Skip to main content

Hydrocephalus: Generalities and Clinical Presentations

  • Living reference work entry
  • First Online:
Textbook of Pediatric Neurosurgery

Abstract

Though already described in the earliest medical books (Di Rocco 1987) and investigated by generations of clinicians and basic science specialists, hydrocephalus still remains one of the most complex and obscure diseases the neurosurgeons have to face. Unfortunately, it is also one of the commonest pathological conditions that the pediatric neurosurgeon has to treat in infants, children, and adolescents. Indeed, hydrocephalus affects all age groups though presenting with distinctive clinical characteristics, specific etiologies, different responses to the treatment, and variable prognosis in the various phases of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T (2000) MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 217(3):877–885

    CAS  PubMed  Google Scholar 

  • Andeweg J (1976) The cause of hydrocephalus. Bronder-offset B.V, Rotterdam, p 374

    Google Scholar 

  • Anei R, Hayashi Y, Hiroshima S, Mitsui N, Orimoto R, Uemori G et al (2011) Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. Neurol Med Chir (Tokyo) 51(6):437–441

    Google Scholar 

  • Arnold W, Ritter R, Wagner WH (1973) Quantitative studies on the drainage of the cerebrospinal fluid into the lymphatic system. Acta Otolaryngol (Stockh) 76(2):156–161

    CAS  Google Scholar 

  • Avery RA, Shah SS, Licht DJ, Seiden JA, Huh JW, Boswinkel J et al (2010) Reference range for cerebrospinal fluid opening pressure in children. N Engl J Med 363(9):891–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballantyne J, Hollman AS, Hamilton R, Bradnam MS, Carachi R, Young DG et al (1999) Transorbital optic nerve sheath ultrasonography in normal children. Clin Radiol 54(11):740–742

    CAS  PubMed  Google Scholar 

  • Barrer SJ, Schut L, Bruce DA (1980) Global rostral midbrain dysfunction secondary to shunt malfunction in hydrocephalus. Neurosurgery 7(4):322–325

    CAS  PubMed  Google Scholar 

  • Bateman GA, Napier BD (2011) External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation. Childs Nerv Syst 27(12):2087–2096

    PubMed  Google Scholar 

  • Bedford THB (1934) The great vein of Galen and the syndrome of increased intracranial pressure. Brain 57:1–24

    Google Scholar 

  • Belloni G, di Rocco C, Focacci C, Galli G, Maira G, Rossi GF (1976) Surgical indications in normotensive hydrocephalus. A retrospective analysis of the relations of some diagnostic findings to the results of surgical treatment. Acta Neurochir 33(1–2):1–21

    CAS  PubMed  Google Scholar 

  • Bering EA (1959) Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow. Am J Phys 197:825–828

    Google Scholar 

  • Bering EA (1962) Circulation of the cerebrospinal fluid. Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 19:405–413

    PubMed  Google Scholar 

  • Bering EA, Sato O (1963) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063

    PubMed  Google Scholar 

  • Blackburn BL, Fineman RM (1994) Epidemiology of congenital hydrocephalus in Utah, 1940–1979: report of an iatrogenically related “epidemic”. Am J Med Genet 52(2):123–129

    CAS  PubMed  Google Scholar 

  • Bondurant CP, Jimenez DF (1995) Epidemiology of cerebrospinal fluid shunting. Pediatr Neurosurg 23(5):254–258; discussion 259

    CAS  PubMed  Google Scholar 

  • Borenstein-Levin L, Koren I, Kugelman A, Bader D, Toropine A, Riskin A (2014) Post-hemorrhagic hydrocephalus and diabetes insipidus in preterm infants. J Pediatr Endocrinol Metab JPEM 27(11–12):1261–1263

    PubMed  Google Scholar 

  • Bowsher D (1957) Pathways of absorption of protein from the cerebrospinal fluid: an autoradiographic study in the cat. Anat Rec 128(1):23–39

    CAS  PubMed  Google Scholar 

  • Bradbury MW (1978) Proportion of cerebrospinal fluid draining into jugular lymphatic trunks of the cat [proceedings]. J Physiol 276:67P–68P

    CAS  PubMed  Google Scholar 

  • Bradbury MW, Cole DF (1980) The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol 299:353–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Phys 240(4):F329–F336

    CAS  Google Scholar 

  • Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10

    PubMed  PubMed Central  Google Scholar 

  • Brodbelt A, Stoodley M (2007) CSF pathways: a review. Br J Neurosurg 21(5):510–520

    CAS  PubMed  Google Scholar 

  • Bulat M, Klarica M (2011) Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev 65(2):99–112

    PubMed  Google Scholar 

  • Bulat M, Lupret V, Orehković D, Klarica M (2008) Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol 32(Suppl 1):43–50

    PubMed  Google Scholar 

  • Ceddia A, Di Rocco C, Carlucci A (1993) Hypersecretive congenital hydrocephalus due to choroid plexus villous hypertrophy associated with contralateral papilloma. Minerva Pediatr 45(9):363–367

    CAS  PubMed  Google Scholar 

  • Chiasserini A (1922) Recherches expérimentales sur l’hydrocéphalie. Présse Med 30:1053–1054

    Google Scholar 

  • Chow KC, Lee CC, Lin TY, Shen WC, Wang JH, Peng CT et al (2000) Congenital enterovirus 71 infection: a case study with virology and immunohistochemistry. Clin Infect Dis Off Publ Infect Dis Soc Am 31(2):509–512

    CAS  Google Scholar 

  • Cinalli G, Sainte-Rose C, Simon I, Lot G, Sgouros S (1999) Sylvian aqueduct syndrome and global rostral midbrain dysfunction associated with shunt malfunction. J Neurosurg 90(2):227–236

    CAS  PubMed  Google Scholar 

  • Cinalli G, Spennato P, Nastro A, Aliberti F, Trischitta V, Ruggiero C et al (2011) Hydrocephalus in aqueductal stenosis. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 27(10):1621–1642

    Google Scholar 

  • Clark RG, Milhorat TH (1970) Experimental hydrocephalus. 3. Light microscopic findings in acute and subacute obstructive hydrocephalus in the monkey. J Neurosurg 32(4):400–413

    CAS  PubMed  Google Scholar 

  • Cserr HF (1987) Convection of brain interstitial fluid and its drainage into deep cervical lymph. Wiss Z – Karl-Marx-Univ Leipz Math-Naturwissenschaftliche Reihe 36(2):127–130

    Google Scholar 

  • Cserr HF, Cooper DN, Milhorat TH (1977) Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res 25(Suppl):461–473

    PubMed  Google Scholar 

  • Cushing H (1925) The third circulation and its channels. Lancet 2:851–857

    Google Scholar 

  • Dandy WE (1918) Extirpation of the choroid plexus of the lateral ventricles in communicating hydrocephalus. Ann Surg 68:569–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dandy WE (1919) Experimental hydrocephalus. Ann Surg 70(2):129–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dandy WE (1921a) Hydrocephalus in chondrodystrophy. Bull Johns Hopkins Hosp 32:5–10

    Google Scholar 

  • Dandy WE (1921b) The cause of the so-called idiopathic hydrocephalus. Bull Johns Hopkins Hosp 32:67–75

    Google Scholar 

  • Dandy WE (1922) An operative procedure for hydrocephalus. Bull Johns Hopkins Hosp 33:189–190

    Google Scholar 

  • Dandy WE (1929) Where is cerebrospinal fluid absorbed. JAMA 90:152–154

    Google Scholar 

  • Dandy WE (1945) Diagnosis and treatment of strictures of the aqueduct of Sylvius (causing hydrocephalus). Arch Surg 51:1–14

    Google Scholar 

  • Dandy WE, Blackfan KD (1914) Internal hydrocephalus. Am J Dis Child 8:406–482

    Google Scholar 

  • Dandy WE, Blackfan KD (1917) Internal hydrocephalus. Am J Dis Child 14:424–433

    Google Scholar 

  • Davson H, Domer FR, Hollingsworth JR (1973) The mechanism of drainage of the cerebrospinal fluid. Brain J Neurol 96(2):329–336

    CAS  Google Scholar 

  • Desai B, Hsu Y, Schneller B, Hobbs JG, Mehta AI, Linninger A (2016) Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid. Neurosurg Focus 41(3):E8

    PubMed  Google Scholar 

  • Dewan MC, Rattani A, Mekary R, Glancz LJ, Yunusa I, Baticulon RE, et al (2018) Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg 1:1–15

    Google Scholar 

  • Di Rocco C (1987) The treatment of infantile hydrocephalus. CRC Press, Boca Raton, Florida, 151 p

    Google Scholar 

  • Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F (1977) Experimental hydrocephalus following mechanical increment of intraventricular pulse pressure. Experientia 33(11):1470–1472

    PubMed  Google Scholar 

  • Di Rocco C, Pettorossi VE, Caldarelli M, Mancinelli R, Velardi F (1978) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pressure: experimental studies. Exp Neurol 59(1):40–52

    PubMed  Google Scholar 

  • Di Rocco C, Di Trapani G, Pettorossi VE, Caldarelli M (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. Childs Brain 5(2):81–95

    PubMed  Google Scholar 

  • Dobyns WB, Pagon RA, Armstrong D, Curry CJ, Greenberg F, Grix A et al (1989) Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet 32(2):195–210

    CAS  PubMed  Google Scholar 

  • Drayer BP, Rosenbaum AE, Higman HB (1977) Cerebrospinal fluid imaging using serial metrizamide CT cisternography. Neuroradiology 13(1):7–17

    CAS  PubMed  Google Scholar 

  • Edsbagge M, Tisell M, Jacobsson L, Wikkelso C (2004) Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol 287(6):R1450–R1455

    CAS  PubMed  Google Scholar 

  • Elman R (1923) Spinal arachnoid granulations with especial reference to the cerebrospinal fluid. Johns Hopkins Hosp Bull 34:99–104

    Google Scholar 

  • Enzmann DR, Pelc NJ (1993) Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am J Neuroradiol 14(6):1301–1307; discussion 1309–1310

    CAS  PubMed  Google Scholar 

  • Erlich SS, McComb JG, Hyman S, Weiss MH (1989) Ultrastructure of the orbital pathway for cerebrospinal fluid drainage in rabbits. J Neurosurg 70(6):926–931

    CAS  PubMed  Google Scholar 

  • Fenstermacher JD, Patlak CS (1975) The exchange of material between cerebrospinal fluid and brain. In: Cserr HF, Fenstermacher JD, Fencl V (eds) Fluid environment of the brain. Academic, New York, pp 201–2014

    Google Scholar 

  • Fernell E, Hagberg G, Hagberg B (1994) Infantile hydrocephalus epidemiology: an indicator of enhanced survival. Arch Dis Child Fetal Neonatal 70(2):F123–F128

    CAS  Google Scholar 

  • Field EJ, Brierley JB (1949) The retro-orbital tissues as a site of outflow of cerebrospinal fluid. Proc R Soc Med 42(6):447–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filippidis AS, Kalani MYS, Rekate HL (2011) Hydrocephalus and aquaporins: lessons learned from the bench. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 27(1):27–33

    Google Scholar 

  • Filippidis AS, Kalani MYS, Rekate HL (2012) Hydrocephalus and aquaporins: the role of aquaporin-4. Acta Neurochir Suppl 113:55–58

    CAS  PubMed  Google Scholar 

  • Fisayo A, Bruce BB, Newman NJ, Biousse V (2016) Overdiagnosis of idiopathic intracranial hypertension. Neurology 86(4):341–350

    PubMed  PubMed Central  Google Scholar 

  • Foltz EL, Aine C (1981) Diagnosis of hydrocephalus by CSF pulse-wave analysis: a clinical study. Surg Neurol 15(4):283–293

    CAS  PubMed  Google Scholar 

  • Fox RJ, Walji AH, Mielke B, Petruk KC, Aronyk KE (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39(1):84–90; discussion 90–91

    CAS  PubMed  Google Scholar 

  • Friedman DI, Liu GT, Digre KB (2013) Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology 81(13):1159–1165

    PubMed  Google Scholar 

  • Fukuhara T, Luciano MG (2001) Clinical features of late-onset idiopathic aqueductal stenosis. Surg Neurol 55(3):132–136; discussion 136–137

    CAS  PubMed  Google Scholar 

  • Gomez DG, Ehrmann JE, Gordon Potts D, Pavese AM, Gilanian A (1983) The arachnoid granulations of the newborn human: an ultrastructural study. Int J Dev Neurosci Off J Int Soc Dev Neurosci 1(2):139–147

    CAS  Google Scholar 

  • Gomez DG, Manzo RP, Fenstermacher JD, Potts DG (1988) Cerebrospinal fluid absorption in the rabbit. Optic pathways. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol 226(1):1–7

    CAS  Google Scholar 

  • Gospe SM, Bhatti MT, El-Dairi MA (2016) Anatomic and visual function outcomes in paediatric idiopathic intracranial hypertension. Br J Ophthalmol 100(4):505–509

    PubMed  Google Scholar 

  • Green AL, Pereira EAC, Kelly D, Richards PG, Pike MG (2007) The changing face of paediatric hydrocephalus: a decade’s experience. J Clin Neurosci 14(11):1049–1054

    PubMed  Google Scholar 

  • Greitz D (1993) Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl 386:1–23

    CAS  PubMed  Google Scholar 

  • Greitz D (2004a) The hydrodynamic hypothesis versus the bulk flow hypothesis. Neurosurg Rev 27(4):299–300

    PubMed  Google Scholar 

  • Greitz D (2004b) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev luglio 27(3):145–165; discussion 166–167

    Google Scholar 

  • Greitz D (2007) Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Childs Nerv Syst 23(5):487–489

    PubMed  PubMed Central  Google Scholar 

  • Greitz D, Hannerz J (1996) A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. AJNR Am J Neuroradiol 17(3):431–438

    CAS  PubMed  Google Scholar 

  • Greitz D, Franck A, Nordell B (1993) On the pulsatile nature of intracranial and spinal CSF-circulation demonstrated by MR imaging. Acta Radiol Stockh Swed 34(4):321–328

    CAS  Google Scholar 

  • Grzybowski DM, Holman DW, Katz SE, Lubow M (2006) In vitro model of cerebrospinal fluid outflow through human arachnoid granulations. Invest Ophthalmol Vis Sci 47(8):3664–3672

    PubMed  Google Scholar 

  • Guleke N (1930) Ueber die Entstehung des Hydrocephalus internus. Arch klin Chir 16:533–550

    Google Scholar 

  • Hakim S, Adams RD (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2(4):307–327

    CAS  PubMed  Google Scholar 

  • Hammock MK, Milhorat TH (1973) Recent studies on the formation of cerebrospinal fluid. Dev Med Child Neurol Suppl:27–34

    Google Scholar 

  • Hartmann AJPW, Soares BP, Bruce BB, Saindane AM, Newman NJ, Biousse V et al (2017) Imaging features of idiopathic intracranial hypertension in children. J Child Neurol 32(1):120–126

    PubMed  Google Scholar 

  • Hassin GB (1948) The morphology of the pial blood vessels and its bearing on the formation and absorption of the cerebrospinal fluid. J Neuropathol Exp Neurol 7(4):432–438

    CAS  PubMed  Google Scholar 

  • Hassin GB, Oldnerg E, Tinsley M (1937) Changes in the brain of plexectomized dogs; with comment on the cerebrospinal fluid. Arch Neurol Psychiatr 38:1224–1239

    Google Scholar 

  • Hasuo M, Asano Y, Teraoka M, Ikeyama A, Kageyama N (1983) Cerebrospinal fluid absorption into the lymphatic system in increased intracranial pressure. In: Ishii S, Nagai H, Brock M (eds) Intracranial pressure. Springer-Verlag, Berlin, pp 611–617

    Google Scholar 

  • Hellbusch LC (2007) Benign extracerebral fluid collections in infancy: clinical presentation and long-term follow-up. J Neurosurg 107(2 Suppl):119–125

    PubMed  Google Scholar 

  • Hermann EJ, Polemikos M, Heissler HE, Krauss JK (2017) Shunt surgery in idiopathic intracranial hypertension aided by electromagnetic navigation. Stereotact Funct Neurosurg 95(1):26–33

    PubMed  Google Scholar 

  • Hirayama A, Matsumae M, Yatsushiro S, Abdulla A, Atsumi H, Kuroda K (2015) Visualization of pulsatile CSF motion around membrane-like structures with both 4D velocity mapping and time-SLIP technique. Magn Reson Med Sci MRMS Off J Jpn Soc Magn Reson Med 14(4):263–273

    Google Scholar 

  • Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11(1):26

    PubMed  PubMed Central  Google Scholar 

  • Hochwald GM, Epstein F, Malhan C, Ransohoff J (1972) The rôle of the skull and dura in experimental feline hydrocephalus. Dev Med Child Neurol Suppl 27:65–69

    CAS  PubMed  Google Scholar 

  • Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY (2001) Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA 285(23):2981–2986

    CAS  PubMed  Google Scholar 

  • Honorat R, Marchandot J, Tison C, Cances C, Chaix Y (2011) Treatment and prognosis of idiopathic intracranial hypertension in children. Retrospective study (1995–2009) and literature review. Arch Pediatr Organe Off Soc Francaise Pediatr 18(11):1139–1147

    CAS  Google Scholar 

  • Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y et al (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33(46):18190–18199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishak GE, Dempsey JC, Shaw DWW, Tully H, Adam MP, Sanchez-Lara PA et al (2012) Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain J Neurol 135(Pt 5):1370–1386

    Google Scholar 

  • Jucá E, Pessoa A, Ribeiro E, Menezes R, Kerbage S, Lopes T et al (2018) Hydrocephalus associated to congenital Zika syndrome: does shunting improve clinical features? Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 34(1):101–106

    Google Scholar 

  • Kadri H, Mawla AA, Kazah J (2006) The incidence, timing, and predisposing factors of germinal matrix and intraventricular hemorrhage (GMH/IVH) in preterm neonates. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 22(9):1086–1090

    Google Scholar 

  • Kalani MYS, Filippidis AS, Rekate HL (2012) Hydrocephalus and aquaporins: the role of aquaporin-1. Acta Neurochir Suppl 113:51–54

    CAS  PubMed  Google Scholar 

  • Karmazyn B, Dagan O, Vidne BA, Horev G, Kornreich L (2002) Neuroimaging findings in neonates and infants from superior vena cava obstruction after cardiac operation. Pediatr Radiol 32(11):806–810

    PubMed  Google Scholar 

  • Kato M, Das S, Petras K, Kitamura K, Morohashi K, Abuelo DN et al (2004) Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat 23(2):147–159

    CAS  PubMed  Google Scholar 

  • Kazy Z, Puhó E, Czeizel AE (2005) Teratogenic potential of vaginal metronidazole treatment during pregnancy. Eur J Obstet Gynecol Reprod Biol 123(2):174–178

    CAS  PubMed  Google Scholar 

  • Kelman SE, Heaps R, Wolf A, Elman MJ (1992) Optic nerve decompression surgery improves visual function in patients with pseudotumor cerebri. Neurosurgery 30(3):391–395

    CAS  PubMed  Google Scholar 

  • Key A, Retzius G (1875) Studien in der Anatomie des Nervensystems und des Bindegewebes. Norstedt & Söner, Stockholm

    Google Scholar 

  • Kida S, Yamashima T, Kubota T, Ito H, Yamamoto S (1988) A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg 69(3):429–435

    CAS  PubMed  Google Scholar 

  • Klarica M, Oresković D, Bozić B, Vukić M, Butković V, Bulat M (2009) New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience 158(4):1397–1405

    CAS  PubMed  Google Scholar 

  • Kozma M, Zoltãn OT, Csillik B (1972) Anatomical basis of the prelymphatic system in the brain. Acta Anat (Basel) 81(3):409–420

    CAS  Google Scholar 

  • Lam WW, Ai VH, Wong V, Leong LL (2001) Ultrasonographic measurement of subarachnoid space in normal infants and children. Pediatr Neurol 25(5):380–384

    CAS  PubMed  Google Scholar 

  • Laubscher B, Deonna T, Uske A, van Melle G (1990) Primitive megalencephaly in children: natural history, medium term prognosis with special reference to external hydrocephalus. Eur J Pediatr 149(7):502–507

    CAS  PubMed  Google Scholar 

  • Lee AG, Patrinely JR, Edmond JC (1998) Optic nerve sheath decompression in pediatric pseudotumor cerebri. Ophthalmic Surg Lasers 29(6):514–517

    CAS  PubMed  Google Scholar 

  • Levine JE, Povlishock JT, Becker DP (1982) The morphological correlates of primate cerebrospinal fluid absorption. Brain Res 241(1):31–41

    CAS  PubMed  Google Scholar 

  • Linninger AA, Tsakiris C, Zhu DC, Xenos M, Roycewicz P, Danziger Z et al (2005) Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans Biomed Eng 52(4):557–565

    PubMed  Google Scholar 

  • Liu B, Murphy RKJ, Mercer D, Tychsen L, Smyth MD (2014) Pseudopapilledema and association with idiopathic intracranial hypertension. Childs Nerv Syst 30(7):1197–1200

    PubMed  Google Scholar 

  • Liu J, Jin L, Li Z, Zhang Y, Zhang L, Wang L et al (2018) Prevalence and trend of isolated and complicated congenital hydrocephalus and preventive effect of folic acid in northern China, 2005–2015. Metab Brain Dis 33(3):837–842

    CAS  PubMed  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Love JA, Leslie RA (1984) The effects of raised ICP on lymph flow in the cervical lymphatic trunks in cats. J Neurosurg 60(3):577–581

    CAS  PubMed  Google Scholar 

  • Mack J, Squier W, Eastman JT (2009) Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Pediatr Radiol 39(3):200–210

    PubMed  Google Scholar 

  • Manzo RP, Gomez DG, Potts DG (1990) Cerebrospinal fluid absorption in the rabbit. Inner ear pathways. Acta Otolaryngol (Stockh) 109(5–6):389–396

    CAS  Google Scholar 

  • Massimi L, Paternoster G, Fasano T, Di Rocco C (2009) On the changing epidemiology of hydrocephalus. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 25(7):795–800

    Google Scholar 

  • Matsumae M, Hirayama A, Atsumi H, Yatsushiro S, Kuroda K (2014) Velocity and pressure gradients of cerebrospinal fluid assessed with magnetic resonance imaging. J Neurosurg 120(1):218–227

    PubMed  Google Scholar 

  • McComb JG, Hyman S, Weiss MH (1984) Lymphatic drainage of cerebrospinal fluid in the cat. In: Shapiro K, Marmarou A, Portnoy H (eds) Hydrocephalus. Raven Press, New York, pp 83–98

    Google Scholar 

  • McLaughlin JF, Loeser JD, Roberts TS (1997) Acquired hydrocephalus associated with superior vena cava syndrome in infants. Childs Nerv Syst 13(2):59–63

    CAS  PubMed  Google Scholar 

  • Ment LR, Duncan CC, Geehr R (1981) Benign enlargement of the subarachnoid spaces in the infant. J Neurosurg 54(4):504–508

    CAS  PubMed  Google Scholar 

  • Milhorat TH (1969) Choroid plexus and cerebrospinal fluid production. Science 166(3912):1514–1516

    CAS  PubMed  Google Scholar 

  • Milhorat TH (1970) Experimental hydrocephalus. 1. A technique for producing obstructive hydrocephalus in the monkey. J Neurosurg 32(4):385–389

    CAS  PubMed  Google Scholar 

  • Milhorat TH (1974) Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet 139(4):505–508

    CAS  PubMed  Google Scholar 

  • Milhorat TH (1976) Structure and function of the choroid plexus and other sites of cerebrospinal fluid formation. Int Rev Cytol 47:225–288

    CAS  PubMed  Google Scholar 

  • Milhorat TH, Clark RG, Hammock MK (1970a) Experimental hydrocephalus. 2. Gross pathological findings in acute and subacute obstructive hydrocephalus in the dog and monkey. J Neurosurg 32(4):390–399

    CAS  PubMed  Google Scholar 

  • Milhorat TH, Clark RG, Hammock MK, McGrath PP (1970b) Structural, ultrastructural, and permeability changes in the ependyma and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22(5):397–407

    CAS  PubMed  Google Scholar 

  • Milhorat TH, Hammock MK, Fenstermacher JD, Levin VA (1971) Cerebrospinal fluid production by the choroid plexus and brain. Science 173(3994):330–332

    CAS  PubMed  Google Scholar 

  • Milhorat TH, Hammock MK, Chien T, Davis DA (1976) Normal rate of cerebrospinal fluid formation five years after bilateral choroid plexectomy. Case report. J Neurosurg 44(6):735–739

    CAS  PubMed  Google Scholar 

  • Miller G, Ladda RL, Towfighi J (1991) Cerebro-ocular dysplasia–muscular dystrophy (Walker Warburg) syndrome. Findings in 20-week-old fetus. Acta Neuropathol (Berl) 82(3):234–238

    CAS  Google Scholar 

  • Moritake K, Nagai H, Nagasako N, Yamasaki M, Oi S, Hata T (2008) Diagnosis of congenital hydrocephalus and delivery of its patients in Japan. Brain Dev 30(6):381–386

    PubMed  Google Scholar 

  • Munch TN, Rasmussen M-LH, Wohlfahrt J, Juhler M, Melbye M (2014) Risk factors for congenital hydrocephalus: a nationwide, register-based, cohort study. J Neurol Neurosurg Psychiatry 85(11):1253–1259

    PubMed  Google Scholar 

  • Murshid WR, Jarallah JS, Dad MI (2000) Epidemiology of infantile hydrocephalus in Saudi Arabia: birth prevalence and associated factors. Pediatr Neurosurg 32(3):119–123

    CAS  PubMed  Google Scholar 

  • Naidich TP, Epstein F, Lin JP, Kricheff II, Hochwald GM (1976) Evaluation of pediatric hydrocephalus by computed tomography. Radiology 119(2):337–345

    CAS  PubMed  Google Scholar 

  • Naidich TP, Altman NR, Gonzalez-Arias SM (1993) Phase contrast cine magnetic resonance imaging: normal cerebrospinal fluid oscillation and applications to hydrocephalus. Neurosurg Clin N Am 4(4):677–705

    CAS  PubMed  Google Scholar 

  • Norman MG, O’Kusky JR (1986) The growth and development of microvasculature in human cerebral cortex. J Neuropathol Exp Neurol 45(3):222–232

    CAS  PubMed  Google Scholar 

  • Obenchain TG, Stern WE (1973) Continuous pressure monitoring in experimental obstructive hydrocephalus. I. The dynamics of acute ventricular obstruction. Arch Neurol 29(5):287–294

    CAS  PubMed  Google Scholar 

  • Oi S, Di Rocco C (2006) Proposal of «evolution theory in cerebrospinal fluid dynamics» and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22(7):662–669

    PubMed  Google Scholar 

  • Oi S, Shimoda M, Shibata M, Honda Y, Togo K, Shinoda M et al (2000) Pathophysiology of long-standing overt ventriculomegaly in adults. J Neurosurg 92(6):933–940

    CAS  PubMed  Google Scholar 

  • Oresković D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64(2):241–262

    PubMed  Google Scholar 

  • Oresković D, Klarica M, Vukić M (2002) The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion? Neurosci Lett 327(2):103–106

    PubMed  Google Scholar 

  • Orioli IM, Castilla EE (2000) Epidemiological assessment of misoprostol teratogenicity. BJOG Int J Obstet Gynaecol 107(4):519–523

    CAS  Google Scholar 

  • Ozturk Z, Atalay T, Arhan E, Aydin K, Serdaroglu A, Hirfanoglu T et al (2017) The efficacy of orbital ultrasonography and magnetic resonance imaging findings with direct measurement of intracranial pressure in distinguishing papilledema from pseudopapilledema. Childs Nerv Syst 33(9):1501–1507

    PubMed  Google Scholar 

  • Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M (2002) Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol Regul Integr Comp Physiol 283(4):R869–R876

    CAS  PubMed  Google Scholar 

  • Patwardhan RV, Nanda A (2005) Implanted ventricular shunts in the United States: the billion-dollar-a-year cost of hydrocephalus treatment. Neurosurgery 56(1):139–144; discussion 144–145

    PubMed  Google Scholar 

  • Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P et al (2007) Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8(4):287–299

    CAS  PubMed  Google Scholar 

  • Persson E-K, Hagberg G, Uvebrant P (2005) Hydrocephalus prevalence and outcome in a population-based cohort of children born in 1989–1998. Acta Paediatr 94(6):726–732

    PubMed  Google Scholar 

  • Persson E-K, Anderson S, Wiklund L-M, Uvebrant P (2007) Hydrocephalus in children born in 1999–2002: epidemiology, outcome and ophthalmological findings. Childs Nerv Syst 23(10):1111–1118

    PubMed  Google Scholar 

  • Pettorossi VE, Di Rocco C, Mancinelli R, Caldarelli M, Velardi F (1978a) Communicating hydrocephalus induced by mechanically increased amplitude of the intraventricular cerebrospinal fluid pulse pressure: rationale and method. Exp Neurol 59(1):30–39

    CAS  PubMed  Google Scholar 

  • Pettorossi VE, Di Rocco C, Caldarelli M, Mancinelli R, Velardi F (1978b) Influences of phasic changes in systemic blood pressure on intracranial pressure. Eur Neurol 17(4):216–225

    CAS  PubMed  Google Scholar 

  • Plawner LL, Delgado MR, Miller VS, Levey EB, Kinsman SL, Barkovich AJ et al (2002) Neuroanatomy of holoprosencephaly as predictor of function: beyond the face predicting the brain. Neurology 59(7):1058–1066

    CAS  PubMed  Google Scholar 

  • Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 21(7):9

    Google Scholar 

  • Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Phys 213(4):1031–1038

    CAS  Google Scholar 

  • Raimondi AJ (1994) A unifying theory for the definition and classification of hydrocephalus. Childs Nerv Syst ChNS 10(1):2–12

    CAS  PubMed  Google Scholar 

  • Raybaud C (2016) MR assessment of pediatric hydrocephalus: a road map. Childs Nerv Syst 32(1):19–41

    PubMed  Google Scholar 

  • Reid JE, Reem RE, Aylward SC, Rogers DL (2016) Sixth nerve palsy in paediatric intracranial hypertension. Neuro-Ophthalmol 40(1):23–27. Aeolus Press

    Google Scholar 

  • Rekate HL (2011) A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 27(10):1535–1541

    Google Scholar 

  • Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a «paravascular» fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326(1):47–63

    CAS  PubMed  Google Scholar 

  • Robertson WC, Chun RW, Orrison WW, Sackett JF (1979) Benign subdural collections of infancy. J Pediatr 94(3):382–386

    PubMed  Google Scholar 

  • Rogers DL (2014) A review of pediatric idiopathic intracranial hypertension. Pediatr Clin N Am 61(3):579–590

    Google Scholar 

  • Rotilio A, d’Avella D, de Blasi F, del Vivo RE, Salar G, Carteri A (1986) Disendocrine manifestations during non tumoral aqueductal stenosis. J Neurosurg Sci 30(1–2):71–76

    CAS  PubMed  Google Scholar 

  • Russell DS (1966) Observations on the pathology of hydrocephalus. Her Majiesty’s Stationery Office, London

    Google Scholar 

  • Safaee M, Clark AJ, Bloch O, Oh MC, Singh A, Auguste KI et al (2013) Surgical outcomes in choroid plexus papillomas: an institutional experience. J Neuro-Oncol 113(1):117–125

    Google Scholar 

  • Saito M (1923) Zur Pathologie des Plexus Chorioideus. Arb Neurol Instit Wien 23:49–89

    Google Scholar 

  • Sato O, Asai T, Amano Y, Hara M, Tsugane R, Yagi M (1971) Formation of cerebrospinal fluid in spinal subarachnoid space. Nature 233(5315):129–130

    CAS  PubMed  Google Scholar 

  • Schwalbe G (1869) Der Arachnoidalraum ein Lympharaum und sein Zusammenhang mir den Perichoroidalraum. Zentralbl Med Wiss 7:465

    Google Scholar 

  • Shabo AL, Maxwell DS (1968) Electron microscopic observations on the fate of particulate matter in the cerebrospinal fluid. J Neurosurg 29(5):464–474

    Google Scholar 

  • Sheen VL, Basel-Vanagaite L, Goodman JR, Scheffer IE, Bodell A, Ganesh VS et al (2004) Etiological heterogeneity of familial periventricular heterotopia and hydrocephalus. Brain Dev 26(5):326–334

    PubMed  Google Scholar 

  • Shulman K, Yarnell P, Ransohoff J (1964) Dural sinus pressure. In normal and hydrocephalic dogs. Arch Neurol 10:575–580

    CAS  PubMed  Google Scholar 

  • Simeone RM, Rasmussen SA, Mei JV, Dollard SC, Frias JL, Shaw GM et al (2013) A pilot study using residual newborn dried blood spots to assess the potential role of cytomegalovirus and Toxoplasma gondii in the etiology of congenital hydrocephalus. Birt Defects Res A Clin Mol Teratol 97(7):431–436

    CAS  Google Scholar 

  • Siyahhan B, Knobloch V, de Zélicourt D, Asgari M, Schmid Daners M, Poulikakos D et al (2014) Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface 11(94):20131189

    PubMed  PubMed Central  Google Scholar 

  • Sonnenberg H, Solomon S, Frazier DT (1967) Sodium and chloride movement into the central canal of cat spinal cord. Proc Soc Exp Biol Med 124(4):1316–1320

    CAS  PubMed  Google Scholar 

  • Spennato P, La Porta A, Varone A, Ruggiero C, Buono S, Cinalli G (2013) Aicardi and turner syndrome in a 45,X0/46,XX female. Clin Neurol Neurosurg 115(6):820–822

    PubMed  Google Scholar 

  • Squier W, Lindberg E, Mack J, Darby S (2009) Demonstration of fluid channels in human dura and their relationship to age and intradural bleeding. Childs Nerv Syst 25(8):925–931

    CAS  PubMed  Google Scholar 

  • Stadlbauer A, Salomonowitz E, Brenneis C, Ungersböck K, van der Riet W, Buchfelder M et al (2012) Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results. Eur Radiol 22(1):232–242

    PubMed  Google Scholar 

  • Stern RS, Rosa F, Baum C (1984) Isotretinoin and pregnancy. J Am Acad Dermatol 10(5 Pt 1):851–854

    CAS  PubMed  Google Scholar 

  • Stone SSD, Warf BC (2014) Combined endoscopic third ventriculostomy and choroid plexus cauterization as primary treatment for infant hydrocephalus: a prospective North American series. J Neurosurg Pediatr 14(5):439–446

    PubMed  Google Scholar 

  • Stopford DSB (1928) Increased intracranial pressure. Brain 51:485–507

    Google Scholar 

  • Strik C, Klose U, Erb M, Strik H, Grodd W (2002) Intracranial oscillations of cerebrospinal fluid and blood flows: analysis with magnetic resonance imaging. J Magn Reson Imaging JMRI 15(3):251–258

    PubMed  Google Scholar 

  • Symonds CP (1937) Hydrocephalus and focal brain cerebral symptoms in relation to thrombophlebitis of the Dural sinuses and cerebral veins. Brain 60:531–550

    Google Scholar 

  • Tamburrini G, Caldarelli M, Di Rocco F, Massimi L, D’Angelo L, Fasano T et al (2006) The role of endoscopic choroid plexus coagulation in the surgical management of bilateral choroid plexuses hyperplasia. Childs Nerv Syst 22(6):605–608

    PubMed  Google Scholar 

  • Trevisi G, Frassanito P, Di Rocco C (2014) Idiopathic cerebrospinal fluid overproduction: case-based review of the pathophysiological mechanism implied in the cerebrospinal fluid production. Croat Med J 55(4):377–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi RC (1977) The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res 25(Suppl):65–116

    PubMed  Google Scholar 

  • Tsutsumi S, Ito M, Yasumoto Y, Tabuchi T, Ogino I (2011) The Virchow-Robin spaces: delineation by magnetic resonance imaging with considerations on anatomofunctional implications. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 27(12):2057–2066

    Google Scholar 

  • Tubbs RS, Hansasuta A, Stetler W, Kelly DR, Blevins D, Humphrey R et al (2007) Human spinal arachnoid villi revisited: immunohistological study and review of the literature. J Neurosurg Spine 7(3):328–331

    PubMed  Google Scholar 

  • Tucker J, Choudhary AK, Piatt J (2016) Macrocephaly in infancy: benign enlargement of the subarachnoid spaces and subdural collections. J Neurosurg Pediatr 18(1):16–20

    PubMed  Google Scholar 

  • Tully HM, Dobyns WB (2014) Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur J Med Genet 57(8):359–368

    PubMed  PubMed Central  Google Scholar 

  • Wagshul ME, Chen JJ, Egnor MR, McCormack EJ, Roche PE (2006) Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg 104(5):810–819

    PubMed  Google Scholar 

  • Warf BC (2013) Congenital idiopathic hydrocephalus of infancy: the results of treatment by endoscopic third ventriculostomy with or without choroid plexus cauterization and suggestions for how it works. Childs Nerv Syst 29(6):935–940

    PubMed  Google Scholar 

  • de Wecker L (1873) On incision of the optic nerve in cases of neuroretinitis. Savill Edwards, London, pp 11–14

    Google Scholar 

  • Weed LH (1914) Studies on Cerebro-Spinal Fluid. No. II : the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res 31(1):21–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weed LH (1917) The development of the cerebrospinal spaces in pig and in man. Contrib Embryol Carnegie Inst 5:1–116

    Google Scholar 

  • Welch K, Friedman V (1960) The cerebrospinal fluid valves. Brain J Neurol 83:454–469

    CAS  Google Scholar 

  • Welch K, Pollay M (1963) The spinal arachnoid villi of the monkeys Cercopithecus aethiops sabaeus and Macaca irus. Anat Rec 145:43–48

    CAS  PubMed  Google Scholar 

  • Weller RO, Mitchell J (1980) Cerebrospinal fluid edema and its sequelae in hydrocephalus. Adv Neurol 28:111–123

    CAS  PubMed  Google Scholar 

  • Weller RO, Kida S, Zhang ET (1992) Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man. Brain Pathol Zurich Switz 2(4):277–284

    CAS  Google Scholar 

  • White DN, Wilson KC, Curry GR, Stevenson RJ (1979) The limitation of pulsatile flow through the aqueduct of Sylvius as a cause of hydrocephalus. J Neurol Sci 42(1):11–51

    CAS  PubMed  Google Scholar 

  • Whitelaw A, Thoresen M, Pople I (2002) Posthaemorrhagic ventricular dilatation. Arch Dis Child Fetal Neonatal Ed 86(2):F72–F74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams MA, McAllister JP, Walker ML, Kranz DA, Bergsneider M, Del Bigio MR et al (2007) Priorities for hydrocephalus research: report from a National Institutes of Health-sponsored workshop. J Neurosurg 107(5 Suppl):345–357

    PubMed  Google Scholar 

  • Wright R, Johnson D, Neumann M, Ksiazek TG, Rollin P, Keech RV et al (1997) Congenital lymphocytic choriomeningitis virus syndrome: a disease that mimics congenital toxoplasmosis or Cytomegalovirus infection. Pediatrics 100(1):E9

    CAS  PubMed  Google Scholar 

  • Wright Z, Larrew TW, Eskandari R (2016) Pediatric hydrocephalus: current state of diagnosis and treatment. Pediatr Rev 37(11):478–490

    PubMed  Google Scholar 

  • Xie D, Yang T, Liu Z, Wang H (2016) Epidemiology of birth defects based on a birth defect surveillance system from 2005 to 2014 in Hunan Province, China. PLoS One 11(1):e0147280

    PubMed  PubMed Central  Google Scholar 

  • Xu DS, Hlubek RJ, Mulholland CB, Knievel KL, Smith KA, Nakaji P (2017) Use of intracranial pressure monitoring frequently refutes diagnosis of idiopathic intracranial hypertension. World Neurosurg 104:167–170

    PubMed  Google Scholar 

  • Yamada S (2014) Cerebrospinal fluid physiology: visualization of cerebrospinal fluid dynamics using the magnetic resonance imaging time-spatial inversion pulse method. Croat Med J 55(4):337–346

    PubMed  PubMed Central  Google Scholar 

  • Yamashima T (1986) Ultrastructural study of the final cerebrospinal fluid pathway in human arachnoid villi. Brain Res 384(1):68–76

    CAS  PubMed  Google Scholar 

  • Zahl SM, Egge A, Helseth E, Wester K (2011) Benign external hydrocephalus: a review, with emphasis on management. Neurosurg Rev 34(4):417–432

    PubMed  PubMed Central  Google Scholar 

  • Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Di Rocco C (2013) Choroid plexus coagulation for hydrocephalus not due to CSF overproduction: a review. Childs Nerv Syst 29(1):35–42

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Frassanito .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Di Rocco, C., Frassanito, P. (2019). Hydrocephalus: Generalities and Clinical Presentations. In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-31512-6_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31512-6_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31512-6

  • Online ISBN: 978-3-319-31512-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics