Meyer, W.; Nilsson, R.H.; Hughes, K.; Miller, A.N.; et al. Finding needles in haystacks: Linking scientific names, reference specimens and molecular data for fungi. Database 2014, 336–341. [Google Scholar] [CrossRef]
  84. Kwon, S.L.; Park, M.S.; Jang, S.; Lee, Y.M.; Heo, Y.M.; Hong, J.H.; Lee, H.; Jang, Y.; Park, J.H.; Kim, C.; et al. The genus Arthrinium (Ascomycota, Sordariomycetes, Apiosporaceae) from marine habitats from Korea, with eight new species. IMA Fungus 2021, 12, 13. [Google Scholar] [CrossRef]
  85. Crous, P.; Hernandez-Restrepo, M.; Schumacher, R.K.; Cowan, D.A.; Maggs-Koelling, G.; Marais, E.; Wingfield, M.J.; Yilmaz, N.; Adan, O.C.G.; Akulov, A.; et al. New and interesting fungi. 4. Fungal Syst. Evol. 2021, 7, 255–343. [Google Scholar] [CrossRef]
  86. Jiang, N.; Tian, C.M. The holomorph of Arthrinium setariae sp. nov. (Apiosporaceae, Xylariales) from China. Phytotaxa 2021, 483, 149–159. [Google Scholar] [CrossRef]
  87. Jiang, H.B.; Hyde, K.D.; Doilom, M.; Karunarathna, S.C.; Xu, J.C.; Phookamsak, R. Arthrinium setostromum (Apiosporaceae, Xylariales), a novel species associated with dead bamboo from Yunnan, China. Asian J. Mycol. 2019, 2, 254–268. [Google Scholar] [CrossRef]
  88. Wang, M.; Liu, F.; Crous, P.W.; Cai, L. Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Persoonia 2017, 39, 118–142. [Google Scholar] [CrossRef] [PubMed]
  89. Tennakoon, D.S.; Kuo, C.H.; Maharachchikumbura, S.S.N.; Thambugala, K.M.; Gentekaki, E.; Phillips, A.J.L.; Bhat, D.J.; Wanasinghe, D.N.; de Silva, N.I.; Promputtha, I.; et al. Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Divers. 2021, 108, 1–215. [Google Scholar] [CrossRef]
  90. Maharachchikumbura, S.S.N.; Hyde, K.D.; Groenewald, J.Z.; Xu, J.; Crous, P.W. Pestalotiopsis revisited. Stud. Mycol. 2014, 79, 121–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  91. Klaubauf, S.; Tharreau, D.; Fournier, E.; Groenewald, J.Z.; Crous, P.W.; de Vries, R.P.; Lebrun, M.H. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud. Mycol. 2014, 79, 85–120. [Google Scholar] [CrossRef]
  92. Hirata, K.; Kusaba, M.; Chuma, I.; Osue, J.; Nakayashiki, H.; Mayama, S.; Tosa, Y. Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycol. Res. 2007, 111, 799–808. [Google Scholar] [CrossRef] [Green Version]
  93. Luo, J.; Zhang, N. Magnaporthiopsis, a new genus in Magnaporthaceae (Ascomycota). Mycologia 2013, 105, 1019–1029. [Google Scholar] [CrossRef]
  94. Luo, J.; Walsh, E.; Zhang, N. Toward monophyletic generic concepts in Magnaporthales: Species with Harpophora asexual states. Mycologia 2015, 107, 641–646. [Google Scholar] [CrossRef]
  95. Yuan, Z.L.; Lin, F.C.; Zhang, C.L.; Kubicek, C.P. A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte. FEMS Microbiol. Lett. 2010, 307, 94–101. [Google Scholar] [CrossRef] [PubMed]
  96. Crous, P.W.; Schumacher, R.K.; Akulov, A.; Thangavel, R.; Hernandez-Restrepo, M.; Carnegie, A.J.; Cheewangkoon, R.; Wingfield, M.J.; Summerell, B.A.; Quaedvlieg, W.; et al. New and interesting fungi. 2. Fungal Syst. Evol. 2019, 3, 57–134. [Google Scholar] [CrossRef] [PubMed]
  97. Hernández-Restrepo, M.; Groenewald, J.Z.; Elliott, M.L.; Canning, G.; Mcmillan, V.E.; Crous, P.W. Take-all or nothing. Stud. Mycol. 2016, 83, 19–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  98. Zhang, N.; Zhao, S.; Shen, Q. A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species. Mycologia 2011, 103, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
  99. Wong, P.T.W. Gaeumannomyces wongoonoo sp. nov., the cause of a patch disease of buffalo grass (St Augustine grass). Mycol. Res. 2002, 106, 857–862. [Google Scholar] [CrossRef]
  100. Khemmuk, W.; Geering, A.D.; Shivas, R.G. Wongia gen. nov. (Papulosaceae, Sordariomycetes), a new generic name for two root-infecting fungi from Australia. IMA Fungus 2016, 7, 247–252. [Google Scholar] [CrossRef] [PubMed]
  101. Vines, P.L.; Hoffmann, F.G.; Meyer, F.; Allen, T.W.; Luo, J.; Zhang, N.; Tomaso-Peterson, M. Magnaporthiopsis cynodontis, a novel turfgrass pathogen with widespread distribution in the United States. Mycologia 2020, 112, 52–63. [Google Scholar] [CrossRef] [PubMed]
  102. Luo, J.; Vines, P.L.; Grimshaw, A.; Hoffman, L.; Walsh, E.; Bonos, S.A.; Clarke, B.B.; Murphy, J.A.; Meyer, W.A.; Zhang, N. Magnaporthiopsis meyeri-festucae, sp. nov., associated with a summer patch-like disease of fine fescue turfgrasses. Mycologia 2017, 109, 780–789. [Google Scholar] [CrossRef]
  103. Luo, J.; Walsh, E.; Zhang, N. Four new species in Magnaporthaceae from grass roots in New Jersey Pine Barrens. Mycologia 2014, 106, 580–588. [Google Scholar] [CrossRef] [PubMed]
  104. Vines, P.L. Evaluation of Ultradwarf Bermudagrass Cultural Management Practices and Identification, characterization, and Pathogenicity of Ectotrophic Rootinfecting Fungi Associated with Summer Decline of Ultradwarf Bermudagrass Putting Greens. Master Thesis, Mississippi State University, Starkville, MI, USA, 2015. [Google Scholar]
  105. Liu, J.K.; Hyde, K.D.; Jones, E.B.G.; Ariyawansa, H.A.; Bhat, D.J.; Boonmee, S.; Maharachchikumbura, S.S.N.; McKenzie, E.H.C.; Phookamsak, R.; Phukhamsakda, C.; et al. Fungal diversity notes 1–110: Taxonomic and phylogenetic contributions to fungal species. Fungal Divers. 2015, 72, 1–197. [Google Scholar] [CrossRef]
  106. Park, M.J.; Shin, H.D. A new species of Pyricularia on Commelina communis. Mycotaxon 2009, 108, 449–456. [Google Scholar] [CrossRef]
  107. Ban, Y.; Tang, M.; Chen, H.; Xu, Z.; Zhang, H.; Yang, Y. The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS ONE 2018. 7, e47968. [CrossRef]
  108. Saleh, A.A.; Leslie, J.F. Cephalosporium maydis is a distinct species in the Gaeumannomyces-Harpophora species complex. Mycologia 2004, 96, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
  109. Phookamsak, R.; Wanasinghe, D.N.; Hongsanan, S.; Phukhamsakda, C.; Huang, S.K.; Tennakoon, D.S.; Norphanphoun, C.; Camporesi, E.; Bulgakov, T.S.; Promputtha, I.; et al. Towards a natural classification of Ophiobolus and ophiobolus-like taxa; introducing three novel genera Ophiobolopsis, Paraophiobolus and Pseudoophiobolus in Phaeosphaeriaceae (Pleosporales). Fungal Divers. 2017, 87, 299–339. [Google Scholar] [CrossRef]
  110. Hyde, K.D.; Norphanphoun, C.; Abreu, V.P.; Bazzicalupo, A.; Chethana, K.W.T.; Clericuzio, M.; Dayarathne, M.C.; Dissanayake, A.J.; Ekanayaka, A.H.; He, M.Q.; et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species. Fungal Divers. 2017, 87, 1–235. [Google Scholar] [CrossRef]
  111. De Gruyter, J.; Aveskamp, M.M.; Woudenberg, J.H.; Verkley, G.J.; Groenewald, J.Z.; Crous, P.W. Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex. Mycol. Res. 2009, 113, 508–519. [Google Scholar] [CrossRef] [PubMed]
  112. Crous, P.W.; Wingfield, M.J.; Guarro, J.; Cheewangkoon, R.; van der Bank, M.; Swart, W.J.; Stchigel, A.M.; Cano-Lira, J.F.; Roux, J.; Madrid, H.; et al. Fungal planet description sheets: 154–213. Persoonia 2013, 31, 188–296. [Google Scholar] [CrossRef]
  113. Manawasinghe, I.S.; Pem, D.; Bundhun, D.; Karunarathna, A.; Ekanayaka, A.H.; Bao, D.F.; Li, J.F.; Samarakoon, M.C.; Chaiwan, N.; Lin, C.G.; et al. Fungal diversity notes 1151–1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2020, 100, 5–277. [Google Scholar] [CrossRef] [Green Version]
  114. Wanasinghe, D.N.; Phukhamsakda, C.; Hyde, K.D.; Jeewon, R.; Lee, H.B.; Jones, G.E.B.; Tibpromma, S.; Tennakoon, D.S.; Dissanayake, A.J.; Jayasiri, S.C.; et al. Fungal diversity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Divers. 2018, 89, 1–236. [Google Scholar] [CrossRef]
  115. Tennakoon, D.S.; Thambugala, K.M.; Wanasinghe, D.N.; Gentekaki, E.; Promputtha, I.; Kuo, C.H.; Hyde, K.D. Additions to Phaeosphaeriaceae (Pleosporales): Elongaticollum gen. nov., Ophiosphaerella taiwanensis sp. nov., Phaeosphaeriopsis beaucarneae sp. nov. and a new host record of Neosetophoma poaceicola from Musaceae. MycoKeys 2020, 70, 59–88. [Google Scholar] [CrossRef]
  116. Quaedvlieg, W.; Verkley, G.J.; Shin, H.D.; Barreto, R.W.; Alfenas, A.C.; Swart, W.J.; Groenewald, J.Z.; Crous, P.W. Sizing up Septoria. Stud. Mycol. 2013, 75, 307–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  117. Wanasinghe, D.N.; Jones, E.B.G.; Camporesi, E.; Boonmee, S.; Karunarathna, S.C.; Thines, M.; Mortimer, P.E.; Xu, J.; Hyde, K.D. Dematiopleospora mariae gen. sp. nov., from Ononis Spinosa in Italy. Cryptogamie. Mycol. 2014, 35, 105–117. [Google Scholar] [CrossRef]
  118. Trakunyingcharoen, T.; Lombard, L.; Groenewald, J.Z.; Cheewangkoon, R.; To-Anun, C.; Alfenas, A.C.; Crous, P.W. Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera. IMA Fungus 2014, 5, 391–414. [Google Scholar] [CrossRef] [PubMed]
  119. Phukhamsakda, C.; McKenzie, E.H.C.; Phillips, A.J.L.; Jones, E.B.G.; Bhat, D.J.; Stadler, M.; Bhunjun, C.S.; Wanasinghe, D.N.; Thongbai, B.; Camporesi, E.; et al. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Divers. 2020, 102, 1–203. [Google Scholar] [CrossRef]
  120. Cui, Y.; Jia, H.; He, D.; Yu, H.; Gao, S.; Yokoyama, K.; Li, J.; Wang, L. Characterization of Edenia gomezpompae isolated from a patient with keratitis. Mycopathologia 2013, 176, 75–81. [Google Scholar] [CrossRef]
  121. Ariyawansa, H.A.; Hyde, K.D.; Jayasiri, S.C.; Buyck, B.; Chethana, K.W.T.; Dai, D.Q.; Dai, Y.C.; Daranagama, D.A.; Jayawardena, R.S.; Lücking, R.; et al. Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015, 75, 27–274. [Google Scholar] [CrossRef]
  122. Abd-Elsalam, K.A.; Tibpromma, S.; Wanasinghe, D.N.; Camporesi, E.; Hyde, K.D. Equiseticola gen. nov. (Phaeosphaeriaceae), from Equisetum sp. in Italy. Phytotaxa 2016, 284, 169–180. [Google Scholar] [CrossRef]
  123. Maharachchikumbura, S.S.N.; Ariyawansa, H.A.; Wanasinghe, D.N.; Dayarathne, M.C.; Al-Saady, N.A.; Al-Sadi, A.M. Phylogenetic classification and generic delineation of Hydeomyces desertipleosporoides gen. et sp. nov., (Phaeosphaeriaceae) from Jebel Akhdar Mountain in Oman. Phytotaxa 2019, 391, 28–38. [Google Scholar] [CrossRef]
  124. Zhang, J.F.; Liu, J.K.; Jeewon, R.; Wanasinghe, D.N.; Liu, Z.Y. Fungi from Asian Karst formations III. Molecular and morphological characterization reveal new taxa in Phaeosphaeriaceae. Mycosphere 2019, 10, 202–220. [Google Scholar] [CrossRef]
  125. Tennakoon, D.S.; Hyde, K.D.; Phookamsak, R.; Wanasinghe, D.N.; Camporesi, E.; Promputtha, I. Taxonomy and phylogeny of Juncaceicola gen. nov. (Phaeosphaeriaceae, Pleosporinae, Pleosporales). Cryptogamie Mycol. 2016, 37, 135–156. [Google Scholar] [CrossRef]
  126. Karunarathna, A.; Phookamsak, R.; Jayawardena, R.S.; Hyde, K.D.; Kuo, C.H. Kwanghwana miscanthi Karun., C.H. Kuo & K.D. Hyde, gen. et sp. nov. (Phaeosphaeriaceae, Pleosporales) on Miscanthus floridulus (Labill.) Warb. ex K. Schum. & Lauterb. (Poaceae). Cryptogamie. Mycol. 2020, 41, 119–132. [Google Scholar] [CrossRef]
  127. Schoch, C.L.; Crous, P.W.; Groenewald, J.Z.; Boehm, E.W.; Burgess, T.I.; de Gruyter, J.; de Hoog, G.S.; Dixon, L.J.; Grube, M.; Gueidan, C.; et al. A class-wide phylogenetic assessment of Dothideomycetes. Stud. Mycol. 2009, 64, 1–15. [Google Scholar] [CrossRef] [PubMed]
  128. De Gruyter, J.; Woudenberg, J.H.; Aveskamp, M.M.; Verkley, G.J.; Groenewald, J.Z.; Crous, P.W. Redisposition of phoma-like anamorphs in Pleosporales. Stud. Mycol. 2013, 75, 1–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  129. Crous, P.W.; Verkley, G.J.; Groenewald, J.Z. Eucalyptus microfungi known from culture. 1. Cladoriella and Fulvoflamma genera nova, with notes on some other poorly known taxa. Stud. Mycol. 2006, 55, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  130. Hyde, K.D.; Hongsanan, S.; Jeewon, R.; Bhat, D.J.; McKenzie, E.H.C.; Jones, E.B.G.; Phookamsak, R.; Ariyawansa, H.A.; Boonmee, S.; Zhao, Q.; et al. Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2016, 80, 1–270. [Google Scholar] [CrossRef]
  131. Wijayawardene, N.N.; Hyde, K.D.; Wanasinghe, D.N.; Papizadeh, M.; Goonasekara, I.D.; Camporesi, E.; Bhat, D.J.; McKenzie, E.H.C.; Phillips, A.J.L.; Diederich, P.; et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers 2016, 77, 1–316. [Google Scholar] [CrossRef]
  132. Phukhamsakda, C.; Ariyawansa, H.A.; Phookamsak, R.; Chomnunti, P.; Bulgakov, T.S.; Yang, J.B.; Bhat, D.J.; Bahkali, A.H.; Hyde, K.D. Muriphaeosphaeria galatellae gen. et sp. nov. in Phaeosphaeriaceae (Pleosporales). Phytotaxa 2015, 227, 55–65. [Google Scholar] [CrossRef] [Green Version]
  133. Tibpromma, S.; Hyde, K.D.; Jeewon, R.; Maharachchikumbura, S.S.N.; Liu, J.K.; Bhat, D.J.; Jones, E.B.G.; McKenzie, E.H.C.; Camporesi, E.; Bulgakov, T.S.; et al. Fungal diversity notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2017, 83, 1–261. [Google Scholar] [CrossRef]
  134. Thambugala, K.M.; Wanasinghe, D.N.; Phillips, A.J.L.; Camporesi, E.; Bulgakov, T.S.; Phukhamsakda, C.; Ariyawansa, H.A.; Goonasekara, I.D.; Phookamsak, R.; Dissanayake, A.; et al. Mycosphere notes 1–50: Grass (Poaceae) inhabiting Dothideomycetes. Mycosphere 2017, 8, 697–796. [Google Scholar] [CrossRef]
  135. Mapook, A.; Boonmee, S.; Ariyawansa, H.A.; Tibpromma, S.; Campesori, E.; Jones, E.B.G.; Bahkali, A.H.; Hyde, K.D. Taxonomic and phylogenetic placement of Nodulosphaeria. Mycol. Progs. 2016, 15, 1–15. [Google Scholar] [CrossRef]
  136. Flores, F.J.; Marek, S.M.; Orquera, G.; Walker, N.R. Molecular identification and multilocus phylogeny of Ophiosphaerella species associated with spring dead spot of bermudagrass. Crop. Sci. 2017, 57, 249. [Google Scholar] [CrossRef]
  137. Li, W.J.; Bhat, D.J.; Camporesi, E.; Tian, Q.; Wijayawardene, N.N.; Dai, D.Q.; Phookamsak, R.; Chomnunti, P.; Bahkali, A.H.; Hyde, K.D. New asexual morph taxa in Phaeosphaeriaceae. Mycosphere 2015, 6, 681–708. [Google Scholar] [CrossRef]
  138. Bakhshi, M.; Arzanlou, M.; Groenewald, J.Z.; Quaedvlieg, W.; Crous, P.W. Parastagonosporella fallopiae gen. et sp. nov. (Phaeosphaeriaceae) on Fallopia convolvulus from Iran. Mycol. Prog. 2019, 18, 203–214. [Google Scholar] [CrossRef]
  139. De Gruyter, J.; Woudenberg, J.H.C.; Aveskamp, M.M.; Verkley, G.J.M.; Groenewald, J.Z.; Crous, P.W. Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 2010, 102, 1066–1081. [Google Scholar] [CrossRef]
  140. Camara, M.P.S.; Palm, M.E.; van Berkum, P.; O’Neill, N.R. Molecular phylogeny of Leptosphaeria and Phaeosphaeria. Mycologia 2002, 94, 630–640. [Google Scholar] [CrossRef]
  141. Thambugala, K.M.; Camporesi, E.; Ariyawansa, H.A.; Phookamsak, R.; Liu, Z.Y.; Hyde, K.D. Phylogeny and morphology of Phaeosphaeriopsis triseptata sp. nov., and Phaeosphaeriopsis glaucopunctata. Phytotaxa 2014, 176, 238–250. [Google Scholar] [CrossRef] [Green Version]
  142. Wijayawardene, N.N.; Camporesi, E.; Song, Y.; Dai, D.Q.; Hyde, K.D. Multi-gene analyses reveal taxonomic placement of Scolicosporium minkeviciusii in Phaeosphaeriaceae (Pleosporales). Cryptogamie Mycol. 2013, 34, 357–366. [Google Scholar] [CrossRef]
  143. Crous, P.W.; Carris, L.M.; Giraldo, A.; Groenewald, J.Z.; Hawksworth, D.L.; Hernandez-Restrepo, M.; Jaklitsch, W.M.; Lebrun, M.H.; Schumacher, R.K.; Stielow, J.B.; et al. The genera of fungi—Fixing the application of the type species of generic names—G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus 2015, 6, 163–198. [Google Scholar] [CrossRef]
  144. Chen, Q.; Jiang, J.R.; Zhang, G.Z.; Cai, L.; Crous, P.W. Resolving the Phoma enigma. Stud. Mycol. 2015, 82, 137–217. [Google Scholar] [CrossRef] [Green Version]
  145. Ernst, M.; Mendgen, K.W.; Wirsel, S.G. Endophytic fungal mutualists: Seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol. Plant-Microb. MPMI 2003, 16, 580–587. [Google Scholar] [CrossRef] [Green Version]
  146. Senanayake, I.C.; Jeewon, R.; Camporesi, E.; Hyde, K.D.; Zeng, Y.J.; Tian, S.L.; Xie, N. Sulcisporasupratumida sp. nov. (Phaeosphaeriaceae, Pleosporales) on Anthoxanthumodoratum from Italy. MycoKeys 2018, 38, 35–46. [Google Scholar] [CrossRef] [PubMed]
  147. Ahmed, S.A.; Hofmuller, W.; Seibold, M.; de Hoog, G.S.; Harak, H.; Tammer, I.; van Diepeningen, A.D.; Behrens-Baumann, W. Tintelnotia, a new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. Mycoses. 2016, 60, 244–253. [Google Scholar] [CrossRef] [PubMed]
  148. Aveskamp, M.M.; de Gruyter, J.; Woudenberg, J.H.; Verkley, G.J.; Crous, P.W. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol. 2010, 65, 1–60. [Google Scholar] [CrossRef]
  149. Devadatha, B.; Mehta, N.; Wanasinghe, D.N.; Baghela, A.; Venkateswara, V.; Vittaliana, S. Vittaliana mangrovei Devadatha, Nikita, A. Baghela & V.V. Sarma, gen. nov, sp. nov. (Phaeosphaeriaceae), from mangroves near Pondicherry (India), based on morphology and multigene phylogeny. Cryptogamie Mycol. 2019, 40, 117–132. [Google Scholar] [CrossRef]
  150. Marin-Felix, Y.; Hernández-Restrepo, M.; Iturrieta-González, I.; García, D.; Gené, J.; Groenewald, J.Z.; Cai, L.; Chen, Q.; Quaedvlieg, W.; Schumacher, R.K.; et al. Genera of phytopathogenic fungi: GOPHY 3. Stud. Mycol. 2019, 94, 1–124. [Google Scholar] [CrossRef] [PubMed]
  151. Lawrey, J.D.; Diederich, P.; Nelsen, M.P.; Freebury, C.; Van den Broeck, D.; Sikaroodi, M.; Ertz, D. Phylogenetic placement of lichenicolous Phoma species in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes). Fungal Divers. 2012, 55, 195–213. [Google Scholar] [CrossRef]
  152. Karunarathna, A.; Papizadeh, M.; Senanayake, I.C.; Jeewon, R.; Phookamsak, R.; Goonasekara, I.D.; Wanasinghe, D.N.; Wijayawardene, N.N.; Amoozegar, M.A.; Shahzadeh-Fazeli, S.A.; et al. Novel fungal species of Phaeosphaeriaceae with an asexual/sexual morph connection. Mycosphere 2017, 8, 1818–1834. [Google Scholar] [CrossRef]
  153. Suetrong, S.; Schoch, C.L.; Spatafora, J.W.; Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Sakayaroj, J.; Phongpaichit, S.; Tanaka, K.; Hirayama, K.; Jones, E.B.G. Molecular systematics of the marine Dothideomycetes. Stud. Mycol. 2009, 64, 155–173. [Google Scholar] [CrossRef]
  154. Kolarik, M.; Spakowicz, D.; Gazis, R.; Shaw, J.; Novakova, A.; Chudickova, M.; Forcina, G.C.; Kang, K.W.; Kelnarova, I.; Skaltsas, D.; et al. Biatriospora (Ascomycota: Pleosporales) is an ecologically diverse genus including facultative marine fungi and endophytes with biotechnological potential. Plant Syst. Evol. 2017, 303, 35–50. [Google Scholar] [CrossRef]
  155. Doilom, M.; Dissanayake, A.J.; Wanasinghe, D.N.; Boonmee, S.; Liu, J.K.; Bhat, D.J.; Taylor, J.E.; Bahkali, A.H.; McKenzie, E.H.C.; Hyde, K.D. Microfungi on Tectona grandis (teak) in Northern Thailand. Fungal Divers. 2017, 82, 107–182. [Google Scholar] [CrossRef]
  156. Liu, J.K.; Phookamsak, R.; Dai, D.Q.; Tanaka, K.; Jones, E.B.G.; Xu, J.C.; Chukeatirote, E.; Hyde, K.D. Roussoellaceae, a new pleosporalean family to accommodate the genera Neoroussoella gen. nov., Roussoella and Roussoellopsis. Phytotaxa 2014, 181, 1–33. [Google Scholar] [CrossRef] [Green Version]
  157. Zhang, J.F.; Liu, J.K.; Hyde, K.D.; Yang, W.; Liu, Z.Y. Fungi from Asian Karst formations II. Two new species of Occultibambusa (Occultibambusaceae, Dothideomycetes) from karst landforms of China. Mycosphere 2017, 8, 550–559. [Google Scholar] [CrossRef]
  158. Li, J.; Bhat, D.J.; Phookamsak, R.; Mapook, A.; Lumyong, S.; Hyde, K.D. Sporidesmioides thailandica gen. et sp nov (Dothideomycetes) from northern Thailand. Mycol. Prog. 2016, 15, 1169–1178. [Google Scholar] [CrossRef]
  159. Jiang, H.B.; Phookamsak, R.; Hyde, K.D.; Mortimer, P.E.; Xu, J.C.; Kakumyan, P.; Karunarathna, S.C.; Kumla, J. A taxonomic appraisal of bambusicolous fungi in Occultibambusaceae (Pleosporales, Dothideomycetes) with new collections from Yunnan Province, China. Life 2021, 11, 932. [Google Scholar] [CrossRef] [PubMed]
  160. Ahmed, S.A.; van de Sande, W.W.; Stevens, D.A.; Fahal, A.; van Diepeningen, A.D.; Menken, S.B.; de Hoog, G.S. Revision of agents of black-grain eumycetoma in the order Pleosporales. Persoonia 2014, 33, 141–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Figure 1. Phylogram generated from RAxML analysis based on combined ITS, LSU, tub2, and tef1-α sequence data of Apiosporaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequences are written in red. Arthrinium species with yellow background were temporarily not combined to Apiospora.
Figure 1. Phylogram generated from RAxML analysis based on combined ITS, LSU, tub2, and tef1-α sequence data of Apiosporaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequences are written in red. Arthrinium species with yellow background were temporarily not combined to Apiospora.
Jof 08 00702 g001aJof 08 00702 g001b
Figure 2. Phylogram generated from RAxML analysis based on combined ITS, LSU, rpb1, and tef1-α sequence data of Magnaporthaceae and Pyriculariaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequence is written in red.
Figure 2. Phylogram generated from RAxML analysis based on combined ITS, LSU, rpb1, and tef1-α sequence data of Magnaporthaceae and Pyriculariaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequence is written in red.
Jof 08 00702 g002
Figure 3. Phylogram generated from RAxML analysis based on combined ITS, LSU, SSU, and tef1-α sequence data of Phaeosphaeriaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequences are written in red.
Figure 3. Phylogram generated from RAxML analysis based on combined ITS, LSU, SSU, and tef1-α sequence data of Phaeosphaeriaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequences are written in red.
Jof 08 00702 g003aJof 08 00702 g003b
Figure 4. Phylogram generated from RAxML analysis based on combined ITS, LSU, rpb2, and tef1-α sequence data of isolates within Bambusicolaceae and other representative species in Biatriosporaceae, Roussoellaceae, Torulaceae, and Paradictyoarthriniaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequence is written in red.
Figure 4. Phylogram generated from RAxML analysis based on combined ITS, LSU, rpb2, and tef1-α sequence data of isolates within Bambusicolaceae and other representative species in Biatriosporaceae, Roussoellaceae, Torulaceae, and Paradictyoarthriniaceae. Bootstrap support values for maximum likelihood (ML, left) higher than 50% and Bayesian posterior probabilities (BYPP, right) equal to or greater than 0.90 are indicated at the nodes, respectively. The sequences from ex-type strains are marked by a superscript symbol T. The newly generated sequence is written in red.
Jof 08 00702 g004
Figure 5. Apiospora hydei (SICAU 22-0032). (a) Ascostromata developing on bamboo branches. (b) Vertical sections of ascostromata. (c) Peridium. (d) Paraphyses. (e,f) Asci. (g,h) Ascospores. (i) Germinating ascospore. (j,k) Cultures on PDA. Scale bars: (b) = 50 μm, (ci) = 10 μm.
Figure 5. Apiospora hydei (SICAU 22-0032). (a) Ascostromata developing on bamboo branches. (b) Vertical sections of ascostromata. (c) Peridium. (d) Paraphyses. (e,f) Asci. (g,h) Ascospores. (i) Germinating ascospore. (j,k) Cultures on PDA. Scale bars: (b) = 50 μm, (ci) = 10 μm.
Jof 08 00702 g005
Figure 6. Apiosporajiangxiensis (SICAU 22-0070). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (fh) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 μm, (c) = 100 μm, (dk) = 10 μm.
Figure 6. Apiosporajiangxiensis (SICAU 22-0070). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (fh) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 μm, (c) = 100 μm, (dk) = 10 μm.
Jof 08 00702 g006
Figure 7. Apiosporaneosubglobosa (SICAU 22-0071). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (fh) Asci. (i) Ascospores. (j) Germinating ascospore. (k,l) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 μm, (c) = 50 μm, (dj) = 10 μm.
Figure 7. Apiosporaneosubglobosa (SICAU 22-0071). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (fh) Asci. (i) Ascospores. (j) Germinating ascospore. (k,l) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 μm, (c) = 50 μm, (dj) = 10 μm.
Jof 08 00702 g007
Figure 8. Apiosporayunnana (SICAU 22-0072). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (fh) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 μm, (c) = 100 μm, (df) = 10 μm, (gk) = 20 μm.
Figure 8. Apiosporayunnana (SICAU 22-0072). (a,b) Ascostromata developing on bamboo culm. (c) Vertical sections of ascostromata. (d) Peridium. (e) Paraphyses. (fh) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (a) = 2 mm, (b) = 500 μm, (c) = 100 μm, (df) = 10 μm, (gk) = 20 μm.
Jof 08 00702 g008
Figure 9. Bifusisporella sichuanensis (SICAU 22-0073). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (e) Pseudoparaphyses. (fi) Asci. (j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (b) = 500 µm, (c) = 100 µm, (dk) = 10 µm.
Figure 9. Bifusisporella sichuanensis (SICAU 22-0073). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (e) Pseudoparaphyses. (fi) Asci. (j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (b) = 500 µm, (c) = 100 µm, (dk) = 10 µm.
Jof 08 00702 g009
Figure 10. Paralloneottiosporina sichuanensis (SICAU 22-0074, holotype). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (eg) Asci. (h) Ascospores. (i) Germinating ascospore. (j,k) Cultures on PDA. Scale bars: (a) = 1 mm, (b) = 500 µm, (c,d) = 20 µm, (ei) = 10 µm.
Figure 10. Paralloneottiosporina sichuanensis (SICAU 22-0074, holotype). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (eg) Asci. (h) Ascospores. (i) Germinating ascospore. (j,k) Cultures on PDA. Scale bars: (a) = 1 mm, (b) = 500 µm, (c,d) = 20 µm, (ei) = 10 µm.
Jof 08 00702 g010
Figure 11. Paralloneottiosporina sichuanensis (SICAU 22-0075, paratype). (a,b) Conidiomata on the host. (c) Vertical sections of conidiomata. (d) Peridium. (e) Conidiogenous cells and developing conidia. (f) Conidia. (g) Germinating conidium. (h,i) Cultures on PDA. Scale bars: (a) = 500 µm, (b) = 200 µm, (c) = 20 µm, (dg) = 10 µm.
Figure 11. Paralloneottiosporina sichuanensis (SICAU 22-0075, paratype). (a,b) Conidiomata on the host. (c) Vertical sections of conidiomata. (d) Peridium. (e) Conidiogenous cells and developing conidia. (f) Conidia. (g) Germinating conidium. (h,i) Cultures on PDA. Scale bars: (a) = 500 µm, (b) = 200 µm, (c) = 20 µm, (dg) = 10 µm.
Jof 08 00702 g011
Figure 12. Seriascoma yunnanense (SICAU 22-0059). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (e) Pseudoparaphyses. (fh) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (c) = 50 µm, (dk) = 10 µm.
Figure 12. Seriascoma yunnanense (SICAU 22-0059). (a,b) Ascostromata developing on the host. (c) Vertical sections of ascostromata. (d) Peridium. (e) Pseudoparaphyses. (fh) Asci. (i,j) Ascospores. (k) Germinating ascospore. (l,m) Cultures on PDA. Scale bars: (c) = 50 µm, (dk) = 10 µm.
Jof 08 00702 g012
Table 1. Selected genes for polymerase chain reaction of each genus.
Table 1. Selected genes for polymerase chain reaction of each genus.
GeneraSequences Dataset
ApiosporaITS, LSU, tub2, tef1-α
BifusisporellaITS, LSU, tef1-α, rpb1
ParalloneottiosporinaITS, LSU, SSU, tef1-α
SeriascomITS, LSU, SSU, tef1-α, rpb2
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zeng, Q.; Lv, Y.-C.; Xu, X.-L.; Deng, Y.; Wang, F.-H.; Liu, S.-Y.; Liu, L.-J.; Yang, C.-L.; Liu, Y.-G. Morpho-Molecular Characterization of Microfungi Associated with Phyllostachys (Poaceae) in Sichuan, China. J. Fungi 2022, 8, 702. https://doi.org/10.3390/jof8070702

AMA Style

Zeng Q, Lv Y-C, Xu X-L, Deng Y, Wang F-H, Liu S-Y, Liu L-J, Yang C-L, Liu Y-G. Morpho-Molecular Characterization of Microfungi Associated with Phyllostachys (Poaceae) in Sichuan, China. Journal of Fungi. 2022; 8(7):702. https://doi.org/10.3390/jof8070702

Chicago/Turabian Style

Zeng, Qian, Yi-Cong Lv, Xiu-Lan Xu, Yu Deng, Fei-Hu Wang, Si-Yi Liu, Li-Juan Liu, Chun-Lin Yang, and Ying-Gao Liu. 2022. "Morpho-Molecular Characterization of Microfungi Associated with Phyllostachys (Poaceae) in Sichuan, China" Journal of Fungi 8, no. 7: 702. https://doi.org/10.3390/jof8070702

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop