Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Pithohirolide, an antimicrobial tetradepsipeptide from a fungus Pithomyces chartarum

Abstract

Pithohirolide (1), a new depsipeptide, was isolated from an ascomycetous fungus Pithomyces chartarum TAMA 581. The planar structure of 1 was elucidated on the basis of NMR and MS analyses and the absolute configuration was determined by the advanced Marfey’s analysis, chiral-phase HPLC analysis, and synthesis of degradation product. Compound 1 possesses a cyclic structure comprising (S)-2-hydroxy-3-phenylpropanoic acid, (S)-3-hydroxy-3-phenylpropanoic acid, (S)-2-hydroxyisovaleric acid, and N-methyl-l-alanine, connected via three ester and one amide linkages. Compound 1 exhibited antimicrobial activity against Staphylococcus aureus and Saccharomyces cerevisiae at MIC 3.1 μg ml−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bills GF, Gloer JB. Biologically active secondary metabolites from the fungi. Microbiol Spectr. 2016;4:1–32.

    Article  CAS  Google Scholar 

  2. Uka V, Cary JW, Lebar MD, Puel O, De Saeger S, Di Mavungu JD. Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: a review. Compr Rev Food Sci Food Saf. 2020;19:2797–842.

    Article  Google Scholar 

  3. Romsdahl J, Wang CCC. Recent advances in the genome mining of Aspergillus secondary metabolites (covering 2012-2018). Medchemcomm. 2019;10:840–66.

    Article  CAS  Google Scholar 

  4. Bräse S, Encinas A, Keck J, Nising CF. Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev. 2019;109:3903–90.

    Article  Google Scholar 

  5. Dictionary of Natural Products 27.2. CRC Press, Taylor & Francis Group; 2018. http://dnp.chemnetbase.com/. Accessed 29 Jan 2021.

  6. Becker K, Stadler M. Recent progress in biodiversity research on the Xylariales and their secondary metabolism. J Antibiot. 2021;74:1–23.

    Article  CAS  Google Scholar 

  7. Karwehl S, Stadler M. Exploitation of fungal biodiversity for discovery of novel antibiotics. Curr Top Microbiol Immunol. 2016;398:303–38.

    CAS  PubMed  Google Scholar 

  8. Pontes JGM, Fernandes LS, dos Santos RV, Tasic L, Fill TP. Virulence factors in the phytopathogen-host interactions: an overview. J Agric Food Chem. 2020;68:7555–70.

    Article  CAS  Google Scholar 

  9. da Cunha KC, Sutton DA, Gené J, Cano J, Capilla J, Madrid H, et al. Pithomyces species (Montagnulaceae) from clinical specimens: identification and antifungal susceptibility profiles. Med Mycol. 2014;52:748–57.

    Article  Google Scholar 

  10. Pinto C, Santos VM, Dinis J, Peleteiro MC, Fitzgerald JM, Smith BL. Pithomycotoxicosis (facial eczema) in ruminants in the Azores, Portugal. Vet Rec. 2006;157:805–10.

    Article  Google Scholar 

  11. Saito S, Atsumi K, Zhou T, Fukaya K, Urabe D, Oku N, et al. A cyclopeptide and three oligomycin-class polyketides produced by an underexplored actinomycete of the genus Pseudosporangium. Beilstein J Org Chem. 2020;16:1100–10.

    Article  CAS  Google Scholar 

  12. Karim MRU, Harunari E, Oku N, Akasaka K, Igarashi Y. Bulbimidazoles A−C. antimicrobial and cytotoxic alkanoyl imidazoles from a marine gammaproteobacterium Microbulbifer species. J Nat Prod. 2020;83:1295–9.

    Article  Google Scholar 

  13. Zhou T, Katsuragawa M, Xing T, Fukaya K, Okuda T, Tokiwa T, et al. Cyclopeptides from the mushroom pathogen fungus Cladobotryum varium. J Nat Prod. 2021;84:327–38.

  14. Fujii K, Ikai Y, Oka H, Suzuki M, Harada K-I. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: combination of Marfey’s method with mass spectrometry and its practical application. Anal Chem. 1997;69:5146–51.

    Article  CAS  Google Scholar 

  15. Briggs LH, Colebrook LD, Davis BR, Le Quesne PW. Chemistry of fungi. Part I. Pithomycolide, a novel depsipeptide from Pithomyces chartarum. J Chem Soc. 1964;1078:5626–33.

    Article  Google Scholar 

  16. Russell DW. Angolide, a naturally-occurring cyclotetradepsipeptide with a twelve-membered ring. J Chem Soc. 1965;1965:4664–8.

    Article  Google Scholar 

  17. Russell DW, Jamieson WD, Taylor A, Das BC. Isolation and structure of pimaydolide, a cyclodepsipeptide metabolite of Pithomyces maydicus. Can J Chem. 1976;54:1355–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Daisuke Urabe at Toyama Prefectural University for his technical support on the synthesis of 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Igarashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhou, T., Xing, T. et al. Pithohirolide, an antimicrobial tetradepsipeptide from a fungus Pithomyces chartarum. J Antibiot 74, 458–463 (2021). https://doi.org/10.1038/s41429-021-00423-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00423-4

Search

Quick links